Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review
Abstract
:1. Introduction
2. Steel Production Routes
2.1. Steel Waste
2.2. Cost Analysis
3. Steel Waste Management
3.1. Slags
3.2. Sludges
3.3. Incorporating Alkali-Activated Cement Based Steel Waste
3.4. Variability of Steel Waste
4. Alkaline Activator Solution
4.1. Hydroxide Alkali Solution
4.2. Chemistry of Alkali Hydroxide and Alkali Silicate Solution
4.3. Reaction Mechanism of Slag Alkali Activation
4.4. Alkali-Activated Cement
4.5. Alkali-Activated Mortar
4.6. Alkali-Activated Composites
5. Conclusions and Future Works
- Material and energy flow mechanisms in the steelmaking industry are still poorly understood, especially in the variable setting of steel production. Consequently, the quality of material and energy fluxes, as well as steel waste characteristics, necessitates greater consideration.
- The reaction mechanism and reaction products of alkali-activated cement are contributed to by prime materials and alkaline activators, hence the details of alkali-activation-based steel waste require more attention.
- It is also recommended that the number of steel waste management routes are increased, allowing the environmental impact to be reduced due to the introduction of more efficient technologies. As a result, organizations who embrace such approaches may save costs, add value to industrial waste, and develop the profitability and competitiveness of the manufacturing process.
- The evaluation of landfill cost avoidance benefits as part of production costs is important for the consideration of the impact on the steelmaking industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medarac, H.; Moya, J.; Somers, J. Production costs from iron and steel industry in the EU and third countries. JRC Tech. Rep. 2020, 10, 705636. [Google Scholar]
- Li, Y.; Zhu, L. Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector. Appl. Energy 2014, 130, 603–616. [Google Scholar] [CrossRef]
- Pinto, R.G.D.; Szklo, A.S.; Rathmann, R. CO2 emissions mitigation strategy in the Brazilian iron and steel sector–From structural to intensity effects. Energy Policy 2018, 114, 380–393. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Arens, M.; Price, L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review. Renew. Sustain. Energy Rev. 2014, 33, 645–658. [Google Scholar] [CrossRef]
- Morfeldt, J.; Nijs, W.; Silveira, S. The impact of climate targets on future steel production–an analysis based on a global energy system model. J. Clean. Prod. 2015, 103, 469–482. [Google Scholar] [CrossRef]
- Burchart-Korol, D. Life cycle assessment of steel production in Poland: A case study. J. Clean. Prod. 2013, 54, 235–243. [Google Scholar] [CrossRef]
- Suopajärvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romar, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N. Use of biomass in integrated steelmaking–Status quo, future needs and comparison to other low-CO2 steel production technologies. Appl. Energy 2018, 213, 384–407. [Google Scholar] [CrossRef] [Green Version]
- Pardo, N.; Moya, J.A. Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry. Energy 2013, 54, 113–128. [Google Scholar]
- Skoczkowski, T.; Verdolini, E.; Bielecki, S.; Kochański, M.; Korczak, K.; Węglarz, A. Technology innovation system analysis of decarbonisation options in the EU steel industry. Energy 2020, 212, 118688. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Estévez, E.; Argiz, C.; del Barrio, D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cem. Concr. Compos. 2018, 90, 257–265. [Google Scholar] [CrossRef]
- Shen, D.; Jiao, Y.; Kang, J.; Feng, Z.; Shen, Y. Influence of ground granulated blast furnace slag on early-age cracking potential of internally cured high performance concrete. Constr. Build. Mater. 2020, 233, 117083. [Google Scholar] [CrossRef]
- Shen, D.; Liu, K.; Wen, C.; Shen, Y.; Jiang, G. Early-age cracking resistance of ground granulated blast furnace slag concrete. Constr. Build. Mater. 2019, 222, 278–287. [Google Scholar] [CrossRef]
- Duraman, S.B.; Richardson, I.G. Microstructure & properties of steel-reinforced concrete incorporating Portland cement and ground granulated blast furnace slag hydrated at 20 °C. Cem. Concr. Res. 2020, 137, 106193. [Google Scholar]
- Adolfsson, D.; Robinson, R.; Engström, F.; Björkman, B. Influence of mineralogy on the hydraulic properties of ladle slag. Cem. Concr. Res. 2011, 41, 865–871. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; Liu, J.; Shao, Y. Converting ladle slag into high-strength cementing material by flue gas carbonation at different temperatures. Resour. Conserv. Recycl. 2021, 174, 105819. [Google Scholar] [CrossRef]
- Henríquez, P.A.; Aponte, D.; Ibáñez-Insa, J.; Bizinotto, M.B. Ladle furnace slag as a partial replacement of Portland cement. Constr. Build. Mater. 2021, 289, 123106. [Google Scholar] [CrossRef]
- Fang, K.; Wang, D.; Zhao, J.; Zhang, M. Utilization of ladle furnace slag as cement partial replacement: Influences on the hydration and hardening properties of cement. Constr. Build. Mater. 2021, 299, 124265. [Google Scholar] [CrossRef]
- Cristelo, N.; Garcia-Lodeiro, I.; Rivera, J.F.; Miranda, T.; Palomo, Á.; Coelho, J.; Fernández-Jiménez, A. One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. J. Build. Eng. 2021, 44, 103298. [Google Scholar] [CrossRef]
- Ozturk, M.; Akgol, O.; Sevim, U.K.; Karaaslan, M.; Demirci, M.; Unal, E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr. Build. Mater. 2018, 165, 58–63. [Google Scholar] [CrossRef]
- Lam, M.N.-T.; Le, D.-H.; Jaritngam, S. Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Constr. Build. Mater. 2018, 191, 912–922. [Google Scholar] [CrossRef]
- Sosa, I.; Thomas, C.; Polanco, J.A.; Setien, J.; Tamayo, P. High performance self-compacting concrete with electric arc furnace slag aggregate and cupola slag powder. Appl. Sci. 2020, 10, 773. [Google Scholar] [CrossRef] [Green Version]
- Aziz, I.H. The characterization of steel slag by alkali activation. Open Access Libr. J. 2017, 4, 1. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, G.; Wang, K.; Al Qunaynah, S.; Yuan, W. Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement. Constr. Build. Mater. 2020, 265, 120301. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Hou, G.; Yan, P. Preparation of sustainable and green cement-based composite binders with high-volume steel slag powder and ultrafine blast furnace slag powder. J. Clean. Prod. 2021, 289, 125133. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, L.; Liu, X.; Zhang, Y. Structural characteristics and cementitious behavior of basic oxygen furnace slag mud and electric arc furnace slag. Constr. Build. Mater. 2019, 219, 11–18. [Google Scholar] [CrossRef]
- Wen, T.; Yang, L.; Dang, C.; Miki, T.; Bai, H.; Nagasaka, T. Effect of basic oxygen furnace slag on succession of the bacterial community and immobilization of various metal ions in acidic contaminated mine soil. J. Hazard. Mater. 2020, 388, 121784. [Google Scholar] [CrossRef]
- Lu, T.-H.; Chen, Y.-L.; Shih, P.-H.; Chang, J.-E. Use of basic oxygen furnace slag fines in the production of cementitious mortars and the effects on mortar expansion. Constr. Build. Mater. 2018, 167, 768–774. [Google Scholar] [CrossRef]
- Lobato, N.C.C.; Villegas, E.A.; Mansur, M.B. Management of solid wastes from steelmaking and galvanizing processes: A brief review. Resour. Conserv. Recycl. 2015, 102, 49–57. [Google Scholar] [CrossRef]
- Mayer, J.; Bachner, G.; Steininger, K.W. Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. J. Clean. Prod. 2019, 210, 1517–1533. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Zhou, Y.; Wu, J. Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Appl. Energy 2020, 268, 114946. [Google Scholar] [CrossRef]
- Stewart, D.J.; Barron, A.R. Pyrometallurgical removal of zinc from basic oxygen steelmaking dust–A review of best available technology. Resour. Conserv. Recycl. 2020, 157, 104746. [Google Scholar] [CrossRef]
- Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renew. Sustain. Energy Rev. 2016, 65, 1247–1266. [Google Scholar] [CrossRef]
- Sadek, D.M. Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks. J. Clean. Prod. 2014, 79, 134–141. [Google Scholar] [CrossRef]
- Zainullin, L.; Epishin, A.Y.; Karelin, V.; Artov, D.; Spirin, N. Analysis of economic and energy efficiency of using electric-arc reduction for iron-containing materials. Metallurgist 2018, 62, 642–647. [Google Scholar] [CrossRef]
- Marhual, N.; Pradhan, N.; Mohanta, N.; Sukla, L.; Mishra, B. Dephosphorization of LD slag by phosphorus solubilising bacteria. Int. Biodeterior. Biodegrad. 2011, 65, 404–409. [Google Scholar] [CrossRef]
- Gurtubay, L.; Gallastegui, G.; Elias, A.; Rojo, N.; Barona, A. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment. J. Environ. Manag. 2014, 140, 45–50. [Google Scholar] [CrossRef]
- Hamann, C.; Spanka, M.; Stolle, D.; Auer, G.; Weingart, E.; Al-Sabbagh, D.; Ostermann, M.; Adam, C. Recycling of blast-furnace sludge by thermochemical treatment with spent iron (II) chloride solution from steel pickling. J. Hazard. Mater. 2021, 402, 123511. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, D.; Gonçalves, D.L.; Mapelli, C.; Barella, S.; Gruttadauria, A. Processing and Characterization of Self-Reducing Briquettes Made of Jarosite and Blast Furnace Sludges. J. Sustain. Metall. 2021, 7, 1603–1626. [Google Scholar] [CrossRef]
- Andersson, A.; Andersson, M.; Mousa, E.; Kullerstedt, A.; Ahmed, H.; Björkman, B.; Sundqvist-Ökvist, L. The potential of recycling the high-zinc fraction of upgraded BF sludge to the desulfurization plant and basic oxygen furnace. Metals 2018, 8, 1057. [Google Scholar] [CrossRef] [Green Version]
- Rieger, J.; Colla, V.; Matino, I.; Branca, T.A.; Stubbe, G.; Panizza, A.; Brondi, C.; Falsafi, M.; Hage, J.; Wang, X. Residue Valorization in the Iron and Steel Industries: Sustainable Solutions for a Cleaner and More Competitive Future Europe. Metals 2021, 11, 1202. [Google Scholar] [CrossRef]
- Ning, G.; Zhang, B.; Liu, C.; Li, S.; Ye, Y.; Jiang, M. Large-scale consumption and zero-waste recycling method of red mud in steel making process. Minerals 2018, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.; López, F.; Torralba, J.M. Production of sponge iron powder by reduction of rolling mill scale. Ironmak. Steelmak. 2012, 39, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Fischedick, M.; Marzinkowski, J.; Winzer, P.; Weigel, M. Techno-economic evaluation of innovative steel production technologies. J. Clean. Prod. 2014, 84, 563–580. [Google Scholar] [CrossRef] [Green Version]
- Sabat, K.C.; Murphy, A.B. Hydrogen plasma processing of iron ore. Metall. Mater. Trans. B 2017, 48, 1561–1594. [Google Scholar] [CrossRef]
- Anderl, M.; Freudenschuß, A.; Friedrich, A.; Haider, S.; Jobstmann, H.; Köther, T.; Kriech, M.; Kuschel, V.; Lampert, C.; Pazdernik, K. Austria’s National Inventory Report 2011. In Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol; Umweltbundesamt: Berlin, Germany, 2020. [Google Scholar]
- Renda, A.; Pelkmans, J.; Egenhofer, C.; Marcu, A. Assessment of Cumulative Cost Impact for the Steel Industry; RSC Publishing: London, UK, 2013. [Google Scholar]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis–A review. J. Clean. Prod. 2014, 85, 151–163. [Google Scholar] [CrossRef]
- Waligora, J.; Bulteel, D.; Degrugilliers, P.; Damidot, D.; Potdevin, J.; Measson, M. Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach. Mater. Charact. 2010, 61, 39–48. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, J.-W.; An, Y.-J.; Bae, J.-S.; Han, C. Activation of ground granulated blast furnace slag cement by calcined alunite. Mater. Trans. 2011, 52, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Azimi, G. Valorization of electric arc furnace slag via carbothermic reduction followed by acid baking–water leaching. Resour. Conserv. Recycl. 2021, 173, 105710. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E.; Mahmood, S.F.; Öz, H.Ö.; Mermerdaş, K. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. J. Hazard. Mater. 2012, 235, 352–358. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; El-Dieb, A.S.; Bedir, M.S. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 2012, 34, 249–256. [Google Scholar] [CrossRef]
- Choi, S.-J.; Bae, S.-H.; Lee, J.-I.; Kim, J.-H. Strength and Durability Characteristics of Cement Composites with Recycled Water and Blast Furnace Slag Aggregate. Materials 2021, 14, 2156. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-M.; Kwon, S.-J.; Myung, N.V.; Singh, J.K.; Lee, H.-S.; Mandal, S. Evaluation of strength development in concrete with ground granulated blast furnace slag using apparent activation energy. Materials 2020, 13, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowski, Ł.; Nikoo, M.; Shariq, M.; Joker, E.; Czarnecki, S. The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag. Materials 2019, 12, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J.O.; Jahangiri, H.; Bashir, M.A.; Hornung, A.; Ouadi, M. The upgrading of bio-oil from the intermediate pyrolysis of waste biomass using steel slag as a catalyst. ACS Sustain. Chem. Eng. 2020, 8, 18420–18432. [Google Scholar] [CrossRef]
- Kamil, F.H.; Ali, S.; Shahruzzaman, R.M.H.R.; Hussien, I.R.; Omer, R. Characterization and application of molten slag as catalyst in pyrolysis of waste cooking oil. Bull. Chem. React. Eng. Catal. 2020, 15, 119–127. [Google Scholar]
- Liu, G.; Yang, J.; Xu, X. Synthesis of hydrotalcite-type mixed oxide catalysts from waste steel slag for transesterification of glycerol and dimethyl carbonate. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Chen, L.; Long, Y.; Zhou, M.; Wang, H. Structure and Crystallization of High-Calcium, CMAS Glass Ceramics Synthesized with a High Content of Slag. Materials 2022, 15, 657. [Google Scholar] [CrossRef]
- Jordanov, N.B.; Georgiev, I.; Karamanov, A. Sintered Glass-Ceramics, Self-Glazed Materials and Foams from Metallurgical Waste Slag. Materials 2021, 14, 2263. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Nguyen, V.C.; Nguyen, T.C.; Tran, D.M.T.; Nguyen, T.T.T.; Vu, Q.T.; Nguyen, D.T.; Thai, H. Treatment of yellow phosphorus slag and reuse of it as an absorbent of chromium (VI) ions and methylene blue. J. Chem. 2020, 2020, 1834829. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Chen, P.; Pan, J.; Xu, Y.; Wang, H.; Shen, W.; Cao, K. Effect of internal curing by super absorbent polymer on the autogenous shrinkage of alkali-activated slag mortars. Materials 2020, 13, 4318. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An overview of utilization of steel slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Földi, C.; Dohrmann, R.; Mansfeldt, T. Mercury in dumped blast furnace sludge. Chemosphere 2014, 99, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Trung, Z.H.; Kukurugya, F.; Takacova, Z.; Orac, D.; Laubertova, M.; Miskufova, A.; Havlik, T. Acidic leaching both of zinc and iron from basic oxygen furnace sludge. J. Hazard. Mater. 2011, 192, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Cui, S.; Wei, Q. Adsorption Behavior of Lead Ions from Wastewater on Pristine and Aminopropyl-Modified Blast Furnace Slag. Water 2021, 13, 2735. [Google Scholar] [CrossRef]
- Doušová, B.; Bedrnová, E.; Reiterman, P.; Keppert, M.; Koloušek, D.; Lhotka, M.; Mastný, L. Adsorption Properties of Waste Building Sludge for Environmental Protection. Minerals 2021, 11, 309. [Google Scholar] [CrossRef]
- Khater, G.A.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel Latif, M.A.-B.; Farag, M.M. Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials. Materials 2022, 15, 1112. [Google Scholar] [CrossRef]
- Cechin, L.; Mymrine, V.; Avanci, M.A.; Povaluk, A.P. Ceramics composites from iron ore tailings and blast furnace slag. Ceram. Int. 2021. [Google Scholar] [CrossRef]
- Gao, D.; Wang, F.-P.; Wang, Y.-T.; Zeng, Y.-N. Sustainable utilization of steel slag from traditional industry and agriculture to catalysis. Sustainability 2020, 12, 9295. [Google Scholar] [CrossRef]
- Cantarino, M.V.; de Carvalho Filho, C.; Mansur, M.B. Selective removal of zinc from basic oxygen furnace sludges. Hydrometallurgy 2012, 111, 124–128. [Google Scholar] [CrossRef]
- Brožová, S.; Lisińska, M.; Saternus, M.; Gajda, B.; Simha Martynková, G.; Slíva, A. Hydrometallurgical Recycling Process for Mobile Phone Printed Circuit Boards Using Ozone. Metals 2021, 11, 820. [Google Scholar] [CrossRef]
- Kou, Y.; Jiang, H.; Ren, L.; Yilmaz, E.; Li, Y. Rheological properties of cemented paste backfill with alkali-activated slag. Minerals 2020, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- De Hita, M.J.; Criado, M. Influence of the Fly Ash Content on the Fresh and Hardened Properties of Alkali-Activated Slag Pastes with Admixtures. Materials 2022, 15, 992. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.K.; Ryou, J.S.; Jakhrani, S.H.; Kim, H.G. Effects of light-burnt dolomite incorporation on the setting, strength, and drying shrinkage of one-part alkali-activated slag cement. Materials 2019, 12, 2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, I.; Kohail, M.; El-Feky, M.; Rashad, A.; Khalaf, M.A. A review on alkali-activated slag concrete. Ain Shams Eng. J. 2021, 12, 1475–1499. [Google Scholar] [CrossRef]
- Alharbi, Y.R.; Abadel, A.A.; Salah, A.A.; Mayhoub, O.A.; Kohail, M. Engineering properties of alkali activated materials reactive powder concrete. Constr. Build. Mater. 2021, 271, 121550. [Google Scholar] [CrossRef]
- El-Feky, M.; Kohail, M.; El-Tair, A.M.; Serag, M. Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes. Constr. Build. Mater. 2020, 233, 117268. [Google Scholar] [CrossRef]
- Zawrah, M.; Gado, R.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Karthik, A.; Sudalaimani, K.; Kumar, C.V. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Constr. Build. Mater. 2017, 149, 338–349. [Google Scholar] [CrossRef]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I.; Kabir, S.A. Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Constr. Build. Mater. 2015, 101, 503–521. [Google Scholar] [CrossRef]
- Khan, M.; Castel, A.; Akbarnezhad, A.; Foster, S.J.; Smith, M. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cem. Concr. Res. 2016, 89, 220–229. [Google Scholar] [CrossRef]
- Bai, T.; Song, Z.-G.; Wu, Y.-G.; Hu, X.-D.; Bai, H. Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer. Ceram. Int. 2018, 44, 15706–15713. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Yang, T.; Li, L.; Zhu, H.; Wang, H. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag. J. Clean. Prod. 2017, 141, 463–471. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Kinnunen, P.; Illikainen, M. Properties and durability of alkali-activated ladle slag. Mater. Struct. 2017, 50, 255. [Google Scholar] [CrossRef]
- Wang, W.-C.; Wang, H.-Y.; Tsai, H.-C. Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Constr. Build. Mater. 2016, 123, 800–805. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, X.; Vollpracht, A. Pervious concrete made of alkali activated slag and geopolymers. Constr. Build. Mater. 2018, 189, 797–803. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Nzeukou, A.; Aziwo, B.; Tchamba, A.; Wang, K.-T.; Melo, U.C.; Cui, X.-M. Effect of slag on the improvement of setting time and compressive strength of low reactive volcanic ash geopolymers synthetized at room temperature. Mater. Chem. Phys. 2019, 239, 122077. [Google Scholar] [CrossRef]
- Hu, S.; Wang, H.; Zhang, G.; Ding, Q. Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cem. Concr. Compos. 2008, 30, 239–244. [Google Scholar] [CrossRef]
- Furlani, E.; Maschio, S.; Magnan, M.; Aneggi, E.; Andreatta, F.; Lekka, M.; Lanzutti, A.; Fedrizzi, L. Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size. Ceram. Int. 2018, 44, 5226–5232. [Google Scholar] [CrossRef]
- Alex, T.; Kalinkin, A.; Nath, S.; Gurevich, B.; Kalinkina, E.; Tyukavkina, V.; Kumar, S. Utilization of zinc slag through geopolymerization: Influence of milling atmosphere. Int. J. Miner. Process. 2013, 123, 102–107. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, L.C.; Xu, Y.; Wang, Y.C. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water. J. Hazard. Mater. 2012, 209, 146–150. [Google Scholar] [CrossRef]
- Mo, L.; Yang, S.; Huang, B.; Xu, L.; Feng, S.; Deng, M. Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete. Cem. Concr. Compos. 2020, 113, 103715. [Google Scholar] [CrossRef]
- Kalinkin, A.; Kumar, S.; Gurevich, B.; Alex, T.; Kalinkina, E.; Tyukavkina, V.; Kalinnikov, V.; Kumar, R. Geopolymerization behavior of Cu–Ni slag mechanically activated in air and in CO2 atmosphere. Int. J. Miner. Process. 2012, 112, 101–106. [Google Scholar]
- Zhang, T.; Jin, H.; Guo, L.; Li, W.; Han, J.; Pan, A.; Zhang, D. Mechanism of Alkali-Activated Copper-Nickel Slag Material. Adv. Civ. Eng. 2020, 2020, 7615848. [Google Scholar] [CrossRef]
- Miltiadis, S.K.; Giannopoulou, I.; Tahir, M.F.M.; Hashim, M.F.A.; Panias, D. Upgrading Copper Slags to Added Value Fire Resistant Geopolymers. Waste Biomass Valorization 2019, 11, 3811–3820. [Google Scholar] [CrossRef] [Green Version]
- Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 2007, 42, 3073–3082. [Google Scholar] [CrossRef]
- Maragkos, I.; Giannopoulou, I.P.; Panias, D. Synthesis of ferronickel slag-based geopolymers. Miner. Eng. 2009, 22, 196–203. [Google Scholar]
- Thompson, A.; Saha, A.K.; Sarker, P.K. Comparison of the alkali-silica reactions of ferronickel slag aggregate in fly ash geopolymer and cement mortars. Eur. J. Environ. Civ. Eng. 2019, 26, 1–14. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R.; Toprak, M.U. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 2014, 72, 283–292. [Google Scholar] [CrossRef]
- Jena, S.; Panigrahi, R. Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Constr. Build. Mater. 2019, 220, 525–537. [Google Scholar] [CrossRef]
- Özcan, A.; Karakoç, M.B. Evaluation of sulfate and salt resistance of ferrochrome slag and blast furnace slag-based geopolymer concretes. Struct. Concr. 2019, 20, 1607–1621. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Mehrotra, S. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; van Deventer, J.S. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar] [CrossRef]
- Puligilla, S.; Mondal, P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 2013, 43, 70–80. [Google Scholar] [CrossRef]
- Mozgawa, W.; Deja, J. Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 2009, 924, 434–441. [Google Scholar] [CrossRef]
- Rashad, A.M.; Essa, G.M. Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cem. Concr. Compos. 2020, 111, 103617. [Google Scholar] [CrossRef]
- Yunsheng, Z.; Wei, S.; Qianli, C.; Lin, C. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 2007, 143, 206–213. [Google Scholar] [CrossRef]
- Nguyen, H.; Carvelli, V.; Adesanya, E.; Kinnunen, P.; Illikainen, M. High performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibers. Cem. Concr. Compos. 2018, 90, 150–160. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Caicedo-Ramirez, A.; Hernandez, M.T.; Srubar, W.V., III. Copper and cobalt improve the acid resistance of alkali-activated cements. Cem. Concr. Res. 2019, 115, 327–338. [Google Scholar] [CrossRef]
- Samantasinghar, S.; Singh, S.P. Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr. Build. Mater. 2018, 170, 225–234. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.; Brouwers, H. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceram. Int. 2017, 43, 12408–12419. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Wang, Q.; Zhang, Z.; Ou, Z. Composition design and performance of alkali-activated cements. Mater. Struct. 2017, 50, 1–11. [Google Scholar] [CrossRef]
- Bouaissi, A.; Li, L.-Y.; Abdullah, M.M.A.B.; Bui, Q.-B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019, 210, 198–209. [Google Scholar] [CrossRef]
- Jia, D.; He, P.; Wang, M.; Yan, S. Geopolymer and Geopolymer Matrix Composites; Springer: Singapore, 2020; pp. 81–129. [Google Scholar]
- Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. Autogenous and drying shrinkage of alkali-activated slag mortars. J. Am. Ceram. Soc. 2019, 102, 4963–4975. [Google Scholar] [CrossRef]
- Sithole, N.T.; Mashifana, T. Geosynthesis of building and construction materials through alkaline activation of granulated blast furnace slag. Constr. Build. Mater. 2020, 264, 120712. [Google Scholar] [CrossRef]
- Altan, E.; Erdoğan, S.T. Alkali activation of a slag at ambient and elevated temperatures. Cem. Concr. Compos. 2012, 34, 131–139. [Google Scholar] [CrossRef]
- Mohseni, E. Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr. Build. Mater. 2018, 186, 904–911. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Ocak, S.; Akyol, Y. Effect of sodium-silicate activated slag at different silicate modulus on the strength and microstructural properties of full and coarse sulphidic tailings paste backfill. Constr. Build. Mater. 2018, 185, 555–566. [Google Scholar] [CrossRef]
- Tchadjie, L.; Ekolu, S. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 2018, 53, 4709–4733. [Google Scholar] [CrossRef]
- Singh, B.; Rahman, M.; Paswan, R.; Bhattacharyya, S. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016, 118, 171–179. [Google Scholar] [CrossRef]
- Shariati, M.; Shariati, A.; Trung, N.T.; Shoaei, P.; Ameri, F.; Bahrami, N.; Zamanabadi, S.N. Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Constr. Build. Mater. 2020, 267, 120886. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Deveci, H.; Erdemir, F. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Miner. Eng. 2015, 83, 117–127. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L. Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 2008, 91, 3864–3869. [Google Scholar] [CrossRef]
- Jamil, N.H.; Abdullah, M.M.A.B.; Pa, F.C.; Mohamad, H.; Ibrahim, W.M.A.W.; Chaiprapa, J. Influences of SiO2, Al2O3, CaO and MgO in phase transformation of sintered kaolin-ground granulated blast furnace slag geopolymer. J. Mater. Res. Technol. 2020, 9, 14922–14932. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Hou, D.; Zhang, J.; Jiang, J. Insights on magnesium and sulfate ions’ adsorption on the surface of sodium alumino-silicate hydrate (NASH) gel: A molecular dynamics study. Phys. Chem. Chem. Phys. 2018, 20, 18297–18310. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Zhang, Z. Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos. Part B: Eng. 2019, 171, 34–45. [Google Scholar] [CrossRef]
- Kim, T. Characteristics of alkali-activated slag cement-based ultra-lightweight concrete with high-volume cenosphere. Constr. Build. Mater. 2021, 302, 124165. [Google Scholar] [CrossRef]
- He, J.; Bai, W.; Zheng, W.; He, J.; Sang, G. Influence of hydrated lime on mechanical and shrinkage properties of alkali-activated slag cement. Constr. Build. Mater. 2021, 289, 123201. [Google Scholar] [CrossRef]
- Hyeok-Jung, K.; Kang, S.-P.; Choe, G.-C. Effect of red mud content on strength and efflorescence in pavement using alkali-activated slag cement. Int. J. Concr. Struct. Mater. 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Nikolić, I.; Đurović, D.; Marković, S.; Veselinović, L.; Janković-Častvan, I.; Radmilović, V.V.; Radmilović, V.R. Alkali activated slag cement doped with Zn-rich electric arc furnace dust. J. Mater. Res. Technol. 2020, 9, 12783–12794. [Google Scholar] [CrossRef]
- Shahari, S.; Fathullah, M.; Abdullah, M.M.A.B.; Shayfull, Z.; Mia, M.; Darmawan, V.E.B. Recent developments in fire retardant glass fibre reinforced epoxy composite and geopolymer as a potential fire-retardant material: A review. Constr. Build. Mater. 2021, 277, 122246. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Shah, K.W.; Feng, P.; Dong, Z. Optimization of mix proportion of alkali-activated slag mortars prepared with seawater and coral sand. Constr. Build. Mater. 2021, 284, 122805. [Google Scholar] [CrossRef]
- Rovnaník, P.; Kusák, I.; Bayer, P.; Schmid, P.; Fiala, L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019, 118, 84–91. [Google Scholar] [CrossRef]
- Oh, S.; Choi, Y.C. Superabsorbent polymers as internal curing agents in alkali activated slag mortars. Constr. Build. Mater. 2018, 159, 1–8. [Google Scholar] [CrossRef]
- Kumarappa, D.B.; Peethamparan, S.; Ngami, M. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 2018, 109, 1–9. [Google Scholar] [CrossRef]
- Nedeljković, M.; Luković, M.; van Breugel, K.; Hordijk, D.; Ye, G. Development and application of an environmentally friendly ductile alkali-activated composite. J. Clean. Prod. 2018, 180, 524–538. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Feng, T.; Yang, H.; Bao, X.; Tang, W.; Fu, J. Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage. Constr. Build. Mater. 2018, 161, 442–451. [Google Scholar] [CrossRef]
- Jiapei, D.; Yuhuan, B.; Xuechao, C.; Zhonghou, S.; Baojiang, S. Utilization of alkali-activated slag based composite in deepwater oil well cementing. Constr. Build. Mater. 2018, 186, 114–122. [Google Scholar] [CrossRef]
- Kan, L.; Shi, R.; Zhao, Y.; Duan, X.; Wu, M. Feasibility study on using incineration fly ash from municipal solid waste to develop high ductile alkali-activated composites. J. Clean. Prod. 2020, 254, 120168. [Google Scholar] [CrossRef]
- Cristelo, N.; Coelho, J.; Miranda, T.; Palomo, Á.; Fernández-Jiménez, A. Alkali activated composites–An innovative concept using iron and steel slag as both precursor and aggregate. Cem. Concr. Compos. 2019, 103, 11–21. [Google Scholar] [CrossRef]
Steelmaking Production | Type of Steel Waste | Description |
---|---|---|
Blast furnace | Ground granulated blast furnace slag (GGBFS) | Cement replacement [10], high-performance concrete [11], electromagnetic performance [12], and steel reinforcement material [13] |
Ladle slag | Supplementary material [14], High-strength cement [15], cement replacement [16], soft clay stabilization [17] | |
Electric arc furnace | Electric arc furnace slag | One part hybrid cement [18], cement mortar [19], concrete pavement [20], self-compacting concrete [21] |
Steel slag | Alkali-activated cement [22], high-strength cement [23], cement-based composite binders [24] | |
Basic oxygen furnace | Basic oxygen furnace slag | Cement replacement [25], bacterial community succession [26], cement mortar [27] |
Type of Steel Waste | The Average Amount Generated |
---|---|
Blast furnace slag | 150 up to 300 kg per tonne of pig iron (blast furnace powered by charcoal) and 200 up to 400 kg per tonne of pig iron (blast furnace fuelled by mineral coal) [33,34] |
Ladle slag | Each tonne of liquid steel weighs around 200 kg [35] |
Electric arc slag | Approximately 130 up to 180 kg per tonne of [36] |
Blast furnace sludge | Precisely 6 kg per tonne of pig iron [37,38] |
Ladle sludge | 15 up to 16 kg per tonne of hot metals [39,40] |
Electric arc dust | 15 up to 20 kg per tonne of steel [41] |
Mill scale | 34 up to 40 kg per tonne of steel [28,42] |
Technology (EUR/t Steel) | Blast Furnace/Basic Oxygen Furnace | Direct Reduction Iron/Electric Arc Furnace |
---|---|---|
Electricity | 0 | 219 |
Iron pellets | 0 | 84 |
Coke | 84 | 0 |
Iron ore | 189 | 189 |
Services | 45 | 40 |
Skilled labour | 44 | 40 |
Unskilled labour | 5 | 4 |
OPEX (EUR/t steel) | 415 | 624 |
Process emission (t CO2/t steel) | 1.5 | - |
Investment cost (EUR/t steel) | - | 1113 |
Type of Steel Waste | Blast Furnace Slag | Electric Arc Furnace Slag | Ladle Slag | References |
---|---|---|---|---|
Management Options | ||||
Reuse/recycling in steelmaking | - | Roughly 30% of slag is recycled in blast furnace in European countries; however, the phosphorus concentration should not exceed 0.5%. The elimination of phosphorus element is still a subject of research | - | [35,50] |
Utilize as aggregates | The samples were maintained in sealed bag for 28 days in a curing environment at a temperature of 21 °C and relative humidity of 70%, providing superior mechanical properties to aggregate slag concrete. | Required the curing process (demoulded after 24 h, then cured at 20 °C of water tank) for because to the high expandability of the electric arc and ladle slag. It is not only cost effective, but it also has advantages in terms of material properties | [51,52,53] | |
Conventional cement manufacture | Owing to the hydraulicity of granulated slag, the residue used as a partial replacement for clinker material that leads to lower raw material and energy consumption, reduced pollution in cement manufacturing and enhanced finished material qualities. All the samples were cured in the range temperature of 20–35 °C | These residues obtain lesser hydraulic characteristics than blast furnace slag and can replace a portion of the clinker. Additionally, due to the expandability properties, such slags should go through the curing procedure for 28 days | [49,54,55] | |
Catalyst for the manufacture of biofuels | The effective catalyst for the synthesis of biodiesel was proven due to the slag crystallinity | [56,57,58] | ||
Manufacturing of glass ceramic | The utilization of steel waste is widely known and commonly used. Glass ceramic structures are formed by the crystallization vitreous materials, such as slag under regulated conditions. | [59,60] | ||
Absorbent materials | Higher reactivity and better specific surface area was obtained by slag materials when compared to the conventional absorbent | [61,62] |
Type of Steel Waste | Blast Furnace Sludge | Ladle Sludge | References |
---|---|---|---|
Management Options | |||
Reuse/recycling in steelmaking | Lead and zinc must be eliminated from the dry sludges before they may be recycled directly. Since the majority of these elements are concentrated in the fine fraction, the coarser fraction of sludges could be recycled after classification during the steelmaking process. The reuse of the fine fraction still necessitates further research into removal of undesirable materials. | [37,39,65] | |
Utilize as adsorbent material | Preferably an effective adsorbents for copper, zinc, lead, chromium, and cadmium in various concentrations | - | [66,67] |
Ceramic materials incorporation | As a result of the process, energy is saved, and waste disposal cost is reduced. | [68,69] |
Type of Slag | Chemical Composition (wt %) | ||||
---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | |
Steel slag (Shandong Sheng, China) [92] | 19.13 | 4.87 | 37.42 | 5.55 | 18.77 |
Steel slag (Wuhan, China) [89] | 15.0 | 6.7 | 44.2 | 10.9 | 15.4 |
Steel slag (Wuhan, China) [83] | 15.1 | 2.32 | 42.98 | 5.77 | 21.13 |
Steel slag (Jiangxi, China) [93] | 18.48 | 3.76 | 45.18 | 4.83 | 19.45 |
High-magnesium slag (Nanjing, China) [84] | 52.3 | 6.2 | 8.8 | 26.9 | 4.2 |
High-magnesium nickel slag (Jiangsu, China) [93] | 50.37 | 4.65 | 1.72 | 32.22 | 7.94 |
Copper nickel slag (Murmansk, Russia) [94] | 36.87 | 7.44 | 2.11 | 11.92 | 2.47 |
Copper nickel slag (Xinjiang, China) [95] | 29.68 | 1.473 | 3.253 | 6.212 | 55.45 |
Copper slag (Aspropyrgos, Greece) [96] | 39.95 | 3.30 | 4.08 | 1.77 | 44.41 |
Ferronickel slag (Larymna, Greece) [97] | 32.74 | 8.32 | 3.73 | 2.76 | 0.76 |
Ferronickel slag (Marousi, Greece) [98] | 40.29 | 10.11 | 3.65 | 5.43 | 37.69 |
Ferronickel slag (New Caledonia. France) [99] | 52.52 | 2.33 | 0.27 | 33.16 | 10.80 |
Ferrochrome slag (Elazig, Turkey) [100] | 33.8 | 25.48 | 1.1 | 35.88 | - |
Ferrochrome slag (Bhubaneswar, India) [101] | 27.8 | 23.6 | 3.51 | 23.7 | 3.6 |
Ferrochrome slag (Malatya, Turkey) [102] | 33.80 | 25.48 | 1.10 | 35.88 | 0.61 |
Ground granulated blast furnace slag (Chhattisgarh, India) [103] | 32.97 | 17.97 | 35.08 | 10.31 | 0.72 |
Granulated blast furnace slag (Melbourne, Australia) [104] | 33.8 | 13.68 | 42.56 | 5.34 | 0.4 |
Ground granulated blast furnace slag (Paris, France) [105] | 35.7 | 11.21 | 39.4 | 10.74 | 0.42 |
Granulated blast furnace slag (Dabrowa Goronicza, Poland) [106] | 38.73 | 8.18 | 45.09 | 4.33 | 0.90 |
Granulated blast furnace slag (Cairo-Egypt) [107] | 36.95 | 10.01 | 33.07 | 6.43 | 1.48 |
Blast furnace slag (Jiangsu, China) [108] | 34.2 | 14.2 | 41.7 | 6.7 | 0.43 |
Ladle furnace slag (Taipei, Taiwan) [86] | 23.7 | 4.2 | 48.6 | 8.1 | - |
Ladle slag (Lappohja, Finland) [109] | 8.6 | 28.3 | 46.3 | 7.4 | 5.0 |
Blast oxygen furnace (Indiana, USA) [110] | 8.35 | 60.8 | 5.21 | 8.89 | 2.35 |
No | Researcher | Materials | Findings |
---|---|---|---|
1 | Kim et al. [130] | Blast furnace slag and cenosphere |
|
2 | Li et al. [129] | Ground blast furnace slag and river sand |
|
3 | He at al. [131] | Ground blast furnace slag, water glass and hydrated lime |
|
4 | Hyeok-Jung et al. [132] | Ground granulated blast furnace slag and red mud |
|
5 | Nikolic et al. [133] | Electric arc furnace slag and electric arc furnace dust |
|
No | Researcher | Materials | Findings |
---|---|---|---|
1 | Zhang et al. [135] | Ground granulated blast furnace slag, fly ash, silica fume, coral sand |
|
2 | Rovnanik et al. [136] | Slag, quartz, cement |
|
3 | Oh et al. [137] | Portland cement, superabsorbent polymers, and granulated blast furnace slag |
|
4 | Kumarappa et al. [138] | Slag cement and shale lightweight aggregate |
|
No | Researcher | Materials | Findings |
---|---|---|---|
1 | Nedeljkovic et al. [139] | Slag/fly ash, sand aggregates, polyvinyl alcohol fibers |
|
2 | Cui et al. [140] | Ground granulated blast furnace slag, polycarboxylate, graphite-modified microencapsulated, and carbon fibre |
|
3 | Jiape et al. [141] | Ground granulated blast furnace slag, cement and epoxy resin |
|
4 | Kan et al. [142] | Incineration fly ash, ground granulated blast furnace slag, polycarboxylate-based high-range water reducing mixture |
|
5 | Cristelo et al. [143] | Steel slag, fly ash and silica sand |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, I.H.; Abdullah, M.M.A.B.; Salleh, M.A.A.M.; Ming, L.Y.; Li, L.Y.; Sandu, A.V.; Vizureanu, P.; Nemes, O.; Mahdi, S.N. Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review. Materials 2022, 15, 1948. https://doi.org/10.3390/ma15051948
Aziz IH, Abdullah MMAB, Salleh MAAM, Ming LY, Li LY, Sandu AV, Vizureanu P, Nemes O, Mahdi SN. Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review. Materials. 2022; 15(5):1948. https://doi.org/10.3390/ma15051948
Chicago/Turabian StyleAziz, Ikmal Hakem, Mohd Mustafa Al Bakri Abdullah, Mohd Arif Anuar Mohd Salleh, Liew Yun Ming, Long Yuan Li, Andrei Victor Sandu, Petrica Vizureanu, Ovidiu Nemes, and Shaik Numan Mahdi. 2022. "Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review" Materials 15, no. 5: 1948. https://doi.org/10.3390/ma15051948
APA StyleAziz, I. H., Abdullah, M. M. A. B., Salleh, M. A. A. M., Ming, L. Y., Li, L. Y., Sandu, A. V., Vizureanu, P., Nemes, O., & Mahdi, S. N. (2022). Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review. Materials, 15(5), 1948. https://doi.org/10.3390/ma15051948