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Abstract: This study presents an experimental investigation on the low-velocity impact response of
three-dimensional integrated woven spacer sandwich composites made of high-performance glass
fiber reinforced fabric and epoxy resin. 3D integrated woven spacer sandwich composites with five
different specifications were produced using a hand lay-up process and tested under low-velocity
impact with energies of 5 J, 10 J, and 15 J. The results revealed that the core pile’s heights and diverse
impact energies significantly affect the stiffness and energy absorption capacity. There is no significant
influence of face sheet thickness on impact response. Moreover, the damage morphologies of 3D
integrated woven spacer sandwich composites under different impact energies were analyzed by
simple visualization of the specimen. Different damage and failure mechanisms were observed,
including barely visible damage, visible damage, and clearly visible damage. Moreover, it was noticed
that the damage of 3D integrated woven spacer sandwich composites samples only constraints to the
impacted area and does not affect the integrity of the samples.

Keywords: low-velocity impact; glass fiber; epoxy resin; sandwich composites; damage mechanism

1. Introduction

Three-dimensional integrated woven spacer sandwich composites have been broadly
utilized as modern materials for some applications attributable to their unrivaled physical
and mechanical properties. Three-dimensional integrated woven spacer sandwich com-
posites made of glass fiber with “8” shape and “1” shape structures in the core, having
the advantages of being lightweight, energy absorbent, high strength, high stiffness, and
cost-effective over the traditional sandwich structure composite materials. It is known as a
new generation composite material [1]. It has been widely used for structural components
in various areas, such as marine, aerospace, electrical, automotive, ballistic, building indus-
tries, medical areas, agricultural areas, and so on [2]. However, studying these composite
materials’ failure and deformation processes is still necessary to discover the flaws and
ways of improvement [3]. Nevertheless, the experimentation and advancement of compos-
ite materials and processes have become essential and famous since the 1940s [4]. In the
last two decades, a substantial number of works on 3D integrated woven spacer sandwich
composites in various aspects have been performed; some of those works can be found in
references [5–27]. Despite that, a limited number of studies have focused on the impact
response (drop weight impact) of 3D integrated woven spacer sandwich composites.

Li et al. [26,28] investigated the Charpy impact response at room and liquid nitrogen
temperatures with six-core heights samples. Another study showed the static and dynamic
mechanical conduct of 3D integrated woven spacer composites with thickened face sheets.
Three-dimensional integrated woven spacer composites were prepared using the VARIM
(vacuum-assisted resin infusion molding) process with polyester resins for both studies. It
was found that under the Charpy impact test, the sample’s impact properties significantly
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improved at liquid nitrogen temperature compared to the room temperature. With the
increase in core heights, the damage reduced, and the impact energy absorption capacity
increased at liquid nitrogen and room temperatures. Moreover, it was found that under the
static compression and dynamic low-velocity impact load, face sheet thickness significantly
influences mechanical properties, damage, and failure mechanisms. Hosseini et al. [29]
conducted finite element simulations and low-velocity impact tests under three energy
levels with different specimens’ thickness of 3D woven hollow-core sandwich composites.
They found that the perforation load and contact stiffness decreased with the sandwich
panel thickness, whereas the energy absorption capacity increased. In addition, both FE
and experimental results were in good agreement. Hosur et al. [30] presented the manufac-
turing process and the low-velocity impact properties of foam-filled 3-D integrated core
sandwich composite laminates with hybrid face sheets. They provided a comprehensive
review of impact performance applying additional face sheets developed by combining
carbon/epoxy, S2-glass/epoxy, or a hybrid of the two. Impact test results revealed that
additional face sheets remarkably improve the damage resistance and load-bearing capacity.
Dubary et al. [31] investigated the impact response and damage tolerance aptitude of car-
bon and glass fiber reinforced woven-ply thermoplastic laminates at room temperature and
near the glass transition temperature. From their results, it was obtained that temperature
has a notable impact on the internal and external damages but has no significant influence
on impact response with regard to maximum force and deflection. Andrew et al. [32]
presented a critical review of fiber-reinforced polymer matrix composite material’s impact
response concerning key parameters, e.g., geometry, materials, events, and environmental
conditions. They showed that the fiber-reinforced polymer matrix composite materials
parameters are vital aspects that affect the impact response. The desired performance of
composite materials can be obtained by changing parameter aspects. Selecting the right pa-
rameters can better the impact resistance and performance of composites with competitive
price reinforcements [33].

Impact resistance of composite materials is one of the most important and critical
issues [34]. Therefore, in this study, the low-velocity impact (drop weight impact) response
of glass fiber reinforced 3D integrated woven spacer sandwich composites have been
examined experimentally. We aim to compare the impact response of different structured 3D
integrated woven spacer sandwich composites under diverse impact energies. We mainly
investigated structural parameter changes influence and the impact energies changes
influence on drop weight impact performance. Furthermore, the damage morphology and
failure mechanism are demonstrated.

2. Materials and Methods

For this study, composite sample materials used were the same as in previous publica-
tions, more details about sample materials can be found in the given reference [35]. Composite
materials were supplied by Sinoma Science & Technology Co., Ltd. (Nanjing, China). Rein-
forcement materials used high-performance, alkali-free E-glass fiber, manufactured by Jushi
Group Co., Ltd. (Jiaxing, China). Chemical compositions include silicon monoxide (SiO),
dialuminum dioxide (Al2O2), diboron dioxide (B2O2), titanium dioxide (TiO2), magnesium
oxide (MgO), calcium oxide (CaO), ferric oxide (Fe2O3), sodium oxide + potassium oxide
(Na2O + K2O) and fluorine (F). E-glass fiber diameter was 13 mm, and the linear density
was 140 Tex. The weaving process produced the reinforcement fabric. The surface of E-glass
fiber was coated by a silane-based infiltrant, which is ideal for the weaving process. This
three-dimensional fabric structure can be divided into three layers: an upper layer, lower
layer, and Z-directional fibers. As shown in Figure 1, the core piles Z-directional fibers
warp surface exhibits an “8” shape, and the weft surface exhibits an “1” shape.
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Traditional hand lay-up technique used to prepare 3D integrated woven spacer sand-
wich composites. A schematic diagram of the hand lay-up technique with specifications 
is presented in Figure 2. 

 
Figure 2. Schematic diagram of the hand lay-up technique. 

The epoxy resin is used as a matrix material for composite molding. The resin is 
named Huibo New Material 5078, supplied by Huibo New Material Technology Co., Ltd. 
(Shanghai, China). The weight ratio of the resin to the hardener was 4:1, and the weight 
ratio of resin to glass fiber was 1.1:1. The hand-lay-up process produced five different 
specifications of 3D integrated woven spacer sandwich composite boards. Three-dimen-
sional integrated woven spacer reinforcement fabrics and sandwich composite samples 
specifications are given in Table 1 [35]. 

Table 1. Specifications of 3D integrated woven spacer reinforcement fabrics and sandwich compo-
site samples. 

Reinforcement Fabric Specifications A B C D E 
Core height (mm) 3.0 5.0 8.0 10.0 12.0 

Top and bottom face sheet thickness (mm) 0.36 0.36 0.36 0.58 0.58 
Fabric weight (g/m2) 720 810 920 1440 1440 

Composite samples specifications A B C D E 
Total height (mm) 3.40 5.42 8.69 10.60 12.62 
Core height (mm) 2.17 4.19 7.46 9.37 11.39 

Top face sheet thickness (mm) 0.75 0.75 0.75 1.10 1.10 
Bottom face sheet thickness (mm) 0.48 0.48 0.48 0.80 0.80 

Warp piles density/inch 3 3 3 2 2 
Weft piles density/inch 12 12 12 10 10 

Composite weight (g/m2) 1510 1680 1900 2930 3060 

Figure 1. Three-dimensional integrated woven spacer fabric.

Traditional hand lay-up technique used to prepare 3D integrated woven spacer sand-
wich composites. A schematic diagram of the hand lay-up technique with specifications is
presented in Figure 2.
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Figure 2. Schematic diagram of the hand lay-up technique.

The epoxy resin is used as a matrix material for composite molding. The resin is named
Huibo New Material 5078, supplied by Huibo New Material Technology Co., Ltd. (Shanghai,
China). The weight ratio of the resin to the hardener was 4:1, and the weight ratio of resin to
glass fiber was 1.1:1. The hand-lay-up process produced five different specifications of 3D
integrated woven spacer sandwich composite boards. Three-dimensional integrated woven
spacer reinforcement fabrics and sandwich composite samples specifications are given in
Table 1 [35].

Table 1. Specifications of 3D integrated woven spacer reinforcement fabrics and sandwich compos-
ite samples.

Reinforcement Fabric Specifications A B C D E

Core height (mm) 3.0 5.0 8.0 10.0 12.0
Top and bottom face sheet thickness (mm) 0.36 0.36 0.36 0.58 0.58

Fabric weight (g/m2) 720 810 920 1440 1440

Composite samples specifications A B C D E

Total height (mm) 3.40 5.42 8.69 10.60 12.62
Core height (mm) 2.17 4.19 7.46 9.37 11.39

Top face sheet thickness (mm) 0.75 0.75 0.75 1.10 1.10
Bottom face sheet thickness (mm) 0.48 0.48 0.48 0.80 0.80

Warp piles density/inch 3 3 3 2 2
Weft piles density/inch 12 12 12 10 10

Composite weight (g/m2) 1510 1680 1900 2930 3060

Drop weight impact is one of the most common low-velocity impact tests for composite
materials [36]. Drop weight impact tests were conducted following ASTM D7136 [37]. The
specimen’s size was modified to 100 mm × 100 mm based on the impact support fixture and
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clamps. For each group of samples, we prepared 6 specimens, and in total, 30 specimens
for 5 groups of samples. The specimen for the drop weight impact test is shown in Figure 3.
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Figure 3. Drop weight impact test specimen.

Instron Dynatup 9250 impact test device was used for this experiment. This fully
automated impact test device facilitates different impact energy ranges and a high-speed
data acquisition system. 3D integrated woven spacer sandwich composites specimen was
placed on the impact support fixture base and locked with four clamps to prevent moving
during the impact test. The specimen was impacted at the center by a hemispherical striker
tip, and the impact load, impact energy, deflection, and time data were recorded in the data
acquisition system. The hemispherical intender diameter was 12.7 mm with a total weight
of 7.225 kg. Figure 4a,b shows the Instron Dynatup 9250 impact test device and schematic
diagram of clamping system and impactor geometrics.
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Figure 4. (a) Instron Dynatup 9250 impact test device. (b) Schematic diagram of clamping system
and impactor geometrics.

3. Results and Discussion

This study focuses on the low-velocity impact (drop weight impact) response of
three-dimensional integrated woven spacer sandwich composite materials under different
impact energies. In total, five groups of samples with different core pile heights and face
sheet thickness were tested under 5 J, 10 J, and 15 J impact energies. They correspond to
the impact velocities of 1.1765 m/s, 1.6639 m/s, and 2.0378 m/s, which were chosen by
controlling the impactor weight and height. In general, two types of impact damage can
occur during a drop-weight impact test, one is clearly visible impact damage, and another
one is barely visible impact damage [38]. Three different impact energies were chosen to
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test with (3 J) barely visible impact damage, (10 J) visible impact damage, and clearly visible
impact damage. The impact energy can be calculated by the following equation [39]:

Ei =
mv2

i
2

(1)

where, Ei = measured impact energy (J), m = mass of impactor (kg), and vi = impact velocity
(m/s).

3.1. Force Deformation Curves

Force-deformation curves of 3D integrated woven spacer sandwich composites at all
energies are plotted in Figure 5. It can be seen in all the groups of samples; the increment of
impact energies causes the enhancement of maximum deformation. The initial deformation
on composite materials signifies the change in stiffness, and the initial rising state in
the force-deformation curve is termed stiffness [40]. The initial rising phase in the force-
deformation curve relates to the load-bearing capacity of the composite sandwich panel
specimens. The force-deformation curves show that the change in stiffness for each group
of samples is different for diverse impact energy. The force-deformation curves at impact
energy 5 J (Figure 5a) show a change in stiffness for the A group sample at a force level
of 1.1 kN and deformation of 6 mm, for the B group sample at a force level of 1.6 kN and
deformation of 6 mm, for the C group sample at a force level of 1.2 kN and deformation
of 4.8 mm, for the D group sample at a force level of 1.5 kN and deformation of 5.2 mm
and the E group sample at a force level of 1.08 kN and deformation of 5 mm. Although the
top and bottom face sheets of the sample groups A, B, and C are the same with different
core piles heights, like the top and bottom face sheets of the sample groups D and E are
the same with different core piles height, the stiffness changes are clearly expressed under
the same impact energy level. There is a trend to reduce the stiffness of the samples that
can be observed with the increase in core piles height even though the increase in face
sheet thickness.
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Figure 5. Force-deformation curves of five groups of 3D integrated woven spacer sandwich compos-
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Figure 5b,c also show a change in the stiffness and different structural degradation
phenomena for all samples under the impact energies of 10 J and 15 J. The initial force and
deformation of the sample groups A, B, C, D, and E under the impact energy 10 J (Figure 5b)
are at a force level of 1.0 kN, 1.4 kN, 1.23 kN, 1.45 kN, and 1.12 kN and deformation of
5.0 mm, 4.8 mm, 4.9 mm, 6.0 mm, and 5.2 mm, respectively. Two different phenomena
can be observed here when the core piles height is lower (sample group A and B); the
structural degradation occurred earlier even though the force is lower compared to the
force-deformation curves under impact energy 5 J. Moreover, the vice versa incident can be
seen when the samples (sample group C, D, and E) core piles height gradually increase. The
structural degradation takes longer even when the force is higher compared to the force-
deformation curves under impact energy 5 J. In addition, the initial force and deformation of
the sample groups A, B, C, D, and E under the impact energy 15 J (Figure 5c) is at a force level
of 1.2 kN, 1.35 kN, 1.0 kN, 1.29 kN, and 1.3 kN and deformation of 7.0 mm, 5.0 mm, 5.03 mm,
5 mm, and 6.0 mm, respectively. Compare the force-deformation curves under impact
energies 5 J, 10 J, and 15 J; the initial deformation increased with force increase. Moreover,
it was discovered that the stiffness of the same sample changed under different impact
energies. It is obvious from the outcomes that the impact response of 3D integrated woven
spacer sandwich composites is influenced by core piles height. There was no significant
influence of face sheet thickness on the stiffness under different impact energies.

In Figure 5 it can be seen after the initial degradation, the force-deformation curves
fluctuate till the force and deformation reach the maximum. The maximum force and
deformation of all groups of samples under the impact energies 5 J, 10 J, and 15 J can be
seen in Table 2.

Table 2. Maximum force and deformation under the impact energies of 5 J, 10 J, and 15 J.

Sample Group
Impact Energy (5 J) Impact Energy (10 J) Impact Energy (15 J)

Peak Force
(kN)

Max. Deformation
(mm)

Peak Force
(kN)

Max. Deformation
(mm)

Peak Force
(kN)

Max. Deformation
(mm)

A 1.23 9.20 1.24 22.63 1.19 45.37
B 1.61 6.71 1.58 9.97 1.58 33.02
C 1.20 7.40 1.31 12.59 1.00 45.28
D 1.53 6.72 1.42 12.91 1.30 31.70
E 1.10 8.63 1.13 17.14 1.33 30.00
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In Figure 5a, the force-deformation curves of sample groups B and D slightly fluctuate,
and the curves are in close form, which denotes no damage or barely visible damage
on the top and bottom face sheet [41]. The sample may lose its stiffness in this case,
and the impactor bounces back from the top face sheet. Therefore, the curves return
from the maximum force and form a close type curve. In sample groups A, C, and E,
the force-deformation curves fluctuation is more pronounced compared to the sample
groups B and D. Moreover, sample groups A, C, and E show the descending section is
a completely softening curve, which denotes the force value becomes zero at the end of
the softening section. In this case, semi penetration or perforation occurs in the samples,
and barely visible or visible damage occurs in the top and bottom sections. Figure 5a,b
force-deformation curves show a noticeable fluctuation due to the various types of damage
such as matrix cracks, fiber breakage, fiber interfacial debonding, etc. In Figure 5b, the
A group sample shows an open type curve which means the complete penetration or
perforation and clearly visible damage occurred in both the top and bottom sections. The
rest of the four groups (sample group B, C, D, and E) shows the descending section is a
completely softening curve, which denotes semi penetration or perforation takes place in
the samples, and barely visible or visible damage occurred in the top and bottom section,
unlike complete penetration or perforation. Figure 5c force-deformation curves represent an
open type curve for all groups of samples, indicating complete penetration or perforation
and clearly visible damage in both the top and bottom sections [42]. Moreover, from
Table 2, it can be seen that the maximum deformation increased with the increase in impact
energies. From the results, it is clear that under 5 J and 10 J impact energies, all groups of 3D
integrated woven spacer sandwich composites undergo barely visible or visible structural
degradation, and under 15 J impact energy the structural degradation is clearly visible.

3.2. Damage Morphology and Energy Absorption

Figure 6 shows the damage pictures of 3D integrated woven spacer sandwich compos-
ites under impact energies of 5 J, 10 J, and 15 J.

Figure 6 shows the barely visible, visible, and clearly visible damage under the diverse
impact energies, as discussed in Section 3.1. Moreover, it can be seen from all the impact
damaged samples images that the damage of 3D integrated woven spacer sandwich com-
posite samples only constraints to the impacted area and does not affect the integrity of
the samples. This demonstrates that such damage can be easily repairable to sustain the
product’s service life. In Figure 6a under the 5 J impact energy, slight damage can be seen
on the top face sheet of sample groups A, C, and E. There is slight damage also seen in the
bottom face sheet of sample group A, but there is no visible damage on the bottom face
sheet of sample groups C and E; this is due to the increment of core piles heights in sample
groups C and E, which resist the bottom face sheet damage under 5 J impact energy. There
is no damage on the top face sheet of sample group B, but a barely visible small fracture
line can be seen on the bottom face sheet; this may occur due to sample bending during
the impaction. There is a barely visible dent on the top face sheet in sample group D, but
there is no visible damage on the bottom face sheet. In Figure 6b, under the impact energy
of 10 J, visible impact damage can be seen on the top face sheet of all groups of samples.
The bottom face sheet of sample group A cracks and delaminates outwards due to the low
core piles height. The bottom face sheet of sample groups B, C, D, and E, has barely visible
impact damage, either for sample bending during impaction or the densification of the core
piles. In Figure 6c under the impact energy of 15 J, all groups of samples top face sheet
completely perforated and bottom face sheet delaminated outwards. The deformation of
all groups of samples, both top, and bottom face sheets, is clearly visible. It can be observed
that the damage areas increased as the impact energy increased. It can be concluded that
under the 5 J and 10 J impact energies, 3D integrated woven spacer sandwich composites
can resist complete deformation, but under 15 J impact energy, it completely deforms.
Figure 7 shows the energy absorption graph of three-dimensional integrated woven spacer
sandwich composites before wholly structural degradation.
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It can be seen from Figure 7 the energy absorption capacity of 3D integrated woven
spacer sandwich composites gradually increases with the increase in impact energy, except
the sample group A under the impact energy of 15 J. Moreover, it can be observed that the
energy absorption capacity of the same group samples varies with the variation of impact
energies. In Figure 7a,b, in all groups of samples under 5 J and 10 J impact energies, the
energy absorption capacity is very close to impact energy. However, the energy absorp-
tion capacity of sample groups A and C are pretty distinct under the 15 J impact energy
(Figure 7a). Three other groups’ sample energy absorption capacities are not even close to
impact energy. Regardless, all group of samples undergoes maximum deformation under
15 J impact energy. Therefore, the maximum energy absorption limit of three-dimensional
integrated woven spacer sandwich composites is 15 J under the drop weight impact test. In
Figure 7c, the maximum energy absorption capacity is higher in sample group B, indicating
that 3D integrated woven spacer sandwich composites can perform relatively well when
the core piles height is at a certain level. Energy absorption capacity also increases with the
increase in core piles heights. There is no significant influence of face sheet thickness on
impact response.
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4. Conclusions

This study focused on the low-velocity impact response of E-glass reinforced three-
dimensional integrated woven spacer sandwich composites. The individual impact be-
havior of the exact sample specifications under drop weight impact energies of 5 J, 10 J,
and 15 J was investigated. As well, different sample specifications under different impact
energies were investigated. The conducted tests showed that the increment of impact
energies causes the enhancement of maximum deformation. The same sample’s stiffness
parameter changed with variation of impact energies. Moreover, it was observed that the
3D integrated woven spacer sandwich composites stiffness decreased with the increase in
core piles heights. Even the top face sheet thickness increased from 0.75 mm to 1.10 mm and
bottom face sheet thickness increased from 0.48 mm to 0.80 mm with the increase in core
piles heights; the stiffness degradation phenomena were similar. So, there is no significant
influence of face sheet thickness on the initial impact response. In addition, the results
showed that the energy absorption capacity increased with the increase in core piles heights
and a certain level of core piles height 3D integrated woven spacer sandwich composites
can perform relatively well under drop weight impact. Under simple visualization, it was
seen that the damaged area expands with the increase in impact energies. The damage
areas were more intense on low core piles heights samples than on high core piles heights
samples. However, under the 5 J and 10 J impact energies, 3D integrated woven spacer
sandwich composites can resist complete deformation even after different damages such as
matrix cracks, fiber breakage, fiber interfacial debonding, etc. However, under 15 J impact
energy, it completely deforms.
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