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Abstract: Shape memory alloy (SMA), particularly those having a nickel–titanium combination, can
memorize and regain original shape after heating. The superior properties of these alloys, such
as better corrosion resistance, inherent shape memory effect, better wear resistance, and adequate
superelasticity, as well as biocompatibility, make them a preferable alloy to be used in automotive,
aerospace, actuators, robotics, medical, and many other engineering fields. Precise machining of
such materials requires inputs of intellectual machining approaches, such as wire electrical discharge
machining (WEDM). Machining capabilities of the process can further be enhanced by the addition of
Al2O3 nanopowder in the dielectric fluid. Selected input machining process parameters include the
following: pulse-on time (Ton), pulse-off time (Toff), and Al2O3 nanopowder concentration. Surface
roughness (SR), material removal rate (MRR), and recast layer thickness (RLT) were identified as the
response variables. In this study, Taguchi’s three levels L9 approach was used to conduct experimental
trials. The analysis of variance (ANOVA) technique was implemented to reaffirm the significance and
adequacy of the regression model. Al2O3 nanopowder was found to have the highest contributing
effect of 76.13% contribution, Ton was found to be the highest contributing factor for SR and RLT
having 91.88% and 88.3% contribution, respectively. Single-objective optimization analysis generated
the lowest MRR value of 0.3228 g/min (at Ton of 90 µs, Toff of 5 µs, and powder concentration of
2 g/L), the lowest SR value of 3.13 µm, and the lowest RLT value of 10.24 (both responses at Ton of
30 µs, Toff of 25 µs, and powder concentration of 2 g/L). A specific multi-objective Teaching–Learning-
Based Optimization (TLBO) algorithm was implemented to generate optimal points which highlight
the non-dominant feasible solutions. The least error between predicted and actual values suggests
the effectiveness of both the regression model and the TLBO algorithms. Confirmatory trials have
shown an extremely close relation which shows the suitability of both the regression model and the
TLBO algorithm for the machining of the nanopowder-mixed WEDM process for Nitinol SMA. A
considerable reduction in surface defects owing to the addition of Al2O3 powder was observed in
surface morphology analysis.

Keywords: shape memory alloy; Al2O3 nanopowder; Nitinol; surface morphology; wire electrical
discharge machining; Teaching–Learning-Based Optimization algorithm

1. Introduction

A new group of alloys, also known as smart materials, are gaining popularity due
to their unique feature of remembering their shape throughout their lifecycle. These
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are also termed shape memory alloys (SMAs) which mutate back to their original shape
on heating after deformation under load [1,2]. In addition, SMAs also possess generic
properties such as superelasticity, favorable microstructure, and pseudoelasticity [3,4].
The reversible martensitic phase transformation enables SMAs to generate higher work
output and higher stress and strain actuation [5]. Several alloys and their combinations,
such as Nickel–Titanium (NiTi), CuAlNi, Au–Cd, etc., have been developed showing
shape memory effects [6,7]. Among various applications of SMAs, the most popular uses
include the following: biomedical, aerospace, automotive, robotics, etc., in addition to the
exploration of newer engineering fields [8,9]. The release of Ni ions in biofluid is prevented
by the formation of a protective TiO2 layer which is formed from titanium material present
in Nitinol [10,11]. This leads to Nitinol‘s suitability for biomedical applications. The
hardening of Nickel-based alloys is comparatively faster owing to the presence of an
austenitic matrix which is the biggest hindrance to the machining ease of alloys [12,13].
Additionally, the pseudoelasticity and higher ductility properties of Nitinol pose a challenge
for the machining of Nitinol. Several causes that obstruct the machining of SMAs via
conventional methods include excessive time for machining, formation of burrs, excessive
tool wear, inferior cutting efficiency, and unacceptable surface quality [14,15]. This makes
non-conventional machining techniques fairly suitable for SMAs, especially for Nitinol. To
achieve dimensional precision and reasonable surface integrity, surface roughness (SR),
high production rate, and thin recast layer thickness (RLT) become mandatory to achieve
during the manufacturing of instruments for biomedical applications given the nature of
intricacy. Researchers are in pursuit of the same.

Non-contact operation of the wire electrical discharge machining (WEDM) technique,
among work material and machining tool (wire), extensively reduces the difficulties of
conventional machining methods [16,17]. Complex shape implants and structures are one
of the key requirements for biomedical applications [18]. WEDM is an advanced machining
process capable of producing complex shape geometries [19]. During the process, serial
sparks are formed between tool and component which erodes the little amount of material
through melting and vaporization [20,21]. Dielectric fluid is used in the machining zone
which helps to remove the eroded material particles [22]. This phenomenon of dielectric
flushing and sparking forms a hard and uneven machined surface [23]. Thus, SR becomes
a crucial response variable during the WEDM process. The WEDM method involves
a multiple and complex control of parameters for obtaining a better surface [24]. For
the industry, higher productivity is also of prime importance, in addition to the excellent
machined surface which can be achieved by enhancing the material removal rate (MRR) and
concurrently decreasing SR and RLT. One of the ways to achieve this is to mix nanopowder
in dielectric fluid during the WEDM process.

The current trend suggests that powder-mixed dielectric fluid is most popular among
researchers for obtaining optimum parametric settings to achieve multiple objectives [25,26].
A series of research studies using Al, CNT, Cr, etc., as additives have been experimented
by researchers with dielectric fluid for the EDM process [27,28]. For this process, different
parameters for powder characteristics, including powder concentration, powder size,
thermal and electrical conductivity, and powder density, have a significant effect on the
process [28]. Anil Kumar et al. [29] implemented Grey–Taguchi’s combined approach
for the powder-mixed EDM (PMEDM) process. Improvement in all responses has been
found after the addition of powder with dielectric fluid. Prakash et al. [30] studied the
effect of Si powder on the EDM process of titanium alloys. Their results depicted the
improvement in MRR along with the reduction in tool wear rate (TWR). They also observed
reduction in the recast layer thickness (RLT) and reduction in surface defects at Si powder
concentration of 4 g/L. Amit et al. [31] analyzed the effect of the PMEDM process by
adding Al2O3 nanopowder along with dielectric fluid for obtaining a better machining
output. Both the response variables (MRR and SR) were improved to a large extent
with the modified dielectric fluid along with better sparking stability of the nanopowder-
mixed EDM (NPMEDM) process. Sahu and Mandal [32] analyzed the influence of Al2O3
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PMEDM for the EDM process of Nimonic-263. They observed improvement in the surface
morphology of machined surfaces with the use of Al2O3 PMEDM. Kumar et al. [33] used
Al2O3 nanopowder to study the performance of the EDM process on MRR and SR. They
compared the performance of the Al2O3 nanopowder with the conventional EDM process
and observed an improvement of 44% and 51% in MRR and SR, respectively, with the use
of nanopowder. Tan and Yeo [34] observed a substantial reduction in RCL with the use of
nanopowder concentration in dielectric fluid. Aiyeshah et al. [35] obtained a minimum
SR of 3.107 µm and RCL of 14.92 µm with the use of Si powder for Nimonic-90 superalloy.
Pulse-on time (Ton), pulse-on time (Toff), current, and amount of Si powder were found
to be the most contributing factors for obtaining the desired levels of SR and RLT. Vinay
et al. [36] used aluminum oxide powder in EDM machining of Inconel 825. SR of the
machined samples improved with the addition of powder concentration. Another study,
conducted by Sagar et al. [37], used Al2O3 powder in EDM for Inconel 718 and reported
that the response variables depend on the EDM machining variables. Little effect of Al2O3
powder was seen on the response variables. It becomes essential to control all the machining
variables simultaneously to achieve optimal levels of multiple response variables.

On detailed examination of relevant literature, researchers used different powders for
the machining of various alloys. Researchers have given more attention to the improvement
of responses such as MRR, SR, and TWR. However, very limited work was carried out
on other useful output parameters such as RLT and surface morphology of the machined
surface. To the best of our knowledge, the effect of Al2O3 nanopowder and simultaneous
optimization of WEDM parameters using the Teaching–Learning-Based Optimization
(TLBO) algorithm for Nitinol SMA has not yet been reported. In the current study, a
handful of work considering Ton, Toff, and amount of Al2O3 nanopowder as the input
variables along with MRR, SR, and RLT as the response variables of Ni55.8Ti SMA has been
reported. Experiments were conducted using Taguchi’s L9 orthogonal arrays. Analysis
of variance (ANOVA) was used to check the adequacy and significance of the variables.
Taguchi’s approach has a limitation of attaining only one response variable at a time. In
addition, the TLBO algorithm was implemented for simultaneous optimization of output
responses of MRR, SR, and RLT. Lastly, the surface morphology of the machined surface
was reported by SEM analysis. The authors strongly consider this study to be very useful
for industrial applications.

2. Preparation of Al2O3 Nanopowder

The chemical reagents aluminum nitrate nanohydrate (Al(NO3)3·9H2O), citric acid
(C6H8O7), triethanolamine (N(CH2CH2OH)), and ethylene glycol (EG) were purchased
from Sigma Aldrich Inc. and were used without further purification. Ultrapure water
with resistivity 18.2 MΩ-cm was used throughout the experiments. In a typical process,
aluminum nitrate nanohydrate was dissolved in deionized water and stirred at medium
speed to obtain a uniform mixture. Subsequently, triethanolamine was added dropwise in
the solution. Later, citric acid was slowly added to this solution and stirred at 75 ◦C for
45 min; the color of the sols changed and the obtained sols were then heated up to 150 ◦C
for 90 min, resulting in the viscous gels. For complete drying, the sol was thermally heated
in an inert atmosphere at 600 ◦C for 3 h to produce Al2O3 nanopowders. The synthesized
Al2O3 nanopowders were characterized with scanning electron microscopy (Zeiss Ultra 55
at 5 kV), X-ray diffraction (XRD) (Panalytical X’pert Pro with the source of Cu-Kα radiation
of 0.154 nm, λ = 1.54 Å and acceleration voltage of 45 kV and 40 mA) in a range from 10 to
90◦, and Raman Spectroscopy (using a laser of wavelength 532 nm).

3. Experimental Plan and Methods
3.1. Experimental Details

In the present study, experimentation was accomplished with Ni55.8Ti SMA, 6 mm
in diameter. Molybdenum wire was used as an electrode. The chemical composition
contains the major elements Ni (55.78%) and Ti as a remainder. Al2O3 nanopowder was
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mixed along with EDM oil in a tank with various amounts, as per the experimental plan.
The stirrer was used for uniform mixing of Al2O3 nanopowder in dielectric fluid. This
will not allow nanopowder to settle at bottom of the tank. The Al2O3-mixed dielectric
fluid was sprayed through nozzles in the machining zone. Three useful input parameters,
namely Ton, Toff, and amount of Al2O3 nanopowder, were varied during the experimental
trials. Experiments were performed by using Taguchi’s L9 orthogonal arrays. Slices of
1.5 mm in length were cut from the rod following the experimental matrix generated using
Taguchi’s design. Table 1 shows the experimental conditions of the PMWEDM operation.
Process parameters and their levels were selected, as per the literature studies, pilot tests,
and machining limits. In the current study, MRR, SR, and RLT are considered response
variables. Two or more repetitions are mandatory for each trial to assess the experimental
error and provide the conditions required to test the hypothesis [38,39]. All the experiments
were repeated three times in the current study and the average value of the obtained results
was considered for analysis. Minitab v17 was employed to analyze the experimental results.

Table 1. Experimental conditions of PMWEDM operation.

Working Condition Description

Pulse-on time (µs) 30, 60, 90
Pulse-off time (µs) 5, 10, 15

Al2O3 concentration (g/L) 0, 1, 2
Discharge current (A) 3

Graphene nanopowder-size (nm) 100
Powder Al2O3

Wire Molybdenum

The MRR was measured (gram/minute) by determining the weight of the machined
components, as per Equation (1).

MRR =
(Wbm −Wam)× 60

t
(1)

where Wbm and Wam are the weight of the components in grams, and t represents the time
in seconds.

The Mitutoyo Surftest SJ-410 model was used to measure the SR by selecting the
cut-off length of 0.8 mm. SR values were measured at three locations and the average value
was taken for analysis.

RLT and surface morphology of the machined surface were measured by using a
FE-SEM. Initially, the machined samples were mechanically polished using different grades
of emery paper, and then chemically etched (14 mL HNO3, 4 mL HF, 82 mL H2O) to
avoid burrs. Specimens were then explored for the measurement of RLT through the SEM
technique.

3.2. Optimization Using TLBO Algorithm

For the current study, Teaching–Learning-Based Optimization (TLBO) algorithm is
used to obtain the optimum values of the machining parameters. Multi-objective optimiza-
tion is applied to such problems when there is a trade-off between conflicting objectives.
TLBO overcomes the complexity of tuning control parameters and offers ease in the com-
putational time compared to other multi-objective optimization algorithms [40]. It is an
easy and efficient algorithm wherein the significance of a teacher on the outcome of the
learner is taken into consideration. It adapts the teaching–learning process in a traditional
classroom where students learn from teachers to improve their knowledge. Furtherly, stu-
dents can also interact among themselves to share their knowledge, hence, TLBO involves
the following two-phase learning: (a) teacher phase—wherein students learn from teacher;
(b) learner phase—wherein students interact among learners [41]. Figure 1 represents the
flowchart of the processes involved in the TLBO algorithm.



Materials 2022, 15, 2018 5 of 21

Materials 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 

TLBO overcomes the complexity of tuning control parameters and offers ease in the com-
putational time compared to other multi-objective optimization algorithms [40]. It is an 
easy and efficient algorithm wherein the significance of a teacher on the outcome of the 
learner is taken into consideration. It adapts the teaching–learning process in a traditional 
classroom where students learn from teachers to improve their knowledge. Furtherly, stu-
dents can also interact among themselves to share their knowledge, hence, TLBO involves 
the following two-phase learning: (a) teacher phase—wherein students learn from 
teacher; (b) learner phase—wherein students interact among learners [41]. Figure 1 repre-
sents the flowchart of the processes involved in the TLBO algorithm. 

 
Figure 1. Flowchart of the TLBO algorithm. 

With this analogy, the TLBO algorithm is developed to obtain good results (objective 
function) for the given class of students (population) by teaching different subjects (design 
variables). The result of the student after undergoing the teaching–learning process is as 
good as the fitness value of an objective function. The best result (solution) from the class 
is considered as a teacher. A good teacher strives to bring the level of learners to his or her 
knowledge and eventually increases the mean of the results. However, in practice, not 

Figure 1. Flowchart of the TLBO algorithm.

With this analogy, the TLBO algorithm is developed to obtain good results (objective
function) for the given class of students (population) by teaching different subjects (design
variables). The result of the student after undergoing the teaching–learning process is as
good as the fitness value of an objective function. The best result (solution) from the class
is considered as a teacher. A good teacher strives to bring the level of learners to his or
her knowledge and eventually increases the mean of the results. However, in practice,
not each learner can reach up to a level of the teacher, as it depends on the individual’s
capability [42]. If Mi is the mean of the class, then for each ith iteration, the solution in the
teacher phase will be updated for the existing and new mean which is given as follows:

Difference_Meani = ri (Mnew − TF Mi) (2)

where ri represents a random number generated between 0 and 1, Mnew represents the
values of design variables corresponding to the teacher, and Mi represents the mean value
of design variables considering all students.

TF = round (1) + rand (0, 1) (3)
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Xnew,i = Xold,i + Difference_Meani (4)

where TF is the teaching factor which decides the mean value, either 1 or 2.
In the learner’s phase, learners improve their knowledge through interaction between

themselves. If a learner interacts through group discussion and presentations, with the
learner having more knowledge, the former ones learn something new. Upon selecting two
learners randomly, modification is presented, as per Equations (5) and (6):

If f (Xj) < f (Xk),
Xnew,j = Xold,j + rj (Xj − Xk)

(5)

Else
Xnew,j = Xold,j + rj (Xk − Xj)

(6)

where, rj represents a random number generated between 0 and 1, and the subscript i
represents iterations, while j and k represent the population, where j 6= k.

4. Results and Discussions
4.1. Morphological and Structural Analysis

The morphology and structure of as-synthesized Al2O3 nanopowder were examined
under a field emission scanning electron microscope (FE-SEM), as shown in Figure 2a. It
was observed that the nanopowder was in the range of about 100 nm. Further, energy-
dispersive X-ray spectroscopy was carried out to determine the elements present in the
as-synthesized Al2O3 nanopowder, shown in Figure 2b. The results confirmed the presence
of aluminum and oxygen in the synthesized material and no extra elements were observed
other than carbon, which can be attributed to the presence of carbon in carbon tape. In
addition, the structural properties of the prepared Al2O3 were analyzed under X-ray
diffraction and Raman Spectroscopy (Renishaw in via Raman Microscope, Pune, India),
as shown in Figure 2c,d. The diffraction profile shows peaks at 2θ~68.2◦, 66.3◦, 57.6◦,
52.4◦, 43.7◦, 37.8◦, 35.2◦, and 25.3◦ can be attributed to 300, 214, 116, 024, 113, 110, 104,
and 012 planes (JCPDS No 46-1212), confirming the formation of α-Al2O3 with hexagonal
structure [43]. The average crystallite size obtained from peaks was 27 nm using the
Debye–Scherrer formula, as shown in Equation (7):

D =
0.9λ

βCosθ
(7)

where ‘β’ represents full width at half maximum (FWHM), ‘D’ represents the crystalline
size, ’λ’ represents the wavelength of CuKα radiation, and ‘θ’ represents the angle of
diffraction. Further, the Raman profile (Figure 2d) showed characteristic peaks at 378 cm−1

and 416 cm−1, which were found in agreement with the reported work of Cava et al. [44].
The sharp peaks of the α-phase indicate the well-defined long-range order in corundum
and large grain sizes. The powders do not present any impurities, as no extra peaks were
observed. The Raman spectra also confirm the formation of α-phase Al2O3 and were found
in agreement with XRD results.
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4.2. Experimental Results as per Taguchi’s L9 OA

The Al2O3 nanopowder-mixed WEDM process variables, as per the L9 Taguchi OA,
are shown in Table 2. Experimentally obtained results of the process variables (MRR, SR,
and RLT) are also presented in Table 2.

Table 2. Taguchi’s L9 OA and the measured values of MRR, SR, and RLT.

Run Ton (µs) Toff (µs) Al2O3 Conc.
(g/L)

MRR
(g/min) SR (µm) RLT (µm)

1 30 5 0 0.084073 4.056 14.160
2 30 15 1 0.114645 3.744 13.120
3 30 25 2 0.127266 3.464 11.728
4 60 5 1 0.155865 4.608 16.240
5 60 15 2 0.171259 4.336 14.576
6 60 25 0 0.070416 4.296 15.000
7 90 5 2 0.201043 5.224 18.328
8 90 15 0 0.087797 5.136 17.904
9 90 25 1 0.117559 5.040 17.584

4.3. Parametric Effect on MRR

ANOVA can be effectively used to check the relative significance of input parameters
on output variables. A 95% confidence level was selected to determine the significance of
WEDM parameters, such as Ton, Toff, and Al2O3 nanopowder, on MRR. Lower P-/higher F-
value indicates the larger influence of the machining variable on the selected response [45].
To have a significance of an input variable on the output variable, it is desired to have a
p-value of less than 0.05 [46,47]. Table 3 illustrates the ANOVA for MRR. All the input
variables, such as Ton, Toff, and Al2O3 nanopowder, were having a significant effect on
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the MRR, as their p-value was less than 0.05. The Al2O3 nanopowder has the highest
contribution of 76.13%, followed by Toff (17.47%) and Ton (7.14%). A small deviation
among the R-sq. and Adj. R-sq. signifies the adequacy and fitness of the model [48]. A
negligible difference in R-Sq. values of the existing model suggests that it is adequate and
fit for estimation of future outcomes of MRR. The regression model for the prediction of
MRR is shown in Equation (8), as follows:

MRR = −0.0730 + 0.0471·Current + 0.0111·Ton − 0.0143·Toff + 0.1299·Powder Conc. (8)

Table 3. ANOVA for MRR.

Source DF SS MS F p % Contr.

Regression 3 0.014745 0.004915 73.71 0.000
Ton 1 0.001078 0.001078 16.16 0.010 7.14
Toff 1 0.002635 0.002635 39.52 0.001 17.47
Al2O3 Conc. 1 0.011032 0.011032 165.44 0.000 73.16
Error 5 0.000333 0.000067 2.23
Total 8 0.015079

R-Sq. = 97.79%, R-Sq. (Adj.) = 96.82%, R-Sq. (pred.) = 91.78%.

The significance of the WEDM variables on MRR is illustrated in Figure 3. The MRR
value was enhanced with an increase in the concentration of Al2O3 nanopowder. The
MRR has improved substantially with the increase in Al2O3 nanopowder, as the sparking
frequency and thermal conductivity of the dielectric fluid increases [27]. This further
increases the rate of erosion of the work material and gives the increase in MRR. From
Figure 3, upon increasing Ton, the value of MRR was improved. As Ton increases, discharge
energy and spark intensity also increase [49]. Discharge energy gets converted into thermal
energy. Thermal energy melts and vaporizes the material from the work surface [50].
Thus, higher thermal energy erodes more material from work, and thereby, increases the
MRR. Toff was found to have a reverse on MRR, in comparison to Ton. An increase in Toff
reduces the intensity of the spark [51,52]. This further reduces the discharge energy, and
subsequently, the MRR value also decreases with an increase in Toff.

Materials 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

a P-value of less than 0.05 [46,47]. Table 3 illustrates the ANOVA for MRR. All the input 
variables, such as Ton, Toff, and Al2O3 nanopowder, were having a significant effect on the 
MRR, as their P-value was less than 0.05. The Al2O3 nanopowder has the highest contri-
bution of 76.13%, followed by Toff (17.47%) and Ton (7.14%). A small deviation among the 
R-sq. and Adj. R-sq. signifies the adequacy and fitness of the model [48]. A negligible dif-
ference in R-Sq. values of the existing model suggests that it is adequate and fit for esti-
mation of future outcomes of MRR. The regression model for the prediction of MRR is 
shown in Equation (8), as follows: MRR = − 0.0730 + 0.0471 ∙ Current + 0.0111 ∙ T୭୬ − 0.0143 ∙ T୭୤୤ + 0.1299 ∙ Powder Conc. (8)

Table 3. ANOVA for MRR. 

Source DF SS MS F p % Contr. 
Regression 3 0.014745 0.004915 73.71 0.000  
 Ton 1 0.001078 0.001078 16.16 0.010 7.14 
 Toff 1 0.002635 0.002635 39.52 0.001 17.47 
 Al2O3 Conc. 1 0.011032 0.011032 165.44 0.000 73.16 
 Error 5 0.000333 0.000067   2.23 
 Total 8 0.015079     
R-Sq. = 97.79%, R-Sq. (Adj.) = 96.82%, R-Sq. (pred.) = 91.78%. 

The significance of the WEDM variables on MRR is illustrated in Figure 3. The MRR 
value was enhanced with an increase in the concentration of Al2O3 nanopowder. The MRR 
has improved substantially with the increase in Al2O3 nanopowder, as the sparking fre-
quency and thermal conductivity of the dielectric fluid increases [27]. This further in-
creases the rate of erosion of the work material and gives the increase in MRR. From Fig-
ure 3, upon increasing Ton, the value of MRR was improved. As Ton increases, discharge 
energy and spark intensity also increase [49]. Discharge energy gets converted into ther-
mal energy. Thermal energy melts and vaporizes the material from the work surface [50]. 
Thus, higher thermal energy erodes more material from work, and thereby, increases the 
MRR. Toff was found to have a reverse on MRR, in comparison to Ton. An increase in Toff 
reduces the intensity of the spark [51,52]. This further reduces the discharge energy, and 
subsequently, the MRR value also decreases with an increase in Toff. 

 
Figure 3. Influence of WEDM variables on MRR. 

906030

0.17

0.16

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

25155 210

Ton

M
ea

n

Toff Al2O3 nanopowder

Main Effects Plot for MRR

WEDM input process parameters

Figure 3. Influence of WEDM variables on MRR.

4.4. Analysis of SR

ANOVA was employed to evaluate the regression coefficients of the model. Table 4
illustrates the ANOVA of SR. A 95% confidence level was selected to determine the sig-
nificant impact of machining parameters such as Ton, Toff, and Al2O3 nanopowder on
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SR. Ton, Toff, and Al2O3 nanopowder were observed as significant contributing factors
for SR response as p-value of these input factors was found to be less than 0.05. Ton was
found to be the highest contributing factor (91.88%), trailed by Toff (6.36%) and Al2O3
nanopowder (1.17%). A negligible error of 0.58% was found for SR. A small deviation
among the R-sq. and Adj. R-sq. signifies the adequacy and fitness of the model [53,54]. A
negligible difference in R-Sq. values of the existing model suggest that it is adequate and fit
for estimation of future outcomes of SR. The regression model for the prediction of SR is
shown in Equation (9), as follows:

SR = 3.195 + 0.2522 · Current + 0.0565·Ton − 0.0588·Toff − 0.3550·Powder Conc (9)

Table 4. ANOVA for SR.

Source DF SS MS F p % Contr.

Regression 3 3.08426 1.02809 275.01 0.000
Ton 1 2.85108 2.85108 762.67 0.000 91.88
Toff 1 0.19729 0.19729 52.78 0.001 6.36
Al2O3 Conc. 1 0.03588 0.03588 9.60 0.027 1.17
Error 5 0.01869 0.00374 0.58
Total 8 3.10295

R-Sq. = 99.40%, R-Sq. (Adj.) = 99.04%, R-Sq. (pred.) = 97.71%.

Figure 4 describes the significance of the WEDM variables on the SR response. SR of
the machined components was found to follow an increasing trend with a rise in the value
of Ton. The rise in the Ton value increases the discharge energy, which in turn increases
the thermal energy [55,56]. Due to higher discharge energy and thermal energy, plasma
channel pressure increases, impulsive forces are created, and this produces rough and
irregular surfaces [56]. Thus, due to the higher thermal energy, SR value increases with an
increase in Ton value. The declined trend was noticed in SR with an increase in Toff. An
increase in Toff decreases the discharge energy and small craters are created [57,58]. This
increases the quality of the surface by decreasing the SR value. Another reason for the
decreasing SR is that with an increase in the Toff value, the flushing of debris gains more
time and it removes the unwanted eroded particles from the machined zone [59,60]. From
Figure 4, by increasing the Al2O3 amount, a decrease in the SR was identified. The addition
of nanopowder concentration expands the interelectrode gap and also increases the heat
dissipation in the dielectric fluid by forming small craters and reducing the plasma heat
flux [31,61]. The addition of Al2O3 nanopowder enhances the flushing of debris from the
machining zone. Improved flushing of debris forms small ridges resulting in improved
surface quality [27].
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4.5. Analysis of RLT

Investigation on the effect of the input process parameters of Ton, Toff, and Al2O3
nanopowder on RLT was carried out by using ANOVA. Specimens were explored for the
measurement of RLT through the SEM technique at 1000×magnification. Table 5 illustrates
the ANOVA for RLT. All the input variables, such as Ton, Toff, and Al2O3 nanopowder,
were having a significant effect on the RLT as their P-value was observed to be less than
0.05. Ton was found to be the highest contributing factor (88.3%), trailed by Toff (7.85%)
and Al2O3 nanopowder (3.38%). A negligible error contribution of 0.47% was observed for
SR. A small deviation among the R-sq. and Adj. R-sq. signifies the adequacy and fitness of
the model. A negligible difference in R-Sq. values of the existing model suggest that it is
adequate and fit for the estimation of future outcomes of RLT. The regression model for the
prediction of RLT is shown in Equation (10), as follows:

RLT = 3.195 + 0.2522 · Current + 0.0565·Ton − 0.0588·Toff − 0.3550·Powder Conc (10)

Table 5. ANOVA for RLT.

Source DF SS MS F p % Contr.

Regression 3 40.7821 13.590 114.25 0.000
Ton 1 36.5461 36.5461 307.14 0.000 88.3
Toff 1 3.2502 3.2502 27.31 0.003 7.85
Al2O3 Conc. 1 0.9858 0.9858 8.28 0.035 3.38
Error 5 0.5949 0.1190 0.47
Total 8 41.3770

R-Sq. = 98.56%, R-Sq. (Adj.) = 97.70%, R-Sq. (pred.) = 95.83%.

Figure 5 describes the influence of the WEDM process parameters on RLT. The RLT of
the machined components was found to follow the increasing trend with a rise in the value
of Ton. An increase in the Ton value creates larger dispersive energy, which in turn melts
more work material. With the increased value of Ton, the dielectric is unable to flush the
molten metal, due to which it gets deposited on the machined surface [62]. This unflushed
molten metal then quenches and re-solidifies by forming a thick RLT [63]. However, with
an increase in the value of Toff, RLT decreases as the melting of the material reduces with
the increased value of Toff. Additionally, debris of work material gain enough time to flush
away from the machining zone [64]. This reduces the RLT of the machined zone. From
Figure 5, by increasing the Al2O3 amount, a decrease in RLT was noticed. The addition of
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nanopowder increases the interelectrode gap and reduces the insulation strength of the
dielectric by reducing the energy density [27,64]. This in turn produces a thin RLT, as it
largely eliminates the redeposition of debris in the machined zone. Additionally, with the
addition of Al2O3 nanopowder, the spark gap increases. This reduces the discharge energy
in the machined zone, and Al2O3 nanopowder removes the dissipated heat from the zone.
It creates shallow craters and forms a thin RLT [34,65].
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4.6. Optimization Using TLBO Algorithm

TLBO algorithm was executed by considering all responses as positive integers. Fol-
lowing machining, limits were used for the WEDM process parameters during the execution
of the algorithms.

(Ton): 30 µs ≤ Ton ≥ 90 µs

(Aoff): 5 µs ≤ Toff ≥ 25 µs

(Al2O3 Conc.): 0 g/L ≤ Al2O3 Conc. ≥ 2 g/L

Single-objective optimization was carried out for the response parameters to maximize
MRR and minimize SR and RLT using the TLBO algorithm. The effect of machining
variables Ton, Toff, and Al2O3 nanopowder was studied on the aforementioned response
parameters. Results of the optimization are presented in Table 6. Within the selected range
of machining variables, single-objective optimization results showed that maximum MRR
of 0.3228 g/min, minimum SR of 5.94 µm, and minimum RLT of 20.59 µm was obtained. It
is evident from the results that with an increase in Ton, MRR increases, but at the same time
SR and RLT also reach a maximum value, which is not desirable. Similarly, minimum SR
and RLT were obtained with minimum Ton time, but by doing so, MRR is compromised
as it gives the least MRR of 0.1988 g/min. Hence, it can be concluded that the response
parameters are conflicting and results of the single-objective optimization allow a user to
select the machining variables in such a way that either of the response parameters can be
maximized or minimized. It is important to solve the trade-off between these variables
so that the optimum combination of parametric settings for the WEDM process can be
adapted. Such complexity can be resolved by solving the problem using a multi-objective
optimization approach. Equal weights of 0.33 have been assigned to the output responses
to perform the simultaneous optimization by using the MOTLBO algorithm. Equation (11)
shows the objective function for simultaneous optimization, as follows:

Obj = w1·(MRR) + w2·(SR) + w3·(RLT) (11)
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The simultaneous optimization result has yielded response values for MRR, SR, and
RLT of 0.2539 g/min, 3.65 µm, and 12.28, respectively, at Ton of 31 µs, Toff of 12 µs, and
Al2O3 conc. of 2 g/L.

Table 6. Single-objective optimization results.

Objective
Function Ton (µs) Toff (µs) Powder

Conc. (g/L)
MRR

(g/min) SR (µm) RLT
(µm)

Maximum MRR 90 5 2 0.3228 5.94 20.59
Minimum SR 30 25 2 0.1988 3.13 10.24

Minimum RLT 30 25 2 0.1988 3.13 10.24

In the basic TLBO algorithm, learners learn from a single teacher and through interac-
tion among themselves, and subsequently, there are two possibilities that either the learner
learns completely or nothing at all. The modified algorithm addresses the problems by
dividing the learners into small groups and each group of learners is assigned a teacher,
thus, having more than one teacher in a class. Now, the teacher has to improve the skills of
the respective assigned group of learners and once the desired results are attained, they are
allotted to the next best teacher. Another modification in terms of the adaptive teaching
factor is incorporated in the basic algorithm. The learners may learn in any proportion
from the teacher and not just two or one as in basic algorithm. Such modifications help in a
faster convergence rate and speed up exploration and exploitation in the search space.

Table 7 shows the 48 Pareto points of multi-objective optimization, where each point
represents a unique optimal combination of machining variables between the bounds. The
optimal Pareto curve for the three response parameters was plotted in 3D with X, Y, and Z-
axis representing MRR, RLT, and SR, respectively, as shown in Figure 6. Each combination
of the machining variables selected from the Pareto front will yield optimum machining
results, with the intended objective of maximizing MRR and minimizing RLT & SR. The
input parameters Ton, Toff, and Al2O3 nanopowder influence the response parameters
concerning the magnitude of variables and the selection of the optimum combination of
machining variables is left to the user for attaining the desired outcome.

To validate the results of the optimization algorithm, five optimal points are selected
from the Pareto front, and machining is carried out to measure the response parameters.
Table 8 shows the comparison of predicted values of MRR, SR, and RLT obtained from
the MOTLBO algorithm and experimentally measured response values. It was observed
that the experimental results are in good agreement with the optimization results and
the measured responses are well within 5% variation, which is regarded as a negligible
variance.
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Table 7. Pareto optimal points obtained from HTS algorithm.

Sr. No. Pulse on
Time (µs)

Pulse off
Time (µs)

Powder Conc.
(g/L)

MRR
(g/min) SR (µm) RLT (µm)

1 90 5 2 0.3228 5.94 20.59

2 30 25 2 0.1988 3.13 10.24

3 82 5 2 0.3175 5.66 19.60

4 85 5 2 0.3195 5.76 19.97

5 32 6 2 0.2798 3.90 13.29

6 34 5 2 0.2853 4.01 13.68

7 78 5 2 0.3148 5.52 19.11

8 89 5 2 0.3221 5.90 20.47

9 45 5 2 0.2927 4.39 15.04

10 30 17 2 0.2323 3.43 11.42

11 30 23 2 0.2072 3.21 10.54

12 30 24 2 0.2030 3.17 10.39

13 30 13 2 0.2491 3.57 12.01

14 30 8 2 0.2700 3.76 12.75

15 31 19 2 0.2246 3.39 11.25

16 30 7 2 0.2742 3.79 12.89

17 30 6 2 0.2784 3.83 13.04

18 72 5 2 0.3108 5.32 18.37

19 65 5 2 0.3061 5.07 17.51

20 70 5 2 0.3094 5.25 18.12

21 51 5 2 0.2967 4.59 15.78

22 76 5 2 0.3134 5.45 18.86

23 74 5 2 0.3121 5.38 18.62

24 48 5 2 0.2947 4.49 15.41

25 36 5 2 0.2866 4.07 13.93

26 42 5 2 0.2907 4.28 14.67

27 38 5 2 0.2880 4.14 14.17

28 42 5 2 0.2907 4.28 14.67

29 30 10 2 0.2617 3.68 12.45

30 54 5 2 0.2987 4.70 16.15

31 57 5 2 0.3007 4.80 16.52

32 67 5 2 0.3074 5.14 17.75

33 68 5 2 0.3081 5.18 17.88

34 30 20 2 0.2198 3.32 10.98

35 38 5 2 0.2880 4.14 14.17

36 30 20 2 0.2198 3.32 10.98

37 31 12 2 0.2539 3.65 12.28

38 30 21 2 0.2156 3.28 10.83

39 30 9 2 0.2659 3.72 12.60
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Table 7. Cont.

Sr. No. Pulse on
Time (µs)

Pulse off
Time (µs)

Powder Conc.
(g/L)

MRR
(g/min) SR (µm) RLT (µm)

40 30 14 2 0.2449 3.54 11.86

41 31 11 2 0.2581 3.68 12.43

42 30 21 2 0.2156 3.28 10.83

43 30 22 2 0.2114 3.24 10.68

44 30 22 2 0.2114 3.24 10.68

45 30 14 2 0.2449 3.54 11.86

46 30 9 2 0.2659 3.72 12.60

47 31 16 2 0.2372 3.50 11.69

48 59 5 2 0.3020 4.87 16.77

Table 8. Confirmatory trials.

Sr. No.
Ton
(µs)

Toff
(µs)

Powder
(g/L)

Prediction from TLBO Actual Experimental Values % Error

MRR SR RLT MRR SR RLT MRR SR RLT

1 90 5 2 0.3228 5.94 20.59 0.3381 5.73 20.88 4.52 3.66 1.38

2 30 25 2 0.1988 3.13 10.24 0.2073 3.11 10.11 4.10 0.64 1.28

30 54 5 2 0.2987 4.70 16.15 0.2892 4.92 16.67 3.28 4.47 3.11

37 31 12 2 0.2539 3.65 12.28 0.2499 3.78 11.98 1.60 3.43 2.5

47 31 16 2 0.2372 3.50 11.69 0.2432 3.41 12.01 2.46 2.63 2.66

To understand the effect of the variables on the response parameters, simplified 2D
graphs were plotted considering the effect of the third variable. Figure 7a shows the effect of
the machining variables on MRR and SR. It was observed that with an increase in machining
MRR, SR increases, resulting in poor machining surface. A maximum MRR (marked with
red dot) of 0.322 g/min was obtained with a maximum SR of 5.94 µm, whereas a minimum
SR of 3.13 µm was obtained when the MRR was 0.198 g/min. Users can work with the
conflicting nature of the parameters and select the combination with the intended objective.
Similarly, Figure 7b,c represents the effect of the variables on MRR & RLT and SR & RLT,
respectively. Higher MRR results in higher RLT, which is again not a desirable outcome,
however, for a user, it is easy to proceed with the combination that can be aimed for either
maximum MRR or minimum RLT. However, a linear relationship between SR and RLT
is observed indicating that with an increase in SR, RLT increases linearly, and hence, it is
always desired to have their minimum. From Figure 7c, it is obvious that minimum SR and
RLT (marked with red dot) were obtained as 3.13 µm and 10.24 µm, respectively.
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4.7. Surface Morphological Study

Investigation of the machined surfaces was carried out using FE-SEM. Specimens
were explored for a surface morphological study through the SEM technique at 500×
magnification. The optimal parameter settings obtained through simultaneous optimization
of responses (Equation (5)) were used to study the surface morphology of the obtained
machined surfaces at different nanopowder concentrations. The simultaneous optimal
parameter settings have a Ton of 31 µs, Toff of 12 µs, and Al2O3 conc. of 2 g/L. Surface
morphology analysis was carried out to find the effect of Al2O3 conc. According to this,
Al2O3 conc. was varied at 0 g/L, 1 g/L, and 2 g/L, while keeping Ton and Toff at their
optimal values of 31 µs and 12 µs, respectively. Figures 8–10 illustrate the SEM micrographs
at Al2O3 conc. Of 0 g/L, 1 g/L, and 2 g/L, respectively. A large number of surface
defects can be observed in Figure 8. A large amount of melted material deposition, micro-
cracks, globules of debris, and micro-pores was found on the machined surface. Figure 9
(Al2O3 amount of 1 g/L) shows improved surface in terms of reduction in surface defects
in comparison with Figure 8 (Al2O3 amount of 0 g/L). A substantial improvement can
be observed in the surface morphology of Figure 10 (Al2O3 amount of 2 g/L), which
clearly shows a major reduction in surface defects. A large reduction in melted material
deposition, micro-cracks, globules of debris, and micro-pores can be seen in Figure 10.
This clearly shows that the addition of Al2O3 amount has reduced the surface defects to a
larger extent. The addition of nanopowder creates uniform sparking among the work–tool
interface [40,66]. This uniform sparking between work and tool has reduced the micro-crack
substantially [67]. The addition of nanopowder concentration expands the interelectrode
gap and also increases the heat dissipation in the dielectric fluid by forming small craters
and reducing the plasma heat flux [27,31]. In turn, this reduces the surface defects of the
melted material deposition, formation of globules, and micro-pores. The addition of Al2O3
nanopowder enhances the flushing of debris from the machining zone [31]. The improved
flushing of debris forms small ridges resulting in improved surface quality.



Materials 2022, 15, 2018 16 of 21Materials 2022, 15, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 8. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 0 g/L. 

 
Figure 9. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 1 g/L. 

Figure 8. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 0 g/L.

Materials 2022, 15, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 8. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 0 g/L. 

 
Figure 9. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 1 g/L. Figure 9. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 1 g/L.



Materials 2022, 15, 2018 17 of 21Materials 2022, 15, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 10. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 2 g/L. 

5. Conclusions 
In the current study, pulse-on time (Ton), pulse-off time (Toff), and Al2O3 nanopowder 

concentration were used for achieving higher MRR and lower SR and RLT for the WEDM 
machining of Nitinol. TLBO algorithm was used to achieve the desired responses simul-
taneously. The below mentioned useful remarks can be made based on the present study: 
• Statistical analysis from ANOVA showed that all WEDM variables (Ton, Toff, and 

Al2O3 nanopowder) were observed to have a significant effect on all the response 
variables (MRR, SR, and RLT). 

• For MRR, Al2O3 nanopowder has the highest contributing effect of 76.13%, followed 
by Toff (17.47%) and Ton (7.14%). For SR, Ton was found to be the highest contributing 
factor (91.88%), trailed by Toff (6.36%) and Al2O3 nanopowder (1.17%). For RLT, Ton 
was found to be the highest contributing factor (88.3%), trailed by Toff (7.85%) and 
Al2O3 nanopowder (3.38%). Negligible error contribution was observed for all re-
sponses. 

• The proposed model can be treated as adequate and the best fit as close relation be-
tween R-sq. and Adj. R-sq. was obtained and their values were near to 1. This also 
signifies that the model is appropriate for predicting the future outcomes of MRR. 

• The main effect plots for MRR, SR, and RLT illustrated that the addition of Al2O3 
nanopowder improved the performance of all response variables. 

• With the addition of Al2O3 nanopowder, the rate of erosion of the work material in-
creased and gave an increased MRR. With the addition of Al2O3 nanopowder, the 
formation of small craters and uniform flushing of debris resulted in lower SR. With 
the addition of Al2O3 nanopowder, redeposition of debris was removed from the ma-
chined zone resulting in thin RLT. 

• The single-objective optimization result from TLBO yielded maximum MRR of 
0.3228 g/min (at Ton of 90 µs, Toff of 5 µs, and amount of Al2O3 of 2 g/L), minimum SR 
of 3.13 µm, and minimum RLT of 10.24 µm (both responses at Ton of 30 µs, Toff of 25 
µs, and amount of Al2O3 of 2 g/L). 

Figure 10. Surface morphology at Ton = 31 µs, Toff = 12 µs, and Al2O3 amount = 2 g/L.

5. Conclusions

In the current study, pulse-on time (Ton), pulse-off time (Toff), and Al2O3 nanopow-
der concentration were used for achieving higher MRR and lower SR and RLT for the
WEDM machining of Nitinol. TLBO algorithm was used to achieve the desired responses
simultaneously. The below mentioned useful remarks can be made based on the present
study:

• Statistical analysis from ANOVA showed that all WEDM variables (Ton, Toff, and
Al2O3 nanopowder) were observed to have a significant effect on all the response
variables (MRR, SR, and RLT).

• For MRR, Al2O3 nanopowder has the highest contributing effect of 76.13%, followed
by Toff (17.47%) and Ton (7.14%). For SR, Ton was found to be the highest contributing
factor (91.88%), trailed by Toff (6.36%) and Al2O3 nanopowder (1.17%). For RLT,
Ton was found to be the highest contributing factor (88.3%), trailed by Toff (7.85%)
and Al2O3 nanopowder (3.38%). Negligible error contribution was observed for all
responses.

• The proposed model can be treated as adequate and the best fit as close relation
between R-sq. and Adj. R-sq. was obtained and their values were near to 1. This also
signifies that the model is appropriate for predicting the future outcomes of MRR.

• The main effect plots for MRR, SR, and RLT illustrated that the addition of Al2O3
nanopowder improved the performance of all response variables.

• With the addition of Al2O3 nanopowder, the rate of erosion of the work material
increased and gave an increased MRR. With the addition of Al2O3 nanopowder, the
formation of small craters and uniform flushing of debris resulted in lower SR. With
the addition of Al2O3 nanopowder, redeposition of debris was removed from the
machined zone resulting in thin RLT.

• The single-objective optimization result from TLBO yielded maximum MRR of 0.3228
g/min (at Ton of 90 µs, Toff of 5 µs, and amount of Al2O3 of 2 g/L), minimum SR of
3.13 µm, and minimum RLT of 10.24 µm (both responses at Ton of 30 µs, Toff of 25 µs,
and amount of Al2O3 of 2 g/L).
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• The simultaneous optimization result yielded response values of MRR, SR, and RLT
of 0.2539 g/min, 3.65 µm, and 12.28, respectively, at Ton of 31 µs, Toff of 12 µs, and
Al2O3 conc. of 2 g/L.

• A multi-objective TLBO algorithm was used to generate Pareto optimal points high-
lighting the non-dominant feasible solutions.

• It was observed that the experimental results were in good agreement with the op-
timization results and the measured responses were well within 5% variation. The
least error between predicted and actual values suggests the effectiveness of both the
regression model and TLBO algorithm.

• A considerable reduction in surface defects (melted material deposition, micro-cracks,
globules of debris, and micro-pores) owing to the addition of Al2O3 nanopowder
(from 0 g/L to 2 g/L) was observed in the surface morphology analysis.
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