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Abstract: In this study, a numerical and experimental investigation of the quasi-static crushing
behavior of steel tubular structures was conducted. As the crushing failure behavior involves
a high level of nonlinearity for the numerical simulations, these were compared with previous
experimental works, including crushing tests of steel square tubes to calibrate the numerical results.
Six parameters for the numerical simulations, namely (1) loading boundary condition, (2) geometrical
imperfection, (3) friction coefficient, (4) element size, (5) element type, and (6) material nonlinearity
model, were examined using a series of finite element analyses. Through the sensitivity study for
each parameter, the deformation and crushing load of the steel tube were investigated, and the value
that best matched the experimental results was selected. The results of the numerical analysis for
the determined model were compared with the experimental results. Finally, the authors provided
recommendations that should be considered when performing nonlinear finite element simulations
of crushing failure events.

Keywords: quasi-static crushing test; steel tubular structure; nonlinear finite element simulations

1. Introduction

Most of the world’s cargo volume is transported using ships, and the volume of
ship traffic continues to increase. The growing shipping volume results in high maritime
traffic, resulting in various accidents. Among these accidents, ship collisions occur most
frequently [1]. Therefore, it is necessary to establish countermeasures for large- and small-
scale vessel collision accidents.

A ship is a plated structure consisting of a stiffened panel, and buckling or crushing of
the structural members can occur due to an excessive external force, such as that arising
from a collision of the hull structure during operation. In severe cases, tearing and fracture
may occur, resulting in personal damage and environmental pollution. In the past several
decades, many experimental, analytical, and numerical studies have been conducted to
elucidate the mechanism of damage caused by the collision of structures.

Viswabrahmana and Suresh [2] carried out experimental studies on tailor-welded
blank applications in automotive vehicles for frontal crash validation, using a three-point
tubular bending specimen. Ataabadi et al. [3] numerically examined the dynamic axial
crushing response of cylindrical tubes made of unidirectional carbon fiber-epoxy materials.
Dong and Fan [4] developed an analytical technique to predict the mean crushing load for
hybrid square tubes, consisting of metal and composite materials. Paik et al. [5] carried
out numerical and experimental evaluations of the crushing behaviors of ASTM A500
type carbon steel under low-temperature conditions. Paik et al. [6] experimentally and
theoretically examined an aluminum honeycomb sandwich panel, with respect to its
bending and crushing capacities. Wang and Suzuki [7] derived a simplified calculation
formula for the crushing strength of the bow structure of a ship in a bow collision event. Paik
and Pedersen [8] presented an analysis method for the residual strength of the side structure
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of a double-hull tanker after a ship–ship collision event. Paik and Pedersen [9] studied
the damage inflicted to hull structures in ship collisions using the idealized structural unit
method. Ohtsubo and Suzuki [10] presented an accurate calculation method for the mean
crushing strength of a ship’s bow structure and proposed a formula design by comparing
the results of finite element analyses (FEAs) with the existing experimental works. Jones
and Birch [11] conducted experimental studies on the structural behavior of square section
steel tubes, with various heights and numbers of stiffeners, against axial impact loads.
Pugsley [12] carried out impact tests on longitudinally stiffened steel tubes to investigate
the crushing behavior of a railway vehicle for collision cases and formulated the mean
crushing load based on the stiffness ratio. Macaulay and Redwood [13] conducted impact
experimental tests for rods and steel tubes, in order to investigate the characteristics of
impact load behavior for railway vehicle applications. Lowe et al. [14] found that the
dynamic crushing load is higher than the static crushing load, based on the experimental
test results for car models. Nagasawa et al. [15–17] carried out a quasi-static crushing test
for hull and bridge models, in order to estimate the impact load and internal absorbed
energy for the case of a collision accident between a ship and a bridge. They evaluated the
effectiveness of the shock and energy absorption by model tests of the shock absorber at the
fore side, as well as the parallel and corner parts of the test bridge. Ohnishi et al. [18] carried
out a crushing test for models of crude oil carriers and container vessels and estimated the
amount of damage sustained in a ship collision by calculating the ultimate strength based
on FEA. Lee [19] performed experimental studies on the ultimate strength and absorbed
energy of thin plating, assuming that the damage caused by the ship’s collision was related
to the amount of kinetic energy loss. The relationship between the amount of damage of the
plate member and absorbed energy was proposed through experimental and theoretical
assessment results. Lee [20] developed a formula design to calculate the absorbed energy
for isotropic and orthotropic plates, through theoretical and experimental works. Meng
et al. [21] studied the deformation mechanism for square section steel tubes subjected to
axial loads by theoretical and experimental studies. They found that the folding mode of the
square section steel tubes was constant for the ratio of thickness-to-breadth. Wierzbicki [22]
proposed a method to calculate the crushing load for L, T, Y, and X sections, assuming
that the plate structures are rigid plastic materials. Amdahl [23] derived a design average
crushing strength, with the assumption that hulls consist of L-, T-, and X-shaped structural
elements. In addition, the applicability of the proposed formula was evaluated through
experimental works for a ship bow model. Abramowicz [24] performed a theoretical
analysis of the effective crushing distance and proposed a design equation for the mean
crushing strength of unstiffened and stiffened square section steel tubes. Abramowicz
and Jones [25] derived the dynamic crushing strength using experimental tests for square
section steel tubes using drop objects. Kawai et al. [26] derived the collision energy by
mixing the finite element (FE) method and rigid-plastic theory, and the energy amount
was confirmed experimentally. Yang and Caldwell [27] proposed a design equation to
estimate the amount of damage for the collision of a ship’s bow structure and carried out
an experimental work to verify the accuracy of the design equation. Toi et al. [28] carried
out a crushing test for a square section steel tube and compared the test results with the
existing theoretical solutions and empirical formulas.

The structural safety assessment methods used in the above previous studies can be
mainly classified into two types: (1) evaluation by the ultimate strength concept and (2)
assessment by the amount of absorbed collision energy. The former method is mainly used
for normal loading conditions, whereas the latter method is normally used to evaluate
the safety of a structural member under collision situations. To secure structural safety
against collision accidents between ships and offshore structures, it is critical to understand
the crashworthiness of the ship’s structural members in the basic design phase. As the
different collision strengths for hull designs, based on different owner requirements, cannot
be determined only by experimental and/or theoretical methods, numerical simulations
are essential.
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While many studies have been carried out on the axial crushing of steel sections, there
are few studies that provide guidelines for efficient and accurate numerical simulations.
Therefore, it is worthwhile to define the critical parameters affecting the numerical analysis
of steel crushing problems and study their influence.

The major aim of the present study is to introduce an efficient and accurate numerical
simulation method for the analysis of the structural crashworthiness in ship and offshore
production applications. As the crushing failure simulations require one of the most com-
plicated nonlinear techniques, the effect of FE input parameters should be quite critical
to crashworthiness behaviors. Thus, in this study, a series of nonlinear FE simulations
of crushing failure events were carried out to investigate key input parameters, such
as (1) loading boundary conditions, (2) geometrical imperfection, (3) friction coefficient,
(4) element size, (5) element type, and (6) material nonlinearity models. The contribution
of each parameter to the simulation results was determined and compared with the experi-
mental results. Finally, the authors provided recommendations that should be considered
when performing nonlinear FE simulations of crushing failure events.

2. Experimental Works

Jung [29] carried out a series of quasi-static crushing tests for thin-walled square tube
specimens with axial and/or circumferential stiffeners, including unstiffened specimens, as
shown in Figure 1 for the test setup. Jung [29] provided test raw data for the current work
tasks, as described in this section.
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Figure 1. Test setup for crushing test [29].

In this study, the experimental results of unstiffened, thin-walled, square tube spec-
imens, with six different dimensions, are listed in Table 1, and the specimen shape and
loading conditions are shown in Figure 2. The specimens were made of ASTM A500 carbon
steel (Grade A), and the mechanical properties are given in Table 2. The specimens were
quasi-statically crushed at a speed of 0.05 mm/s, which was determined considering the
loading types, according to the applied strain rate, defined by ASME [30].
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Table 1. Test specimen dimensions of square tubes under quasi-static loading [29].

Specimen
Type Specimen ID L 1 [mm] b 1 [mm] t 1 [mm]

Unstiffened
specimen

US-1

450

100 2.2
US-2 100 2.8
US-3 100 3.0
US-4 100 4.2
US-5 75 2.1
US-6 75 3.2

1 L = height of square tube, b = section breadth of square tube, t = thickness of square tube.
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Table 2. Mechanical properties of target specimens [29].

Specimen ID Elongation [%] E [GPa] σy [MPa]
(0.2% Proof Stress) σT [MPa] εT

US-1 41.9 199.2 286.1 351.9 0.210
US-2 35.4 205.8 310.8 363.3 0.177
US-3 35.6 207.8 299.3 351.2 0.178
US-4 36.5 199.9 366.8 450.8 0.183
US-5 37.4 200.1 328.5 399.4 0.187
US-6 24.9 209.7 427.6 477.2 0.125

Figure 3 shows typical crushing response of an unstiffened specimen (denoted as US),
and Figure 4 shows the corresponding deformed shape of the specimen. The characteristics
of the deformed phase are as follows:
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Figure 4. Crushing test of an unstiffened specimen in the experimental work (US-1).

OA phase: This phase represents the load up to the compressive collapse of the
specimen; before reaching point A, the specimen begins to buckle and leads to the ultimate
limit phase.

AB phase: After reaching point A (ultimate strength), the crushing deformation further
increases, internal force decreases along A–B, and first folding occurs near point B, slowing
the deterioration of the internal force.

BC phase: After the first folding event is finished, the internal force rises rapidly,
owing to the contact reaction force by the adjacent part, and it continues until the second
folding occurs at point C. The direction of the second folding occurred in the opposite
direction to the first folding.

CD phase: The second folding occurs at point C, and the internal force decreases until
point D, where the folding is completed.

DE phase: Above, the deformation behavior appears repeatedly until folding no
longer occurs.
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Point E: Folding no longer occurs, and the specimen behaves as a rigid body.
The absorbed energy of the sample was calculated by integrating the reaction force–

indentation curve with the maximum deformation. Therefore, the mean axial crushing
force (Pm) in Figure 3 was obtained as the absorbed energy, divided by the maximum
deformation.

Figure 5 shows the experimental results of six specimens (US-1 to US-6), as a relation-
ship between the indentation and reaction force. It can be observed that the reaction force
of US-4, which has the largest t and b, is the largest. As mentioned in the introduction,
this study conducted a parametric study and developed the simulation model that best
represented the experimental results.
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Figure 5. Indentation–reaction force in the crushing test of unstiffened specimens.

3. Finite Element Analysis
3.1. Specifications of the Finite Element Analyses

As the crushing failure behavior is significantly complicated, owing to the surface–
surface contact and folding behavior, the nonlinear FE assessment results should be care-
fully calibrated by the experimental results, in order to determine the nonlinear material
models, “surface to surface contact” properties, boundary conditions, etc.

Nonlinear static FEAs were conducted for the following parameters to investigate the
nonlinear behavior related to crushing failure:

(1) Boundary condition;
(2) Geometrical imperfection;
(3) Friction coefficient;
(4) Material nonlinearity model (perfect elasto-plastic model vs. multilinear plastic model);
(5) Element size;
(6) Element type (full integration vs. reduced integration shell).

For the FE simulations, the commercial FE code ABAQUS was employed, and the
specifications are listed in Table 3.
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Table 3. Specification of the finite element analysis.

Item Note

Finite element solver ABAQUS standard
ABAQUS explicit

For eigenvalue buckling
assessment

For nonlinear crushing
simulation

Material type Homogeneous isotropic
material

Boundary condition Fixed type
Simply supported type

Surface contact Kinematic hard contact option
Elastic modulus 205,800 MPa
Poisson’s ratio 0.3
Yield strength From the experimental tests

3.2. Crushing Length

The mean crushing force was obtained using the absorbed energy and maximum
deformation, which is the crushing length. The crushing length can be defined as the total
indentation length, until the specimen becomes a rigid object, as shown in Figure 6c of
Figure 6. However, in contrast to experimental measurements, the maximum indentation
does not clearly appear for the FE simulation cases, and it is often difficult to define the
crushing length visually. Therefore, a criterion is required to define the crushing length in
the FE simulation.
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We plotted the sum of the contact forces by folding together with the reaction force,
as shown in Figure 7. It was observed that the contact force increased rapidly at a certain
point, where folding was completed. Therefore, in this study, the crushing length in the
FE simulations was determined as that just before the point where the crushing contact
pressure rapidly increased.
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3.3. Parameter #1: Boundary Condition

The loading condition of the experimental work is a simple contact between the
loading surface of the crosshead and top of the test specimen. Figure 8 shows a schematic
of the theoretical loading conditions, such as the fixed loading (left figure) and contact
boundary conditions (right figure). The figure also shows the difference in deflection
patterns, due to these boundary conditions, especially regarding the folding pattern.
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Figure 8. Two boundary conditions applied for the parametric study: (a) node sharing and
(b) contact conditions.

The boundary condition of the experimental works could be similar to the contact
boundary condition, but the actual loading condition may contain a certain level of rota-
tional restraint, owing to the friction effect. Thus, the actual boundary condition could be
in the middle of the fixed and contact boundary conditions.

In this study, a series of FEAs on the effect of these boundary conditions on the crushing
strength behavior were carried out and compared with the experimental test results.

Figures 9 and 10 show the effect of the loading boundary conditions on the crushing
behavior of the reaction force and internal energy for the US-1 specimen, respectively.

Table 4 summarizes the simulation results and compares them with the experimental
results for ultimate (Pu) and mean crushing loads (Pm). The results show that 27.6% and
31.7% are the maximum differences between the test results and FE simulations for the free
and fixed boundary conditions, respectively, regarding the ultimate crushing loads.

Regarding the mean crushing loads, 29.3% and 23.8% are the maximum differences
between the test results and FE simulations for free and fixed boundary conditions,
respectively.

The FE simulations show a more conservative tendency than the experimental re-
sults. Further, the results with fixed boundary conditions show better agreement with
the experimental results. However, the application of a free boundary condition could be
recommended for use in nonlinear FE simulations, for the purpose of safe design.
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Table 4. Test and finite element simulation results by boundary condition for crushing specimens.

Specimen
ID

Experimental
Works [kN]

Finite Element Simulations [kN] Difference [%]

Free Fixed Free Fixed

Pu
(1) Pm

(2) Pu
(3) Pm

(4) Pu
(5) Pm

(6) ((1) − (3))/(1) ((2) − (4))/(2) ((1) − (5))/(1) ((2) − (6))/(2)

US-1 231.3 60.6 167.5 51.4 157.9 55.6 27.6 15.2 31.7 8.2
US-2 337.1 101.0 305.7 83.7 302.3 87.3 9.3 17.2 10.3 13.6
US-3 361.6 106.2 310.1 90.9 315.3 115.2 14.3 14.4 12.8 8.5
US-4 626.0 271.6 583.5 192.0 588.7 207.0 6.8 29.3 6.0 23.8
US-5 193.1 59.0 175.7 50.6 174.9 57.5 9.0 14.3 9.4 4.2
US-6 404.7 148.4 390.4 130.2 388.4 138.2 3.5 12.3 4.0 6.9
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3.4. Parameter #2: Initial Imperfection

The structural crushing capacities of the specimen should depend on the initial de-
flection (imperfection) levels; however, no initial imperfection measurements for the tube
samples were carried out. Therefore, in the current study, four initial imperfections were
applied using eigenmodes with maximum imperfection levels to determine the effect of ini-
tial imperfection. The maximum imperfection level (w0) was calculated using Equation (1).
Three levels of imperfection amplitude (amp) were considered in this study, i.e., 0.05: slight
level; 0.10: average level; 0.20 and 0.30: severe level. Figure 11 shows the three eigenmodes
of the current test specimen, obtained from linear buckling analyses. In this study, we used
the first eigenmode to implement the initial imperfection.

w0 = amp·β2·t (1)

where β = b
t

√
σY
E , σY = yield strength, E = elastic modulus, and amp = 0.05, 0.10, 0.20, 0.30.
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Figure 11. Eigenmodes of the test specimen, obtained from linear buckling finite element assessment.

Figures 12 and 13 show the effects of the initial imperfection level on the crushing
behavior of the reaction force and internal energy for the US-1 specimen, respectively.

Table 5 summarizes the crushing FE simulation results for the four initial deflection
levels and compares them with the experimental results. The differences between the
experimental works and FE simulations are 1–37% and 1–24% for the ultimate (Pu) and
mean crushing strengths (Pm), respectively.

The minimum difference of mean crushing load between the experimental work and
FE simulation came from US-1 with 0.20 of amp of initial imperfection.

The FE simulation results for the other cases, i.e., US-2–US-6, with 0.20, 0.30, 0.30, 0.10,
and 0.20 of amp of initial imperfection, respectively, show minimum differences of mean
crushing load with the experimental results.
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Figure 13. Effect of initial imperfections on crushing behavior of the internal energy for US-1.

Because the state of the raw plate, with which the test specimen is manufactured,
could be different, and the environment may also be different, during the production
process, the six specimens may have different initial deflection and residual stress levels.
Thus, an accurate mean crushing load can be calculated by FEA, based on accurate initial
imperfection measurements.

As the initial imperfection value increased by six times (0.05–0.30), the ultimate crush-
ing strength decreased by approximately 30%, while the mean crushing load decreased
by approximately 10%. Thus, it was confirmed that the mean crushing load was not very
sensitive to the initial deflection, compared to the ultimate crushing strength.
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Table 5. Test and finite element simulation results by initial deflection for crushing specimens.

Specimen ID
Experimental Works FE Simulations Difference [%]

Pu
(1) [kN] Pm

(2) [kN] amp Pu
(3) [kN]) Pm

(4) [kN] ((1) − (3))/(1)

[%]
((2) − (4))/(2)

[%]

US-1 231.3 60.6

0.05 191.2 54.5 17 10
0.10 157.9 55.6 32 8
0.20 157.2 61.2 32 1
0.30 144.9 51.6 37 15

US-2 337.1 101.0

0.05 327.3 87.5 3 13
0.10 302.3 87.3 10 14
0.20 256.9 88.2 24 13
0.30 227.7 97.8 32 3

US-3 361.6 106.2

0.05 335.5 118.6 7 12
0.10 315.3 115.2 13 8
0.20 264.4 114.5 27 8
0.30 234.2 113.9 35 7

US-4 626.0 271.6

0.05 593.9 206.3 5 24
0.10 588.7 207.0 6 24
0.20 576.4 208.1 8 23
0.30 546.4 222.1 13 18

US-5 193.1 59.0

0.05 194.2 51.3 1 13
0.10 174.9 57.5 9 4
0.20 142.7 52.6 26 11
0.30 134.5 54.3 30 8

US-6 404.7 148.4

0.05 398.0 140.3 2 5
0.10 388.4 138.2 4 7
0.20 364.7 145.1 10 2
0.30 339.6 142.3 16 4

3.5. Parameter #3: Friction Coefficient

During the crushing failure event, the specimen buckled and folding occurred as the
crushing deformation increased. After the first folding event, the internal force increased
again, and the contact reaction force increased, until the specimen became a rigid object.
Owing to the folding event, self-contact nonlinear boundary conditions should be applied
to the FE model, and the friction coefficient is one of the required input parameters.

The friction coefficient can be calculated experimentally. However, as there are no test
results available for this crushing specimen, sensitivity analyses on the effect of friction
coefficient values on the crushing behavior were carried out using four different friction
coefficients: 0.04, 0.08, 0.16, and 0.26.

The ultimate crushing loads obtained with the four different friction coefficients were
found to be identical to each other, but the mean crushing loads were slightly different. This
is thought to be because, for the target specimen, the ultimate crushing load is measured at
the first peak, while the mean crushing load is calculated by the total cumulated internal
energy when the final folding is finished. Because the friction coefficient is involved in the
friction behavior between each folding, it is expected that the greater the number of folding,
the greater the effect of friction.

Figures 14 and 15 show the effects of friction coefficients on the crushing behavior of
the reaction force and internal energy for the US-1 specimen, respectively. As shown in the
figures, the effect of the friction coefficient is almost negligible.
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Table 6 summarizes the simulation results for the four different friction coefficients and
compares them with the experimental results. The differences between the experimental
works and FE simulations are of 4–31.7% and 4.2–24.9% for the ultimate (Pu) and mean
crushing strengths (Pm), respectively.

As the friction value increased by six times (0.04–0.24), the ultimate crushing strength
did not change, while the mean crushing load varied by approximately 5% as a maximum;
thus, it was confirmed that the mean crushing load is not sensitive to the friction coefficient.
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Table 6. Test and finite element simulation results by friction coefficient for the crushing specimens.

Specimen ID
Experimental Works FE Simulations Difference

Pu
(1) [kN] Pm

(2) [kN]
Friction

Coefficient Pu
(3) [kN] Pm

(4) [kN] ((1) − (3))/(1)

[%]
((2) − (4))/(2)

[%]

US-1 231.3 60.6

0.04 157.9 55.6 31.7 8.2
0.08 157.9 55.6 31.7 8.2
0.16 157.9 55.3 31.7 8.7
0.24 157.9 54.6 31.7 9.8

US-2 337.1 101.0

0.04 302.3 88.7 10.3 12.2
0.08 302.3 87.3 10.3 13.6
0.16 302.3 87.9 10.3 12.9
0.24 302.3 87.4 10.3 13.5

US-3 361.6 106.2

0.04 343.6 118.8 5.0 11.8
0.08 343.6 115.2 5.0 8.5
0.16 343.6 112.5 5.0 5.9
0.24 343.6 114.1 5.0 7.5

US-4 626.0 271.6

0.04 588.7 207.3 6.0 23.7
0.08 588.7 207.0 6.0 23.8
0.16 588.7 204.0 6.0 24.9
0.24 588.7 204.3 6.0 24.8

US-5 193.1 59.0

0.04 174.9 56.2 9.4 4.7
0.08 174.9 57.5 9.4 4.2
0.16 174.9 56.4 9.4 4.4
0.24 174.9 54.5 9.4 7.6

US-6 404.7 148.4

0.04 388.4 138.2 4.0 6.9
0.08 388.4 138.2 4.0 6.9
0.16 388.4 137.3 4.0 7.5
0.24 388.4 137.9 4.0 7.1

3.6. Parameter #4: Material Property Model

The crushing failure behavior should depend on the nonlinear material model. To
investigate the structural nonlinear behavior by nonlinear material properties, two non-
linear models were considered for the FE simulations: (1) perfect elasto-plastic and (2)
multi-linear materials, as shown in Figure 16.
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For the multi-linear material model, the strain hardening effect is included, which
is calculated from tensile coupon test results. For simplicity, it is made so that the stress
remains constant after the strain reaches the value of strain-to-fracture. The values required
for each material description are shown in Table 2.

Figures 17 and 18 show the effects of nonlinear material models on the crushing
behavior of the reaction force and internal energy for US-1 specimen, respectively.
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Table 7 compares the simulation results for the two different nonlinear material models
with the experimental results. The differences between the experimental works and FE
simulations, using the perfect elasto-plastic model, are of 4.0–31.7% and 2.5–31.7% for the
ultimate and mean crushing strengths, respectively.
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Table 7. Test and finite element simulation results by nonlinear material model.

Specimen
No.

Pu [kN] Pm [kN]
Difference [%]

Pu Pm

Exp. PE MLM Exp. PE MLM PE MLM PE MLM

US-1 231.3 157.9 159.5 60.6 55.6 68.7 31.7 31.0 8.3 13.4
US-2 337.1 302.3 304.1 101.0 87.3 100.6 10.3 9.8 13.6 0.4
US-3 361.6 343.6 344.8 106.2 115.2 129.7 5.0 4.6 8.5 22.1
US-4 626.0 588.7 589.6 271.6 207.0 252.6 6.0 5.8 31.7 31.0
US-5 193.1 174.9 176.4 59.0 57.5 64.0 9.4 8.6 2.5 8.5
US-6 404.7 388.4 388.8 148.4 138.2 157.0 4.0 3.9 6.9 5.8

The differences between the experimental works and FE simulations, using the multi-
linear material model, are of 3.9–31.0% and 0.4–31.0% for the ultimate and mean crushing
strengths, respectively.

Figure 19 shows the final deformed shape and crushing distance, as a result of us-
ing each material model. There is not much difference in the number of folding and
folding shape, but the case using perfect elasto-plastic model shows a longer crushing
distance. However, it can be seen that there is little difference between the two, in terms of
absorbing energy.
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Therefore, the FE simulations, using the multi-linear nonlinear model, showed slightly
better agreement with the experimental results; however, a few FE simulation cases, using
the multi-linear nonlinear model, showed higher strength values than the experimental
works.
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3.7. Parameter #5: Finite Element Mesh Size

Element size is one of the most critical parameters that determines the nonlinear
results. In particular, in the steel crushing problem, special attention to the element size
is required because it significantly affects the folding shape and number of lobes. We
performed a sensitivity study, using seven different element sizes, namely 2, 3, 4, 5, 6, 7, and
8 mm, for the US-1 case with a plate thickness of 2.2 mm. Table 8 presents the deformed
shape and corresponding number of elements for each folding in each FE model. As can be
observed, the smaller the element size is, the smoother and more natural the shape of the
lobe. To determine the proper element density, the mean crushing loads for each case are
compared in Figure 20. As a result, the mean crushing loads become smaller as the element
size decreases, and they converge when the element size is 5 mm.

Table 8. Deformed shape and number of elements for each folding length by element size.

Size Deformed Shape—Edge Line Deformed Shape—Half of the Specimen No. of Elements
for Each Folding

2 mm
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Table 8. Cont.

Size Deformed Shape—Edge Line Deformed Shape—Half of the Specimen No. of Elements
for Each Folding

5 mm
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Figures 21 and 22 show the effects of element size on the crushing behavior of the
reaction force and internal energy for the US-1 specimen, respectively, and Table 9 compares
the simulation results for six different element sizes with the experimental results.
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The difference between the experimental works and FE simulations for the ultimate
crushing strength is approximately 10%, whereas it ranges between 2.7% and 14.6% for the
mean crushing load.
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Table 9. Test and finite element simulation results by element size.

Experiment FE Simulations Difference

Pu [kN] Pm [kN] Element Size
[mm] Pu [kN] Pm [kN] Pu [%] Pm [%]

337.1 101.1

2 300.2 86.3 10.9 14.6
3 300.5 86.4 10.9 14.5
4 301.3 86.5 10.6 14.4
5 302.3 87.3 10.3 13.6
6 302.3 92.7 10.3 8.3
7 301.8 98.4 10.5 2.7
8 303.7 110.7 9.9 9.5

3.8. Parameter #6: Element Type (Reduced Integration vs. Full Integration)

As another modeling parameter for FEAs, the effect of the element type on the shell
element was investigated.

In this study, a four-node shell element was applied to the FE simulation with full
integration and reduced integration options (S4, S4R). Full integration elements use two
integration points in each direction, whereas reduced integration elements have a single
integration point at the element centroid [31]. Figures 23 and 24 show the crushing reaction
force and internal energy for US-1, respectively.

Table 10 compares the simulation results for different element types with the experi-
mental results.
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Table 10. Test and finite element simulation results by element type.

Specimen
No.

Experiment
[kN]

FEM [kN] Difference [%]

S4 1 S4R 1 ((3) − (5))/(3) ((4) − (6))/(4) ((1) − (3))/(1) ((2) − (4))/(2) ((1) − (5))/(1) ((2) − (6))/(2)

Pu
(1) Pm

(2) Pu
(3) Pm

(4) Pu
(5) Pm

(6) Pu Pm Pu Pm Pu Pm

US-1 231.3 60.6 157.8 55.9 157.9 55.6 0.06 0.54 31.78 7.76 31.73 8.25
US-2 337.1 101.0 301.9 84.4 302.3 87.3 0.13 3.44 10.44 16.44 10.32 13.56
US-3 361.6 106.2 343.7 112.0 343.6 115.2 0.03 2.86 4.95 5.46 4.98 8.47
US-4 626.0 271.6 588.9 203.2 588.7 207.0 0.03 1.87 5.93 25.18 5.96 23.78
US-5 193.1 59.0 174.9 54.5 174.9 57.5 0.00 5.50 9.43 7.63 9.43 2.54
US-6 404.7 148.4 388.7 135.4 388.4 138.2 0.08 2.07 3.95 8.76 4.03 6.87

1 S4 = full integration four-node shell element, S4R = reduced integration four-node shell element.
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The FE simulation results of the full integration and reduced integration shell element
cases show very similar results for the ultimate crushing strength and mean crushing load,
with a maximum difference of 5.5%. Therefore, the reduced integration shell element-based
FE model can provide reliable simulation results.

The maximum difference between the experimental works and FE simulations for
the ultimate crushing strength was approximately 32%, and it was 25% for the mean
crushing load.

4. Discussion
4.1. Determination of the Parameters for Finite Element Simulation

For the efficient and accurate numerical implementation of the steel tubular structure
subjected to axial crushing, the main parameters required for the FE model were determined
by a series of case studies. The results of the sensitivity studies on boundary conditions,
geometrical imperfections, friction coefficients, material nonlinearity models, and element
size and type, using six unstiffened specimens, are presented in Figure 25 results were
compared based on the mean crushing force, which indicates the energy absorption power
of the tube. The differences between the experimental and analysis results of the six
specimens, for the values applied in each parameter, are presented using the box-and-
whisker plot [32], except for the element size case, where the difference is presented using
a bar chart because only one sample was tested. A box-and-whisker plot is a method for
graphically presenting data groups using quartiles. It is a good way to identify errors
because it can efficiently express the variation, degree of dispersion, and skewness of each
data group. Figure 26 shows the box-and-whisker plot using the relation with the normal
distribution. In Figure 25, the quartiles, including the maximum, minimum, and median
of each data group, as well as the mean and standard deviation (σ), can be identified.
Outliers are statistically insignificant, as they represent data points outside the maximum
(+49.65%) and minimum (−49.65%) specified in the box-and-whisker plot. The parameters,
determined based on the difference distributions, are listed in Table 11. For each parameter,
we selected the case with the least median difference from the comparison between the
simulation and experimental results. If the variation in medians between the cases is
small, as in the case of initial imperfection, the variance (i.e., interquartile range) was also
considered. Unlike these parameters, the element size was determined based on the results
of the mesh convergence test in Figure 20, as described in Section 3.7.

Table 11. Summary of the determined parameters for the finite element simulation.

Parameter Selected Case

Boundary condition Fix
Initial imperfection 0.1 β2·t
Friction coefficient 0.08

Material property model perfect elasto-plastic material
Finite element mesh size 5 mm

Element type S4R (reduced integration four-node shell element)
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4.2. Comparison between Numerical Simulation and Experiments

The simulation results, obtained by applying the parameters determined in Table 11,
were compared with the experimental results, as shown in Figure 27. The boundary
condition at the area where the force is applied is slightly different from the actual condition,
so the deformation at the top of the tube is slightly different. However, the number of lobes
at each stage and overall shape of the deformation showed good agreement. Figure 28
presents a comparison of the deformed shapes of the specimen for which the test was
completed. It can be observed that the shape of the lobe was realistically well implemented
in the numerical simulation.
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Figure 28. Comparison of the final deformation between the experiment (a) and numerical simulation
(b) (US-4).

In this study, the mean crushing force was used as a measure for an efficient and
accurate numerical simulation because the ability to absorb energy is the most important
design factor for a tube subjected to axial crushing [33]. Prior to the comparison of the mean
crushing force, the crushing length, which is very important for the calculation of the mean
crushing force by numerical simulation, is compared in Figure 29. Unlike the experiment,
it is difficult to obtain the crushing length in the numerical simulation; therefore, in this
study, the crushing length was determined based on the point at which the contact force
suddenly increased. It can be observed that the simulated crushing length agrees well
with the experimental results. In Figure 30, the experimental and simulated mean crushing
forces are compared. It shows very good agreement, except for the US-4 case, which has the
thickest tube plate. US-4 is 30–40% thicker than the other specimens, and further research
is recommended to determine the exact cause of the error.
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5. Conclusions

In this study, the required input parameters for a nonlinear FEA of the crushing failure
of steel specimens were categorized, and a sensitivity analysis was carried out, using
experimental results.

The parameters determined through the sensitivity analysis are presented in Table 11
and they can be summarized as follows.

The fixed loading boundary condition shows better agreement with the experimental
results than the contact loading boundary condition; however, FE assessment, with a fixed
boundary condition, could lead to excessive ultimate crushing strength and/or mean
crushing loads. Therefore, when a more conservative application is required, for design
purposes, a contact loading boundary condition is recommended.

The level of initial imperfection has a particularly large impact on the ultimate crush-
ing strength, but it has a relatively smaller effect on the mean crushing load. However,
precise management, related to the initial imperfection, is required for accurate crushing
performance estimation. The initial imperfection of the residual stress, caused by the
welding process, was excluded in this study, but it requires further analysis.

The effect of the friction coefficient on the crushing capacity was determined to be
practically negligible, with a maximum of less than 5%.

The crushing FE assessments by nonlinear material properties, using the tensile coupon
test results, showed better agreement with the experimental results; however, the appli-
cation of perfect elasto-plastic nonlinear material properties is recommended because of
practical engineering reasons.

The FE mesh size was found to be a major parameter, affecting both the ultimate
crushing strength, as well as the mean crushing load. Therefore, the mesh size for the FE
assessment should be determined based on the results of a mesh convergence study.

Finally, the results for the full integration shell element and reduced integration shell
element did not differ significantly from each other; therefore, the reduced integration shell
element-based FE mesh could be acceptable, in terms of simulation efficiency.

The simulation results, applying the determined parameters, showed very good
agreement with the experimental results, in terms of the deformed shape, crushing length,
and mean crushing force. Based on the results of this study, it is expected that better results
will be obtained if the study is extended to the dynamic crushing test and stiffened tube. In
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addition, studies considering manufacturing conditions, such as welding and joints, are
recommended as further studies.
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