Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model
Abstract
:1. Introduction
2. Grain-Based Model Method in UDEC
3. Model Description and Calibration
3.1. Numerical Specimen Model Setup Based on Digital Image Processing
3.2. Numerical Specimen Model Setup
3.3. Calibration Procedure and Results Analysis
- 1.
- Calibration—Step 1: Macrophysical parameter setting
- 2.
- Calibration—Step 2: Deformation calibration
- 3.
- Calibration—Step 3: Strength calibration
4. Results and Discussion
4.1. Stress–Strain Curve and Crack Threshold Analysis
4.2. Transmission Mechanism Analysis of Microcracks in Different Failure Stages
- -
- Per-peak stage
- Stage I: crack consolidation;
- Stage II: linear elastic deformation;
- Stage III: crack initiation and stable crack growth;
- Stage IV: crack damage and unstable crack growth.
- -
- Post-peak stage
- Stage V: unstable crack growth with decreasing stress;
- Stage VI: unstable crack growth and failure of the rock specimen with decreasing stress.
4.2.1. Boundary and Transgranular Crack Evolution Process Analysis
4.2.2. Different Failure Stages with Grain-Scale Fracturing Characterization in Uniaxial Compression
4.3. Comparative Analysis of the Development and Evolution of Microscopic Grain Boundary Cracks and Intracrystalline Cracks under Different Confining Pressure Conditions
4.3.1. Uniaxial Compression
4.3.2. Triaxial Compression
- 1.
- Confine pressure: 5 MPa
- 2.
- Confine pressure: 10 MPa
- 3.
- Confine pressure: 20 MPa
4.4. Comparative Analysis of Macroscopic Fracture under Different Confining Pressures
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bieniawski, Z.T. Mechanism of brittle fracture of rock: Part II—Experimental studies. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1967, 4, 407–423. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W., Jr.; Scholz, C. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.K.; Tasaka, Y.; Maejima, T.; Morioka, H.; Minami, M. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 2004, 41, 833–847. [Google Scholar] [CrossRef]
- Diederichs, M.S.; Kaiser, P.K.; Eberhardt, E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int. J. Rock Mech. Min. Sci. 2004, 41, 785–812. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Brittle fracture in compression. Int. J. Fract. 1974, 10, 525–536. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Zhao, J. Transgranular fracturing of crystalline rocks and its influence on rock strengths: Insights from a grain-scale continuum–discontinuum approach. Comput. Methods Appl. Mech. Eng. 2021, 373, 113462. [Google Scholar] [CrossRef]
- Coggan, J.S.; Stead, D.; Howe, J.H.; Faulks, C.I. Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Eng. Geol. 2013, 160, 89–102. [Google Scholar] [CrossRef]
- Momeni, A.A.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A.; Bazvand, E. New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 2015, 185, 43–51. [Google Scholar] [CrossRef]
- Sousa, L.M.O. The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environ. Earth Sci. 2013, 69, 1333–1346. [Google Scholar] [CrossRef]
- Hu, D.W.; Zhang, F.; Shao, J.F.; Gatmiri, B. Influences of Mineralogy and Water Content on the Mechanical Properties of Argillite. Rock Mech. Rock Eng. 2014, 47, 157–166. [Google Scholar] [CrossRef]
- Howarth, D.F.; Rowlands, J.C. Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 1987, 20, 57–85. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stimpson, B.; Stead, D. Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-induced Brittle Fractures. Rock Mech. Rock Eng. 1999, 32, 81–99. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. Solid Earth 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Sprunt, E.S.; Brace, W.F. Direct observation of microcavities in crystalline rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 11, 139–150. [Google Scholar] [CrossRef]
- Tapponnier, P.; Brace, W.F. Development of stress-induced microcracks in Westerly Granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 103–112. [Google Scholar] [CrossRef]
- Dey, T.N.; Wang, C.-Y. Some mechanisms of microcrack growth and interaction in compressive rock failure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 199–209. [Google Scholar] [CrossRef]
- Kranz, R.L. Microcracks in rocks: A review. Tectonophysics 1983, 100, 449–480. [Google Scholar] [CrossRef]
- Gallagher, J.J.; Friedman, M.; Handin, J.; Sowers, G.M. Experimental studies relating to microfracture in sandstone. Tectonophysics 1974, 21, 203–247. [Google Scholar] [CrossRef]
- Diederichs, M.S. Manuel Rocha Medal Recipient Rock Fracture and Collapse Under Low Confinement Conditions. Rock Mech. Rock Eng. 2003, 36, 339–381. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int. J. Rock Mech. Min. Sci. 1999, 36, 361–380. [Google Scholar] [CrossRef]
- Lei, X.L.; Kusunose, K.; Nishizawa, O.; Cho, A.; Satoh, T. On the spatio-temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: The role of pre-existing cracks. Geophys. Res. Lett. 2000, 27, 1997–2000. [Google Scholar] [CrossRef] [Green Version]
- Xingguang, Z.; Cai, M.; Wang, J.; Ma, L.K. Damage stress and acoustic emission characteristics of the Beishan granite. Int. J. Rock Mech. Min. Sci. 2013, 64, 258–269. [Google Scholar]
- Wong, L.N.Y.; Einstein, H.H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 2-Microscopic Observations and Interpretation. Rock Mech. Rock Eng. 2009, 42, 513–545. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Wang, S.-R.; Ni, J.; Azzam, R.; Fernández-steeger, T.M. An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng. Geol. 2017, 220, 234–242. [Google Scholar] [CrossRef]
- Nishiyama, T.; Kusuda, H. Identification of pore spaces and microcracks using fluorescent resins. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 369–375. [Google Scholar] [CrossRef]
- Lim, S.S.; Martin, C.D.; Åkesson, U. In-situ stress and microcracking in granite cores with depth. Eng. Geol. 2012, 147–148, 1–13. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khamehchiyan, M.; Taheri, A.; Nikudel, M.R.; Zalooli, A. Crack Evolution in Damage Stress Thresholds in Different Minerals of Granite Rock. Rock Mech. Rock Eng. 2020, 53, 1163–1178. [Google Scholar] [CrossRef]
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Lisjak, A.; Grasselli, G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 2014, 6, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Itasca Consulting Group. PFC-2D, Particle Flow Code in 2 Dimensions; Theory Background Itasca; ICG: Minneapolis, MN, USA, 2002; pp. 708–715. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Itasca Consulting Group. UDEC (Universal Distinct Element Code), Version 6.0; ICG: Mineapolis, MN, USA, 2011. [Google Scholar]
- Mayer, J.M.; Stead, D. Exploration into the causes of uncertainty in UDEC Grain Boundary Models. Comput. Geotech. 2017, 82, 110–123. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Wang, X.; Cai, M. Modeling of brittle rock failure considering inter- and intra-grain contact failures. Comput. Geotech. 2018, 101, 224–244. [Google Scholar] [CrossRef]
- Farahmand, K.; Diederichs, M.S. A Calibrated Synthetic Rock Mass (SRM) Model for Simulating Crack Growth in Granitic Rock Considering Grain Scale Heterogeneity of Polycrystalline Rock. In Proceedings of the 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 29 June–1 July 2015. [Google Scholar]
- Zhou, J.; Lan, H.; Zhang, L.; Yang, D.; Song, J.; Wang, S. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite. Eng. Geol. 2019, 251, 100–114. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.B.; Zhao, J. The role of transgranular capability in grain-based modelling of crystalline rocks. Comput. Geotech. 2019, 110, 161–183. [Google Scholar] [CrossRef]
- Tan, X.; Konietzky, H.; Chen, W. Numerical Simulation of Heterogeneous Rock Using Discrete Element Model Based on Digital Image Processing. Rock Mech. Rock Eng. 2016, 49, 4957–4964. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int. J. Rock Mech. Min. Sci. 2004, 41, 939–957. [Google Scholar] [CrossRef]
- Mahabadi, O.K.; Randall, N.X.; Zong, Z.; Grasselli, G. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Fabjan, T.; Mas Ivars, D.; Vukadin, V. Numerical simulation of intact rock behaviour via the continuum and Voronoi tesselletion models: A sensitivity analysis. Acta Geotech. Slov. 2015, 12, 5–23. [Google Scholar]
- Stavrou, A.; Murphy, W. Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks. Int. J. Rock Mech. Min. Sci. 2018, 102, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Nicksiar, M.; Martin, C.D. Factors Affecting Crack Initiation in Low Porosity Crystalline Rocks. Rock Mech. Rock Eng. 2014, 47, 1165–1181. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Hu, X.; Xie, N.; Zhu, Q.; Chen, L.; Li, P. Modeling Damage Evolution in Heterogeneous Granite Using Digital Image-Based Grain-Based Model. Rock Mech. Rock Eng. 2020, 53, 4925–4945. [Google Scholar] [CrossRef]
- Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K -means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Gao, F.Q.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; Du, X.; Xiao, P.; Liao, S.; Azzam, R. Investigation of Microcrack Propagation and Energy Evolution in Brittle Rocks Based on the Voronoi Model. Materials 2021, 14, 2108. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D.; Elmo, D. Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput. Geotech. 2016, 78, 203–217. [Google Scholar] [CrossRef]
- Yoon, J.S.; Zang, A.; Stephansson, O. Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model. Int. J. Rock Mech. Min. Sci. 2012, 49, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Li, H.B.; Li, J.C.; Xia, X. Crack initiation and propagation simulation for polycrystalline-based brittle rock utilizing three dimensional distinct element method. In Proceedings of the ISRM 2nd International Conference on Rock Dynamics, Suzhou, China, 18–19 May 2016. [Google Scholar]
- Hoek, E.; Martin, C.D. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Qin, S.; Sun, Q.; Wang, Y.; Lee, L.M.; Li, W. A Study on Crack Damage Stress Thresholds of Different Rock Types Based on Uniaxial Compression Tests. Rock Mech. Rock Eng. 2014, 47, 1183–1195. [Google Scholar] [CrossRef]
- Hoek, E.; Bieniawski, Z.T. Brittle fracture propagation in rock under compression. Int. J. Fract. Mech. 1965, 1, 137–155. [Google Scholar] [CrossRef]
- Li, L.; Lee, P.K.K.; Tsui, Y.; Tham, L.; Tang, C.A. Failure Process of Granite. Int. J. Geomech. 2003, 3, 84–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, L.N.Y.; Chan, K.K. An Extended Grain-Based Model Accounting for Microstructures in Rock Deformation. J. Geophys. Res. Solid Earth 2019, 124, 125–148. [Google Scholar] [CrossRef]
- Seo, Y.S.; Jeong, G.C.; Kim, J.S.; Ichikawa, Y. Microscopic observation and contact stress analysis of granite under compression. Eng. Geol. 2002, 63, 259–275. [Google Scholar] [CrossRef]
Mineral | Composition (%) | |
---|---|---|
Biotite Granite | Model | |
Plagioclase | 36.2 | 31 |
K-feldspar | 29.1 | 29 |
Quartz | 27.8 | 24 |
Biotite | 5.7 | 4.3 |
Kaolinite | 0.2 | / |
Other | <1 | / |
Mineral Type | Elastic Modulus (GPa) | Passion’s Ratio | Shear Modulus (GPa) | Bulk Modulus (GPa) | Density (Kg/m3) | Grain Size (mm) |
---|---|---|---|---|---|---|
Plagioclase | 88.1 | 0.26 | 29.3 | 50.8 | 2630 | 2–5 |
K-feldspar | 69.8 | 0.28 | 27.2 | 53.7 | 2560 | 2–5 |
Quartz | 94.5 | 0.08 | 44.0 | 37.0 | 2650 | 2–5 |
Biotite | 41.1 | 0.38 | 12.4 | 41.1 | 3050 | 0.5–3 |
Contact No | Contact Type | kn (N/m) | ks/kn | |||
---|---|---|---|---|---|---|
1-1 | Pl-Pl | 9.28 × 1013 | 0.6 | 69 | 26.4 | 27 |
2-2 | Kf-Kf | 9.20 × 1013 | 68 | 25 | ||
3-3 | Qz-Qz | 2.55 × 1014 | 85 | 28 | ||
4-4 | Bi-Bi | 4.70 × 1014 | 50 | 23 | ||
1-2 | Pl-Kf | 9.24 × 1013 | 45 | 21 | ||
1-3 | Pl-Qz | 1.74 × 1014 | 45 | 21 | ||
1-4 | Pl-Bi | 2.81 × 1014 | 45 | 21 | ||
2-3 | Kf-Qz | 1.74 × 1014 | 45 | 21 | ||
2-4 | Kf-Bi | 2.81 × 1014 | 45 | 21 | ||
3-4 | Qz-Bi | 3.63 × 1014 | 45 | 21 |
Model | Lab | Error (%) | |
---|---|---|---|
Peak Strength (MPa) | 99.6 | 99.8 | 0.2 |
Young’s Modulus (GPa) | 47.5 | 49.57 | 4.1 |
Passion’s ratio | 0.23 | 0.24 | 4 |
Tensile strength (MPa) | 8.9 | 9.52 | 6.5 |
Crack-Initiation Stress (MPa) | 43 | / | / |
Crack Damage Stress(MPa) | 89 | / | / |
Confine Pressure | Stress vs. Strain | Micro Cracks Count | Crack Orientation |
---|---|---|---|
0 MPa | |||
5 MPa | |||
10 MPa | |||
20 MPa |
0 MPa | 5 MPa | 10 MPa | 20 MPa | |
---|---|---|---|---|
A | ||||
B | ||||
C-1 | ||||
C-2 | ||||
C-3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Chen, Y.; Du, X.; Wang, S.; Fernández-Steeger, T.M. Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model. Materials 2022, 15, 1941. https://doi.org/10.3390/ma15051941
Liu G, Chen Y, Du X, Wang S, Fernández-Steeger TM. Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model. Materials. 2022; 15(5):1941. https://doi.org/10.3390/ma15051941
Chicago/Turabian StyleLiu, Guanlin, Youliang Chen, Xi Du, Suran Wang, and Tomás Manuel Fernández-Steeger. 2022. "Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model" Materials 15, no. 5: 1941. https://doi.org/10.3390/ma15051941
APA StyleLiu, G., Chen, Y., Du, X., Wang, S., & Fernández-Steeger, T. M. (2022). Evolutionary Analysis of Heterogeneous Granite Microcracks Based on Digital Image Processing in Grain-Block Model. Materials, 15(5), 1941. https://doi.org/10.3390/ma15051941