Impact Abrasive Wear Property of CrAlN/TiSiN Multilayer Coating at Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Deposition Process
2.2. Impact Wear Test with Abrasive Particle
2.3. Microstructural Observation
3. Results and Discussion
3.1. Structure and Composition of CrAlN/TiSiN Coating
3.2. Analysis of Interface Response
3.3. Analysis of Impact Wear Mechanism
4. Conclusions
- The two CrAlN/TiSiN coatings present favorable tolerance to crack propagation during repeated percussion. The dominant impact wear mechanism without sand is plastic deformation, and the whole wear scar is defined as the percussive zone.
- Sand has an obvious abrasion effect on the coating surface, resulting in an increase in the wear rate of the coating with sand by an order of magnitude than that under the no−sand condition. The whole wear scar with sand can be divided into the mixing zone and the sand−affected zone from inside to outside.
- The peak impact force and rebound velocity under the sand condition are lower than under the no−sand condition due to higher energy absorbed for material removal.
- The nanomultilayer coating shows better plasticity index and impact wear resistance than the multilayer coating. In particular, no obvious peeling occurs in the nanomultilayer coating after 104 cycles of percussion under the no−sand condition. Thinning coating and pits may cause the outward diffusion of Fe at evaluated temperatures, leading to the formation of oxides beyond the unbroken coating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Cai, Z.B.; Chen, Z.Q.; Qian, H.; Tang, L.C.; Xie, Y.; Zhu, M.H. Impact fretting wear of Inconel 690 tube with differ-ent supporting structure under cycling low kinetic energy. Wear 2017, 376, 625–633. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Li, Z.-Y.; Yin, M.-G.; Zhu, M.-H.; Zhou, Z.-R. A review of fretting study on nuclear power equipment. Tribol. Int. 2019, 144, 106095. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Guan, H.-D.; Chen, Z.-Q.; Qian, H.; Tang, L.-C.; Zhou, Z.-R.; Zhu, M.-H. Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity. Tribol. Int. 2017, 105, 219–228. [Google Scholar] [CrossRef]
- Chen, F.-J.; Yao, C.; Yang, Z.-G. Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part I: Corrosion and wear. Eng. Fail. Anal. 2014, 37, 29–41. [Google Scholar] [CrossRef]
- Chen, F.-J.; Yao, C.; Yang, Z.-G. Failure analysis on abnormal wall thinning of heat-transfer titanium tubes of condensers in nuclear power plant Part II: Erosion and cavitation corrosion. Eng. Fail. Anal. 2014, 37, 42–52. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, F.-Q.; Xue, Y.; Jiao, C.-S.; Yang, Z.-G. Failure analysis on leaked titanium tubes of seawater heat exchangers in recirculating cooling water system of coastal nuclear power plant. Eng. Fail. Anal. 2019, 101, 172–179. [Google Scholar] [CrossRef]
- Khoddami, A.; Salimi-Majd, D.; Mohammadi, B. Finite element and experimental investigation of multiple solid particle ero-sion on Ti-6Al-4V titanium alloy coated by multilayer wear-resistant coating. Surf. Coat. Technol. 2019, 372, 173–189. [Google Scholar] [CrossRef]
- Bose, K.; Wood, R.; Wheeler, D. High energy solid particle erosion mechanisms of superhard CVD coatings. Wear 2005, 259, 135–144. [Google Scholar] [CrossRef]
- Al-Bukhaiti, M.A.; Al-Hatab, K.A.; Tillmann, W.; Hoffmann, F.; Sprute, T. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Appl. Surf. Sci. 2014, 318, 180–190. [Google Scholar] [CrossRef]
- Colombo-Pulgarín, J.C.; Sánchez Egea, A.J.; Celentano, D.J.; Krahmer, D.M.; Martynenko, V.; López de Lacalle, N. Mechan-ical and Chemical Characterisation of TiN and AlTiSiN Coatings on a LPBF Processed IN718 Substrate. Materials 2021, 14, 4626. [Google Scholar] [CrossRef]
- Wang, H.T.; Xu, Y.X.; Chen, L. Optimization of Cr-Al-N coating by multilayer architecture with TiSiN insertion layer. J. Alloys Compd. 2017, 728, 952–958. [Google Scholar] [CrossRef]
- PalDey, S.; Deevi, S.C. Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng. A 2003, 342, 58–79. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Zhu, X.; Zhang, K.; Ma, F.; Liu, X.; Chen, X.; He, D. Si content dependent microstructure and mechanical properties of CrN/TiSiN nanomultilayered films. Mater. Sci. Eng. A 2014, 610, 28–32. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J.; Liu, F.; Zhong, X.; Xiao, X.; Zhang, T.F.; Wang, Q. Effects of microstructure evolution on the oxidation be-havior and high-temperature tribological properties of AlCrN/TiAlSiN multilayer coatings. Ceram. Int. 2018, 44, 23150–23161. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.; Shang, L.; Cao, X.; Zhang, G.; Yu, Y.; Li, W.; Zhang, S.; Hu, H. Mechanical and high-temperature tribological properties of CrAlN/TiSiN multilayer coating deposited by PVD. Ceram. Int. 2021, 47, 29285–29294. [Google Scholar] [CrossRef]
- Martinschitz, K.; Daniel, R.; Mitterer, C.; Keckes, J. Stress evolution in CrN/Cr coating systems during thermal straining. Thin Solid Films 2008, 516, 1972–1976. [Google Scholar] [CrossRef]
- Kumar, C.S.; Patel, S.K. Performance analysis and comparative assessment of nano-composite TiAlSiN/TiSiN/TiAlN coating in hard turning of AISI 52100 steel. Surf. Coat. Technol. 2018, 335, 265–279. [Google Scholar] [CrossRef]
- Dang, C.; Li, J.; Wang, Y.; Chen, J. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating. Appl. Surf. Sci. 2016, 386, 224–233. [Google Scholar] [CrossRef]
- Zhao, F.; Ge, Y.; Wang, L.; Wang, X. Tribological and mechanical properties of hardness-modulated TiAlSiN multilayer coat-ings fabricated by plasma immersion ion implantation and deposition. Surf. Coat. Tech. 2020, 402, 126475. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Zhang, T.; Wu, Z.; Wang, Q. Tribological properties, oxidation resistance and turning performance of Al-TiN/AlCrSiN multilayer coatings by arc ion plating. Surf. Coat. Tech. 2018, 356, 1–10. [Google Scholar] [CrossRef]
- Miletić, A.; Panjan, P.; Čekada, M.; Kovačević, L.; Terek, P.; Kovač, J.; Dražič, G.; Škorić, B. Nanolayer CrAlN/TiSiN coating designed for tribological applications. Ceram. Int. 2020, 47, 2022–2033. [Google Scholar] [CrossRef]
- Alat, E.; Motta, A.T.; Comstock, R.J.; Partezana, J.M.; Wolfe, D.E. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding. J. Nucl. Mater. 2016, 478, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Drnovšek, A.; Vo, H.T.; de Figueiredo, M.R.; Kolozsvári, S.; Hosemann, P.; Franz, R. High temperature fracture toughness of single-layer CrAlN and CrAlSiN hard coatings. Surf. Coat. Tech. 2021, 409, 126909. [Google Scholar] [CrossRef]
- Yan, H.; Tian, Q.; Gao, D.; Yang, F. Microstructure and properties of TiAlN/AlN multilayers with different modulation periods. Surf. Coat. Tech. 2019, 363, 61–65. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Meng, J.; Zhang, K.; Ma, F.; Liu, X.; Chen, X.; He, D. Microstructure and mechanical property of TiSiN nanocomposite film with inserted CrAlN nanomultilayers. Surf. Coat. Technol. 2016, 286, 313–318. [Google Scholar] [CrossRef]
- Jirout, M.; Musil, J. Effect of addition of Cu into ZrOx film on its properties. Surf. Coat. Technol. 2006, 200, 6792–6800. [Google Scholar] [CrossRef]
- Chen, W.; Yan, A.; Wang, C.; Deng, Y.; Chen, D.; Xiao, H.; Zhang, D.; Meng, X. Microstructures and mechanical properties of AlCrN/TiSiN nanomultilayer coatings consisting of fcc single-phase solid solution. Appl. Surf. Sci. 2020, 509, 145303. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Zong, X.Y.; Wu, Z.Z.; Tian, X.B.; Gong, C.Z.; Yang, X.Q.; Jiang, Z.Q.; Chen, L.J. Effects of modulation ratio on mi-crostructure and properties of TiN/TiAlN multilayer coatings. Surf. Coat. Technol 2013, 229, 191–196. [Google Scholar]
- Chu, X.; Barnett, S.A. Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 1995, 77, 4403–4411. [Google Scholar] [CrossRef]
- Li, G.Y.; Han, Z.H.; Tian, J.W.; Xu, J.H.; Gu, M.Y. Alternating stress field and superhardness effect in TiN/NbN superlattice films. J. Vac. Sci. Technol. A 2002, 20, 674–677. [Google Scholar]
- Zhang, P.; Shan, L.; Tian, Y.; Su, X.; Luo, L.; Chen, J. Structure and tribological behavior of CrAlCN coating in artificial sea-water. Surf. Topogr.-Metrol. 2021, 93, 035028. [Google Scholar] [CrossRef]
- He, D.; Shang, L.; Lu, Z.; Zhang, G.; Wang, L.; Xue, Q. Tailoring the mechanical and tribological properties of B4C/aC coat-ings by controlling the boron carbide content. Surf. Coat. Tech. 2017, 329, 11–18. [Google Scholar] [CrossRef]
- Wu, S.-B.; Cai, Z.-B.; Lin, Y.; Li, Z.-Y.; Zhu, M.-H. Effect of abrasive particle hardness on interface response and impact wear behavior of TC17 titanium alloy. Mater. Res. Express 2018, 6, 016521. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, Z.-B.; Li, Z.-Y.; Yin, M.-G.; Wang, W.-J.; He, W.-F.; Zhou, Z.-R. Study on the abrasive wear behavior of laser shock peening Ti-6Al-4V titanium alloy under controlled cycling impact. Wear 2019, 426–427, 112–121. [Google Scholar] [CrossRef]
- Napiórkowski, J.; Olejniczak, K.; Konat, Ł. Wear Properties of Nitride-Bonded Silicon Carbide under the Action of an Abra-sive Soil Mass. Materials 2021, 14, 2043. [Google Scholar] [CrossRef]
- Budavári, I.; Gyarmati, G.; Varga, L. The Influence of Acid Hardener on the Strength and Hot-Distortion Properties of No-Bake Sand Cores. Int. J. Met. 2021, 295, 1–17. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Chiu, W.-T.; Hung, J.-P. Mechanical properties and high temperature oxidation of CrAlSiN/TiVN hard coatings synthesized by cathodic arc evaporation. Surf. Coat. Technol. 2016, 303, 18–24. [Google Scholar] [CrossRef]
- Li, H.; Ramezani, M.; Li, M.; Ma, C.; Wang, J. Tribological performance of selective laser melted 316L stainless steel. Tribol. Int. 2018, 128, 121–129. [Google Scholar] [CrossRef]
- Rojas, T.C.; Domínguez-Meister, S.; Brizuela, M.; Sanchez-Lopez, J.C. Influence of Al and Y content on the oxidation re-sistance of CrAlYN protective coatings for high temperature applications: New insights about the Y role. J. Alloys Compd. 2019, 773, 1172–1181. [Google Scholar] [CrossRef]
Impact Velocity | Mass Block | Temperature | Cycle | Condition |
---|---|---|---|---|
120 mm/s | 200 g | 500 °C | 104 | No sand |
Sand |
Coatings | Ti | Si | Cr | Al | N |
---|---|---|---|---|---|
CrAlN/TiSiN multilayer | 40.68 | 1.58 | 37.59 | 8.13 | 12.01 |
CrAlN/TiSiN nanomultilayer | 36.01 | 1.22 | 41.56 | 10.58 | 10.64 |
Point | Ti | Si | Cr | Al | N | Fe | O |
---|---|---|---|---|---|---|---|
A | 0.4 | 0.0 | 46.2 | 21.9 | 14.9 | 14.7 | 0.0 |
B | 22.8 | 2.1 | 22.0 | 10.8 | 6.3 | 21.8 | 13.5 |
C | 25.3 | 2.4 | 27.6 | 10.1 | 6.8 | 10.0 | 16.7 |
D | 31.2 | 1.6 | 36.1 | 14.6 | 16.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Dong, Y.; Xiao, C.; Wang, X.; Peng, H. Impact Abrasive Wear Property of CrAlN/TiSiN Multilayer Coating at Elevated Temperatures. Materials 2022, 15, 2214. https://doi.org/10.3390/ma15062214
Luo Y, Dong Y, Xiao C, Wang X, Peng H. Impact Abrasive Wear Property of CrAlN/TiSiN Multilayer Coating at Elevated Temperatures. Materials. 2022; 15(6):2214. https://doi.org/10.3390/ma15062214
Chicago/Turabian StyleLuo, Ying, Yuanyuan Dong, Cong Xiao, Xiaotong Wang, and Hang Peng. 2022. "Impact Abrasive Wear Property of CrAlN/TiSiN Multilayer Coating at Elevated Temperatures" Materials 15, no. 6: 2214. https://doi.org/10.3390/ma15062214
APA StyleLuo, Y., Dong, Y., Xiao, C., Wang, X., & Peng, H. (2022). Impact Abrasive Wear Property of CrAlN/TiSiN Multilayer Coating at Elevated Temperatures. Materials, 15(6), 2214. https://doi.org/10.3390/ma15062214