Early Immune Response in Foreign Body Reaction Is Implant/Material Specific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. SEM
2.3. Whole Blood Stimulation Assay (WBSA)
2.4. Determination of the Immunological Signature
2.5. Statistics
3. Results
3.1. SEM-Characterisation of Scaffold Surface
3.2. WBSA and PPA
3.2.1. Induced Proteins with Significant Differences
3.2.2. Induced Proteins with Explorative Statistically Significant Differences
3.2.3. Non-Specifically Increased Parameters
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, D.F. On the nature of biomaterials. Biomaterials 2009, 30, 5897–5909. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, Z.; Brooks, P.J.; Barzilay, O.; Fine, N.; Glogauer, M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 2015, 8, 5671–5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Ekdahl, K.N.; Mollnes, T.E.; Lambris, J.D. The role of complement in biomaterial-induced inflammation. Mol. Immunol. 2007, 44, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Boehler, R.M.; Graham, J.G.; Shea, L.D. Tissue engineering tools for modulation of the immune response. Biotechniques 2011, 51, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Hu, W.J.; Eaton, J.W.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98, 1231–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhalgh, D.G. Wound healing. Total Burn Care 2007, 12, 578–595. [Google Scholar]
- Loke, P.; Gallagher, I.; Nair, M.G.; Zang, X.; Brombacher, F.; Mohrs, M.; Allison, J.P.; Allen, J.E. Alternative Activation Is an Innate Response to Injury That Requires CD4 + T Cells to be Sustained during Chronic Infection. J. Immunol. 2007, 179, 3926–3936. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef]
- Anderson, J.M. Inflammatory Response to Implants. ASAIO J. 1988, 34, 101–107. [Google Scholar] [CrossRef]
- Anderson, J.M.; McNally, A.K. Biocompatibility of implants: Lymphocyte/macrophage interactions. Semin. Immunopathol. 2011, 33, 221–233. [Google Scholar] [CrossRef] [PubMed]
- DiEgidio, P.; Friedman, H.I.; Gourdie, R.G.; Riley, A.E.; Yost, M.J.; Goodwin, R.L. Biomedical implant capsule formation lessons learned and the road ahead. Ann. Plast. Surg. 2014, 73, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Thevenot, P.; Hu, W.; Tang, L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 2008, 8, 270–280. [Google Scholar] [PubMed]
- Paul, N.E.; Skazik, C.; Harwardt, M.; Bartneck, M.; Denecke, B.; Klee, D.; Salber, J.; Zwadlo-Klarwasser, G. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008, 29, 4056–4064. [Google Scholar] [CrossRef]
- Jones, J.A.; Chang, D.T.; Meyerson, H.; Colton, E.; Kwon, I.K.; Matsuda, T.; Anderson, J.M. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. Part A 2007, 83A, 585–596. [Google Scholar] [CrossRef]
- Abdallah, M.N.; Tran, S.D.; Abughanam, G.; Laurenti, M.; Zuanazzi, D.; Mezour, M.A.; Xiao, Y.; Cerruti, M.; Siqueira, W.L.; Tamimi, F. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater. 2017, 54, 150–163. [Google Scholar] [CrossRef]
- Liebers, V.; Kendzia, B.; Stubel, H.; Borowitzki, G.; Gering, V.; Monsé, C.; Hagemeyer, O.; Merget, R.; Brüning, T.; Raulf, M. Cell activation and cytokine release ex vivo: Estimation of reproducibility of the whole-blood assay with fresh human blood. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2018; Volume 1108, pp. 25–36. [Google Scholar]
- Hasiwa, M.; Kullmann, K.; von Aulock, S.; Klein, C.; Hartung, T. An in vitro pyrogen safety test for immune-stimulating components on surfaces. Biomaterials 2007, 28, 1367–1375. [Google Scholar] [CrossRef]
- Leiblein, M.; Koch, E.; Winkenbach, A.; Schaible, A.; Nau, C.; Büchner, H.; Schröder, K.; Marzi, I.; Henrich, D. Size matters: Effect of granule size of the bone graft substitute (Herafill®) on bone healing using Masquelet’s induced membrane in a critical size defect model in the rat’s femur. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1469–1482. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, D.P.; Águas, A.P.; Barbosa, M.A.; Pelegrín, P.; Barbosa, J.N. The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. Acta Biomater. 2019, 83, 1–12. [Google Scholar] [CrossRef]
- Chen, Z.; Klein, T.; Murray, R.Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lock, A.; Cornish, J.; Musson, D.S. The role of in vitro immune response assessment for biomaterials. J. Funct. Biomater. 2019, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Quabius, S.; Kewitz, T.; Hansen, L.; Becker, G.; Kern, M.; Kersten, H.; Harder, S. In vitro proinflammatory gene expression changes in human whole blood after contact with plasma-treated implant surfaces. J. Cranio. Maxillofac. Surg. 2019, 47, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, F.; Beuttler, J.; Zeller, R.; Fink, U.; Schindler, S.; Wendel, A.; Harlung, T.; Von Aulock, S. In vitro pyrogen test—A new test method for solid medical devices. J. Biomed. Mater. Res. Part A 2007, 80, 276–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalu, A.; Blaydes, B.S.; Lomax, L.G.; Delclos, K.B. A comparison of the inflammatory response to a polydimethylsiloxane implant in male and female Balb/c mice. Biomaterials 2000, 21, 1947–1957. [Google Scholar] [CrossRef]
- Xia, Z.; Triffitt, J.T. A review on macrophage responses to biomaterials. Biomed. Mater. 2006, 1, R1. [Google Scholar] [CrossRef] [PubMed]
- Major, M.R.; Wong, V.W.; Nelson, E.R.; Longaker, M.T.; Gurtner, G.C. The Foreign Body Response: At the Interface of Surgery and Bioengineering. Plast. Reconstr. Surg. 2015, 135, 1489–1498. [Google Scholar] [CrossRef]
- Koh, L.B.; Rodriguez, I.; Venkatraman, S.S. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials 2010, 31, 1533–1545. [Google Scholar] [CrossRef]
- Gorbet, M.; Sperling, C.; Maitz, M.F.; Siedlecki, C.A.; Werner, C.; Sefton, M.V. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater. 2019, 94, 25–32. [Google Scholar] [CrossRef]
- Pförringer, D.; Harrasser, N.; Beirer, M.; Crönlein, M.; Stemberger, A.; van Griensven, M.; Lucke, M.; Burgkart, R.; Obermeier, A. Influence of absorbable calcium sulfate-based bone substitutematerials on human haemostasis-in vitro biological behavior of antibiotic loaded implants. Materials 2018, 11, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaga, N.; Fujimoto, H.; Morita, S.; Yamaguchi, Y.; Matsuura, T. Contact angle and cell adhesion of micro/nano-structured poly(Lactic-co-glycolic acid) membranes for dental regenerative therapy. Dent. J. 2021, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Brugnara, M.; Della Volpe, C.; Siboni, S.; Zeni, D. Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning 2006, 28, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Van De Belt, H.; Neut, D.; Uges, D.R.A.; Schenk, W.; Van Horn, J.R.; Van Der Mei, H.C.; Busscher, H.J. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 2000, 21, 1981–1987. [Google Scholar] [CrossRef]
- Dinnes, D.L.M.; Marçal, H.; Mahler, S.M.; Santerre, J.P.; Labow, R.S. Material surfaces affect the protein expression patterns of human macrophages: A proteomics approach. J. Biomed. Mater. Res. A 2007, 80, 895–908. [Google Scholar] [CrossRef]
- Qutachi, O.; Vetsch, J.R.; Gill, D.; Cox, H.; Scurr, D.J.; Hofmann, S.; Müller, R.; Quirk, R.A.; Shakesheff, K.M.; Rahman, C.V. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomater. 2014, 10, 5090–5098. [Google Scholar] [CrossRef] [Green Version]
- Iida, N.; Grotendorst, G.R. Cloning and sequencing of a new gro transcript from activated human monocytes: Expression in leukocytes and wound tissue. Mol. Cell. Biol. 1990, 10, 5596–5599. [Google Scholar]
- Schumacher, C.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. High- and low-affinity binding of GROα and neutrophil-activating peptide 2 to interleukin 8 receptors on human neutrophils. Proc. Natl. Acad. Sci. USA 1992, 89, 10542–10546. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Nemunaitis, J. Macrophage function activating cytokines: Potential clinical application. Crit. Rev. Oncol. Hematol. 1993, 14, 153–171. [Google Scholar] [CrossRef]
- Klebanoff, S.J. Myeloperoxidase: Friend and foe. J. Leukoc. Biol. 2005, 77, 598–625. [Google Scholar] [CrossRef] [PubMed]
- Kinkade, J.M.; Pember, S.O.; Barnes, K.C.; Shapira, R.; Spitznagel, J.K.; Martin, L.E. Differential distribution of distinct forms of myeloperoxidase in different azurophilic granule subpopulations from human neutrophils. Biochem. Biophys. Res. Commun. 1983, 114, 296–303. [Google Scholar] [CrossRef]
- Dubucquoi, S.; Desreumaux, P.; Janin, A.; Klein, O.; Goldman, M.; Tavernier, J.; Capron, A.; Capron, M. Interleukin 5 synthesis by eosinophils: Association with granules and immunoglobulin-dependent secretion. J. Exp. Med. 1994, 179, 703–708. [Google Scholar] [CrossRef]
- Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature 2015, 517, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, F.F.; Naxerova, K.; Schloss, M.J.; Hulsmans, M.; Nair, A.V.; Dutta, P.; Calcagno, D.M.; Herisson, F.; Anzai, A.; Sun, Y.; et al. Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity 2019, 51, 899–914.e7. [Google Scholar] [CrossRef]
- Kolumam, G.; Wu, X.; Lee, W.P.; Hackney, J.A.; Zavala-Solorio, J.; Gandham, V.; Danilenko, D.M.; Arora, P.; Wang, X.; Ouyang, W. IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. PLoS ONE 2017, 12, e0170639. [Google Scholar] [CrossRef]
- Bhoola, K.D.; Figueroa, C.D.; Worthy, K. Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol. Rev. 1992, 44, 1–80. [Google Scholar]
- Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1692–1716. [Google Scholar] [CrossRef]
- Waeckerle-Men, Y.; Scandella, E.; Uetz-Von Allmen, E.; Ludewig, B.; Gillessen, S.; Merkle, H.P.; Gander, B.; Groettrup, M. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. J. Immunol. Methods 2004, 287, 109–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Babensee, J.E. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 2012, 8, 3606–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolete, R.; Santos, D.F.D.; Faccioli, L.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int. Immunopharmacol. 2011, 11, 1557–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valerio, L.G.; Parks, T.; Petersen, D.R. Alcohol mediates increases in hepatic and serum nonheme iron stores in a rat model for alcohol-induced liver injury. Alcohol. Clin. Exp. Res. 1996, 20, 1352–1361. [Google Scholar] [CrossRef]
- Lewis, J.S.; Roche, C.; Zhang, Y.; Brusko, T.M.; Wasserfall, C.H.; Atkinson, M.; Clare-Salzler, M.J.; Keselowsky, B.G. Combinatorial delivery of immunosuppressive factors to dendritic cells using dual-sized microspheres. J. Mater. Chem. B 2014, 2, 2562–2574. [Google Scholar] [CrossRef] [Green Version]
- Pelissier, P.; Masquelet, A.C.; Bareille, R.; Mathoulin Pelissier, S.; Amedee, J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J. Orthop. Res. 2004, 22, 73–79. [Google Scholar] [CrossRef]
- Nau, C.; Seebach, C.; Trumm, A.; Schaible, A.; Kontradowitz, K.; Meier, S.; Buechner, H.; Marzi, I.; Henrich, D. Alteration of Masquelet’s induced membrane characteristics by different kinds of antibiotic enriched bone cement in a critical size defect model in the rat’s femur. Injury 2016, 47, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Yaszay, B.; Trindade, M.C.D.; Lind, M.; Goodman, S.B.; Smith, R.L. Fibroblast expression of C-C chemokines in response to orthopaedic biomaterial particle challenge in vitro. J. Orthop. Res. 2001, 19, 970–976. [Google Scholar] [CrossRef]
- Gibon, E.; Córdova, L.A.; Lu, L.; Lin, T.; Yao, Z.; Hamadouche, M.; Goodman, S.B. The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Apte, G.; Börke, J.; Rothe, H.; Liefeith, K.; Nguyen, T.H. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS Appl. Bio Mater. 2020, 3, 5574–5589. [Google Scholar] [CrossRef]
- Wouters, I.M.; Douwes, J.; Thorne, P.S.; Heederik, D.; Doekes, G. Inter- and intraindividual variation of endotoxin- and β(1 → 3)-glucan-induced cytokine responses in a whole blood assay. Toxicol. Ind. Health 2002, 18, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Bleek, K.; Schell, H.; Lienau, J.; Schulz, N.; Hoff, P.; Pfaff, M.; Schmidt, G.; Martin, C.; Perka, C.; Buttgereit, F.; et al. Initial immune reaction and angiogenesis in bone healing. J. Tissue Eng. Regen. Med. 2014, 8, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T.; Wendel, A. Detection of pyrogens using human whole blood. Vitr. Mol. Toxicol. J. Basic Appl. Res. 1996, 9, 353–359. [Google Scholar]
1–2 | 3–4 | 5–6 | 7–8 | 9–10 | 11–12 | 13–14 | 15–16 | 17–18 | 19–20 | 21–22 | 23–24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | - | Adipo-nectin | Apolipo-protein A-l | Angiogenin | Angio-poietin-1 | Angio-poietin-2 | BAFF | BDNF | Complement Comp C5/C5a | CD14 | CD30 | - |
B | - | CD40 ligand | Chitinase 3-like 1 | Complement Factor D | C-Reactive Protein | Cripto-1 | Cystatin C | Dkk-1 | DPPIV | EGF | Emm-prin | - |
C | - | ENA-78 | Endoglin | Fas Ligand | FGF basic | FGF-7 | FGF-19 | Flt-3 Ligand | G-CSF | GDF-15 | GM-CSF | - |
D | GR0α | Growth Hormone | HGF | ICAM-1 | IFN-γ | IGFBP-2 | IGFBP-3 | IL-1α | IL-1β | IL-1ra | IL-2 | IL-3 |
E | IL-4 | IL-5 | IL-6 | IL-8 | IL-10 | IL-11 | IL-12 p70 | IL-13 | IL-15 | IL-16 | IL-17A | IL-18 Bpa |
F | IL-19 | IL-22 | IL-23 | IL-24 | IL-27 | IL-31 | IL-32 | IL-33 | IL-34 | IP-10 | I-TAC | Kalli-krein 3 |
G | Leptin | LIF | Lipocalin-2 | MCP-1 | MCP-3 | M-CSF | MIF | MIG | MIP-1α /MIP-1β | MIP-3α | MIP-3β | MMP-9 |
H | Myelo-peroxidase | Osteo-pontin | PDGF-AA | PDGF-AB/BB | Pentraxin 3 | PF4 | RAGE | RANTES | RBP-4 | Relaxin-2 | Resistin | SDF-1α |
I | Serpin E1 | SHBG | ST2 | TARC | TFF3 | TfR | TGF-α | Thrombo-spondin-1 | TNF-α | uPAR | VEGF | - |
J | - | - | Vitamin D BP | CD31 | TIM-3 | VCAM-1 | - | - | - | - | - | - |
Parameter | Function |
---|---|
GRO-1 α, IL-8 | chemotaxis-inflammation |
IL-5; MPO | inflammation |
M-CSF | differentiation |
lipocalin | transport |
Parameter | Function |
---|---|
IFN-γ, IL-17A, IL-24, Kallikrein | immune activation, inflammation |
IGFBP-2, IGFBP-3, SHBG | regulation |
MIP-3a, PF-4 | chemotaxis |
IL-24 | wound healing |
PECAM (CD31), VCAM-1 | adhesion |
Pentraxin-3 | complement activation |
Parameter | Function |
---|---|
IL-1β, TNF-α, Chitinase 3-like 1, CRP, GDF-15, IL-2, IL-4, IL-6, IL-18, IL-23; IL-27, IL-32, MIF, MIG, Osteopontin | proinflammatory |
IL-1RA, IL-10, ICAM-1, IL-27 | anti-inflammatory |
CXCL5(ENA78), RANTES (CCL5), SDF-1a (CXCL12), C5a, IP10, MCP-1, MCP-3, MIP-1a, MIP-3b, PDGF-AA/AB, TARC | chemotaxis |
Fas-ligand (CD95L) | apoptosis |
BAFF, DKK-1, Endoglin, GDF-15, GM-CSF, IL-11 | differentiation |
Angiogenin, Angiopoietin-1, Angiopoietin-2, Endoglin, IP10, PDGF-AA, Thrombospondin-1 | angiogenesis |
Osteopontin | osteogenesis |
FGF basic, FGF-7, FGF-19, BDNF, Chitinase 3-like 1, EGF, GDF-15, GM-CSF, IL-4, IL-22, | Cell-growth and -proliferation, regeneration |
C5a, Complement-Factor D, CRP | complement reaction |
Serpin E1 | coagulation |
Emmprin, ICAM-1, Thrombospondin-1 | adhesion |
Adiponectin, Relaxin-2, Resistin | hormone |
Complement-Factor D, Cystatin C, DPPIV, MMP-9 | proteaseactivator/-inhibitor |
Apolipoprotein A-1, CD14, Emmprin, RBP4, Vitamin D BP | molecule transport |
CD14, CD30, IL-1RA, CD95L, CD40L, ICAM-1, TfR | soluble receptor |
CD30, CD40L, BAFF, PDGF-AA/AB, ST2, TIM-3 | cell activation |
TFF3 | still unknown |
Parameter | Function |
---|---|
G-CSF, IL-13, IL-31, RAGE, TNF-α | pro inflammatory |
IL-19, IL-33 | anti-inflammatory |
IL-16, I-TAC | chemotaxis |
TNF-a | apoptosis |
FLT3-Ligand, IL12p70, LIF, TGF-α | differentiation |
VEGF | angiogenesis |
FGF-7, FLT3-Ligand, G-CSF, HGF, IL-3, IL-15, TGF-α | Cell-growth and -proliferation, regeneration |
Growth Hormone, Leptin | hormone |
Cripto-1, RAGE | soluble receptor |
HGF, IL12p70, IL-13, IL-16, IL-33, IL-34 | cell activation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Söhling, N.; Ondreka, M.; Kontradowitz, K.; Reichel, T.; Marzi, I.; Henrich, D. Early Immune Response in Foreign Body Reaction Is Implant/Material Specific. Materials 2022, 15, 2195. https://doi.org/10.3390/ma15062195
Söhling N, Ondreka M, Kontradowitz K, Reichel T, Marzi I, Henrich D. Early Immune Response in Foreign Body Reaction Is Implant/Material Specific. Materials. 2022; 15(6):2195. https://doi.org/10.3390/ma15062195
Chicago/Turabian StyleSöhling, Nicolas, Muriel Ondreka, Kerstin Kontradowitz, Tobias Reichel, Ingo Marzi, and Dirk Henrich. 2022. "Early Immune Response in Foreign Body Reaction Is Implant/Material Specific" Materials 15, no. 6: 2195. https://doi.org/10.3390/ma15062195
APA StyleSöhling, N., Ondreka, M., Kontradowitz, K., Reichel, T., Marzi, I., & Henrich, D. (2022). Early Immune Response in Foreign Body Reaction Is Implant/Material Specific. Materials, 15(6), 2195. https://doi.org/10.3390/ma15062195