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Abstract: Upconverting luminescent nanoparticles (UCNPs) are “new generation fluorophores” with
an evolving landscape of applications in diverse industries, especially life sciences and healthcare.
The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission
bands, and good photostability, enables background-free and multiplexed detection in deep tissues
for enhanced imaging contrast. Their properties such as high color purity, high resistance to photo-
bleaching, less photodamage to biological samples, attractive physical and chemical stability, and
low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and
the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion
(Ln3+) types have been used to control the luminescent properties of nanosystems. By modification
of these properties, the performance of UCNPs can be designed for anticipated end-use applications
such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug
delivery. The application landscape of inorganic nanomaterials in biological environments can be
expanded by bridging the gap between nanoparticles and biomolecules via surface modifications
and appropriate functionalization. This review highlights the synthesis, surface modification, and
biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope
and future perspective on Ln-doped UCNPs in biomedical applications.

Keywords: upconversion nanoparticles; luminescence; lanthanides; biosensors; bioimaging

1. Introduction

Nanotechnology has ushered in a paradigm shift following recent breakthroughs and
recognition as one of the most crucial areas of upcoming technology [1]. In layman’s terms,
it is a method of manipulating at the atomic/molecular level with materials so small that
nothing can be constructed any smaller for its utilization in the design, characterization,
synthesis, and application of materials, structures, and devices. It has applications in a
variety of systems, including physical, chemical, and biological systems with diameters
ranging from atoms to submicrons [2]. Nanoparticles (NPs) have always existed in nature,
mostly in the form of dust and smoke with a diameter ranging from 1 to 100 nanometers [3].
They have a wide range of applications in life sciences from basic biophysical studies to
clinical therapies. NPs have a high specific surface area that confers high binding capability
and distinctive optical features [4]. Usually, when light emission occurs, the wavelength of
emitted light is longer than that of the excitation light, implying that the emitted photon
energy is lower than the absorbed one. However, this phenomenon can be reversed in some
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cases, i.e., the emission wavelength is shorter than that of the incident light. This distinct
nonlinear anti-Stokes phenomenon occurs via a process called as upconversion. Further-
more, when a nanoparticle absorbs energy, a portion of that energy can be converted into a
form of electromagnetic radiation with energies greater than thermal radiation, resulting
in luminescence. Upconverting nanoparticles with luminescent properties, also known
as upconverting luminescent nanoparticles (UCLNPs), have piqued scientific interest as
they have a unique nonlinear optical feature wherein two or more photons are sequentially
absorbed and ultraviolet/visible/near-infrared light is emitted at a wavelength shorter
than the excitation wavelength [5,6]. Figure 1 depicts the synthetic procedures of UCNPs
along with their properties and potential application in biomedical fields.

Figure 1. Synthesis, properties, and applications of UCNPs.

The upconversion luminescence (UCL) mechanism takes place due to interaction
between the low-energy incident photons and the long-lived intermediate state of the lumi-
nescent entity. Excited-state absorption (ESA), photon avalanche (PA), and energy transfer
upconversion (ETU) are the three primary mechanisms of UCL. The material is excited
to a higher energy level via energy transfer, excited-state absorption, and triplet-triplet
annihilation, and subsequently emits a high-energy photon [7]. Upconversion efficiency
can be achieved by co-doping sensitizer ions along with activator ions having a closely
matched intermediate-excited state [8–10]. The doping process involves a rational design
that offers optimal interactions of a network of sensitizer and activator ions. (Figure 2). The
inert shell does not contain the sensitizer or activator ion; hence, the shell layer removes
the energy transfer route from the activator (or sensitizer) to the surface-quenching centers
and reduces the possibility of nonradiative transition translating to increased upconversion
efficiency. The upconversion efficiency of the NPs depends on the distance between the
dopants and this makes the doping concentration, a deciding factor in maximizing the
energy transfer process and consequently the luminescence performance of the NP [11,12].
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Figure 2. Structure of core–shell upconversion nanoparticle.

The properties of UCNPs can be modulated using suitable host–dopants combinations,
core–shell nanostructures, and energy exchange of nanostructures with “alien species”
(such as organic dyes, quantum dots) [13]. These attractive features make UCNPs an
excellent biomaterial for multimodal tumor imaging, drug delivery, cell labeling, sensing,
PDT, and photothermal therapy (PTT) [14–16].

2. Properties and Composition of UCNPs

UCNPs possess several advantages including (i) absence of autofluorescence, resulting
in enhanced signal-to-noise ratio and higher detection sensitivity; (ii) deeper biological
tissue near-infrared (NIR) light penetration, causing less photodamage; and (iii) low-power
NIR-laser-based excitation. The UCNP signal can be quantified because there is a direct
correlation between the number of particles and the signal strength. Furthermore, there is
extensive scope for multiplexing in UCNPs because the emission spectrum of the signal is
very narrow and one can have any number of colors in one image. The additional features
of UCNPs include narrow emission peaks, multiplexing, better chemical and physical
stability, low toxicity, and no photobleaching.

UCNPs consist of inorganic host molecules with a rare earth (RE)-based lanthanide/actinide
dopant incorporated in the host’s lattice. Photon upconversion is reported for a variety of
dopants embedded in suitable host molecules, for example, solids doped with transition
metal ions such as Ti2+, Ni2+, Mo3+, Re4+, or Os4+. Lanthanide-doped (Ln3+) materials
have the highest upconversion efficiencies at room temperature. Luminescence is highly
dependent on the transition of electrons in the 4f subshell. Lanthanides are metal ions
having their 4f energy level filled and the valence electrons are shielded from external
interactions. While all lanthanides (from lanthanum to lutetium) undergo upconversion,
only erbium (III), holmium (III), and thulium (III) can absorb and advance to the speci-
fied levels of the visible and UV ranges because their inner shell electrons are shielded
by the 5s 5p subshells, resulting in a large number of metastable energy states, making
them amenable to upconversion (Figure 3). Even though a single lanthanide ion can in-
duce the upconversion (UC) effect, co-doping is normally preferred to enhance the UC
efficiency, since most lanthanide ions have low absorption cross-sections, resulting in
weak emission [17]. The absorption can be increased by raising the dopant concentration
of lanthanide ions per single nanocrystal. However, high doping concentrations result
in a phenomenon called concentration quenching, which limits the quantity of dopant
used. A high amount can lead to radiation-free deactivation and cross-relaxation processes,
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hence must be kept below 2 mol % to avoid loss of excitation energy. It is necessary
to co-dope sensitizer ions alongside activator ions with a closely matched intermediate-
excited state to achieve high upconversion efficiency. These highly absorbing sensitizer
ions provide efficient nonradiative energy transfer to activator ions and result in improved
absorption [18,19]; Yb3+ ions are the most often utilized sensitizers for Er3+, Tm3+, or Ho3+

doped UCNPs [20]. A few examples of nanoparticles with upconversion luminescence
include NaYF4:Yb:Er [21,22], Y2O3:Yb:Er [23], Gd2O2S:Eu3+ [24,25], NaPrF4:Yb:Tm [26],
and Cs3Lu2Br9:Er3+ [27]. Of these, Ln-doped UCNPs, NaYF4 co-doped with Yb3+/Er3+ or
Yb3+/Tm3+ nanoparticles demonstrated the highest UC efficiency with usage in cellular
and in vivo animal imaging [28].

Figure 3. Components of UCNPs and mechanism of energy transfer in UCNPs.

3. Synthesis of UCNPs

Achieving high luminescent efficiency of UCNPs is a major goal; therefore, synthesiz-
ing UCNPs using appropriate techniques is essential to obtain UCNPs with well-defined
size, shape, content, and phase. UCNPs are reported to be generally synthesized by three
methods: thermal decomposition, co-precipitation, and hydrothermal synthesis.

3.1. Thermal Decomposition Method

Thermal decomposition method is based on the traditional solvent thermal method,
and includes addition of trifluoroacetic acid RE salt and RE halide to the reaction system,
which decomposes at high temperatures. This method is used to produce phase-pure
single-crystalline UCNPs of uniform size within short time duration. Different sizes and
shapes of NaYF4: Yb3+/Tm3+ or YB3+/Er3+ UCNPs can be generated by adjusting reaction
time, reaction temperature, and reagent concentration. When a trifluoroacetate, such as
Na (CF3COO), is dissolved in high-boiling organic solvents such as dimethylformamide
(DMF) and dimethyl sulfoxide (DMSO) with the help of surfactants having polar capping
groups and long hydrocarbon chains, such as oleic acid (OA), and omeylamine (OM), NaF
is formed [29]. A rare-earth-doped metal trifluoroacetate is added to NaF, resulting in
formation of α-NaYF4: Yb3+/Tm3+ or α-NaYF4: Yb3+/Er3+ UCNPs [30]. The thermal de-
composition method comprises four steps that are depicted in Figure 4 [31]. It is essential to
maintain appropriate reaction conditions (high temperature and pressure, capping ligand,
heating and cooling rates, reaction duration, solvent and reagent concentrations) as UCNPs
are sensitive to oxygen impurities and are anhydrous, requiring long reaction time and
higher reaction temperatures for synthesis to yield high-quality monodispersed nanoparti-
cles of desired nanocrystal morphology and size. OA and OM (capping ligands) bind to
the surface of NPs via outward hydrophobic alkyl chains, making it hydrophobic. This
method releases toxic fluorinated and oxyfluorinated carbon species into the environment.
The synthetic particles are usually oil-soluble and have a high toxicity. Surface modification
strategies are used to improve the water solubility, biocompatibility, and reduce the toxicity



Materials 2022, 15, 2374 5 of 23

of UCNPs; their functionalization also expands the scope of their application. Thermal
decomposition is the most common method used for synthesis high-quality UCNPs, in
spite of some limitations pertaining to its industrial application. In most cases, the synthesis
process requires the use of high temperatures, expensive and air-sensitive precursors and
solvents, and is accompanied by the generation of toxic byproducts.

Figure 4. Synthesis of α-NaYF4: Yb3+/Tm3+ or α-NaYF4: Yb3+/Er3+ UCNPs via thermal decomposi-
tion method.

3.2. Co-Precipitation Method

The co-precipitation method is a simple cost-effective operational process, requires
mild temperature conditions, produces fewer harmful byproducts, and provides a bet-
ter solution from an industrial translational perspective, offering more environmentally
friendly reagents containing inorganic RE salts. This approach is used to make ultrasmall
Ln-UCNPs (2–10 nm) with improved crystallinity and luminescence efficiency [32]. Firstly,
the formation of tiny amorphous Ln-UCNPs is controlled by a coordinating ligand at
room temperature. Polyvinylpyrrolidone (PVP) may be used as the surface-coordinating
ligand. The temperature is then increased to induce particle growth, which leads to the
formation of nanocrystals via the Ostwald ripening mechanism [33]. Chen et al. con-
structed a dye-sensitized core–shell NaGdF4: Yb, Er@NaGdF4:Yb, Nd UCNPs to detect
H2S for its application in cell and living body research via the co-precipitation method [34].
Liu et al. proposed a two-step reaction methodology for the solvothermal co-precipitation
method to synthesize ultrasmall core–shell UCNPs, which resulted in a strong lumines-
cence as a prototype for preparing UCNPs with high efficiency [35]. Lei et al. synthesized
NaBiF4:Yb3+/Er3+ under room temperature via a simple hydrothermal method combined
with a succedent calcining process. The substitution of yttrium with bismuth species con-
siderably reduced the reaction conditions while maintaining upconversion luminescence,
making them a potential candidate for lighting and solar cell applications [36].

Yi et al. synthesized α-NaYF4: Yb, Er UCNPs via a homogeneous nucleation process
by injecting a RE-EDTA complex into NaF solution with vigorous stirring. The resulting UC
fluorescent intensity of the UCNP was too low for biological labeling. Hence, an annealing
treatment was given to enhance the UC fluorescent intensity [37]. Annealing of capping
reagents results in carbonization and the hydrophilicity of the NPs is decreased. Hence,
surface modification is required to improve the hydrophilicity of these NPs and to allow
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further increase in the size of NPs. This limits the utility of the co-precipitation method for
the synthesis of RE-doped NaYF4 UCNPs for biological applications.

3.3. Hydrothermal Method

The hydrothermal method is usually carried out in a special closed reactor under
high temperature and high pressure with water or organic solvents, and produces fewer
harmful byproducts. In this method, a chemical reaction occurs when positive ions and
negative ions are exposed to temperatures and pressures above their critical points in
polar liquids, resulting in the formation of UCNPs. Zhang et al. used the hydrothermal
method for the synthesis of Yb3+ and Er3+ co-doped NaYF4 upconversion luminescent
materials and Ag nanoparticles coated with SiO2, which enhances the luminous intensity
and has low cytotoxicity because of the SiO2 coating [38]. Nampi et al. synthesized single-
crystalline, stable, aqueous Yb3+/Er3+doped BaYF5 UCNPs with polyethyleneimine (PEI)
via hydrothermal route. With appropriate surface modifications, these particles could be
adopted for biosensing of disease markers and bioimaging applications [39]. Heer et al.
described a solution-based method for increasing the solubility of lanthanide precursors in
supercritical polar solvents that favors the nanoparticles’ development rate. Surfactants
are also added in the formulation process as growth control agents for nanocrystals [40].
The nucleation and growth stages are separated by the creation of an Ln3+ surfactant
complex. The particle size distribution and morphology may be fine-tuned by adjusting
the surfactant/Ln3+ ratio [29]. After the nanoparticles’ development stage is completed,
the surfactant serves to cap ligands, limiting further aggregation [41]. Yi et al. synthesized
UCNPs using the hydrothermal method and the results show that Ni2+ doping increases
the UCL intensity, resulting in a change in morphology (hexagons to nanorods) with
increasing size [42]. However, the disadvantage of this method is that the resulting UCNPs
usually have a wider particle size distribution, and byproduct remnants can occasionally
attach to the surface of UCNPs, making removal difficult. It should be highlighted that
the hydrothermal preparation method’s future industrialization is still hindered by the
long reaction time, which can range from 12 to 24 h or even longer. Apart from that, high
pressures, large solvent volumes, and poor reproducibility are all major concerns that must
be addressed.

In addition to these synthetic routes, ionothermal, microwave-assisted heating, sol-gel,
microemulsion method, and combustion are reported for the synthesis of Ln-doped UCNPs.
Microwave-assisted heating, for example, is a one-step process that takes much less time
and energy than conventional methods and is regarded as a green method for synthesizing
nanocrystals [43]. The combustion and microemulsion processes are utilized less commonly
due to various intrinsic limitations such as difficulty to control the size and agglomeration,
and poor light performance. Table 1 lists the methods used in the synthesis of UCNPs,
along with their advantages and disadvantages.

Table 1. Methods for synthesis of UCNPs.

Methods Conditions Advantages Disadvantages Examples References

Thermal
decomposition

Higher temperature with
an anhydrous

anaerobic environment

High uniformity and
monodisperse crystals,

high luminous efficiency

Expensive, toxic
byproducts
are formed

NaYF4,
NaYbF4, LiYF4

[44,45]

Co-precipitation
method

Soluble salt solution,
precipitant,

coordinating ligand

Cost-effective with a
simple operation process,
ultrasmall UCNPs can be
formed, usually requiring

post treatment

Lack of particle
size control

NaGdF4, LaF3,
BaY5

[46,47]
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Table 1. Cont.

Methods Conditions Advantages Disadvantages Examples References

Hydrothermal
method

Higher temperature and
pressure conditions

Simple and inexpensive,
good control of

morphology and the size
of crystals can control the

shape and size of
the product

Nanocrystal growth
process cannot

be observed

NaYF4, NaYbF4,
YVO4, BaYF2

[48,49]

Microemulsion
method

Appropriate surfactant to
stabilize a micelle and/or

to control the growth
of nanocrystals

Simple operation process,
narrow size, high stability

In most cases,
calcination or
annealing is

usually required

LaF3, NaYF4 [50]

Combustion method

Explosive reaction by
heating, the reaction

temperature is generally
500–3000 ◦C

Faster reaction time and
less utilization of energy;

controllable
product quantity

Poor product purity
and luminescence

Ba5(PO4)3OH:
Er3+/Yb3+

Na3Y(PO4)2:
Er3+/Yb3+

[51]

Sol-gel processing
method

High luminescence
intensity due to high
crystallinity at high

annealing temperature

Inexpensive precursors;
small product size and

simple procedures

Broad particle size
and unsuitable

for bioapplication
GdVO4 [52]

4. Surface Modification of UCNPs

Using a combination of energy migration and core–shell structural engineering to
improve properties for a wide range of activators would widen the range of applications
for lanthanide-doped nanoparticles [53–55]. Surface modification is required for specific
nanomaterials to fulfil various biological activities, in biosciences such as disease ther-
apy (particularly cancer) [56,57], detection [58], and immunoassay [59]. Understanding
surface functionalization of Ln-doped UCNPs is critical for improving UC efficiency and
aqueous solubility [60]. UCNPs are typically hydrophobic; hence, creating water-soluble
Ln-doped UCNPs is critical for biological applications. Hydrophilic ligands coat the sur-
face of UCNPs and can be dispersed in nonpolar organic solvents such as hexane and
heptane. They lack functional groups for conjugation with biomolecules, such as car-
boxyl or amino groups. On the other hand, UCNPs capped with hydrophobic surfactants
are not biocompatible and cannot be used immediately as they do not disperse in wa-
ter. The surface characteristics of UCNPs determine their biocompatibility in in vitro and
in vivo [61]. As a result, surface modification with an inorganic shell layer and an organic
capping ligand is favored to overcome these difficulties. The surface of the NP can be
coated by selection of an appropriate polymer or surfactant such as polyethyleneglycol
(PEG), polyethylenimine (PEI), polyvinylalcohol (PVA), carboxydextran, or oleic acid (OA).
Ligand removal, ligand oxidation, layer-by-layer deposition, acid treatment, and ligand
exchange are some of the methods used to alter the surface properties of UCNPs, con-
ferring high hydrophilic attributes [62,63]. Several surface modifications and depicted in
Figure 5. Kostiv et al. synthesized uniformly sized NaYF4:Yb3+/Tm3+@NaYF4-PEG-Alk
nanoparticles and bioconjugated it with a click reaction of pAbF-azide or SA azide for its
bioanalytical applications, such as immunoassays [64]. Wang et al. [65] used a robust ligand
exchange technique to develop a novel method for converting hydrophobic inorganic
UCNPs to hydrophilic UCNPs. They were synthesized using the hydrothermal method
and converted into carboxyl-modified UCNPs by replacing the original capping OA ligands
on the surface of nanocrystals with PAA in a diethylene glycol (DEG) solvent at a high
reaction temperature, rendering water-soluble nanocrystals.
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Figure 5. Surface modification of UCNPs for modulating its properties.

5. Applications of UCNPs

UCNPs are reported to be used across a diverse spectrum of biological applications
such as bioimaging, therapeutics, drug delivery, and biosensing. Discussion of these
applications is elaborated in this section.

5.1. UCNPs in Bioimaging

Life science and nanomedicine have advanced at an incredible rate to improve life qual-
ity, which has encouraged significant research in the fields of bioimaging and technology.
Bioimaging is a noninvasive technique for visualizing biological processes, allowing obser-
vation of subcellular structures, cells, tissues, and even complete multicellular creatures.
UCNPs have versatility in generating nanoplatforms that have imaging and therapeutic
modalities [66,67]. In addition, they have potential biomedical applications in early-stage
diagnosis and monitoring therapy intervention, and have emerged as a novel carrier for
small animal imaging, including tumor-targeted imaging, lymphatic imaging, and vascular
imaging [68]. As UCNPs use a two-photon absorption mechanism, their energy emission
and upconversion efficiency are higher when compared to other traditional technologies
involving organic dyes and quantum dots. Hence, they have demonstrated promising
results in optical-imaging-guided drug delivery and have become exclusive candidates in
the field of bioimaging (in vivo and in vitro imaging of animal tissues) due to their unique
photophysical properties such as lack of autofluorescence and deep-tissue-reaching result-
ing from luminescence after NIR excitation, resistance to photobleaching, and blinking [69].
In vitro cellular imaging involves targeting Ln-doped UCNPs to a subcellular component
such as a membrane protein. The enhanced cellular uptake efficiency of positively charged
UCNPs results in brighter in vitro cellular imaging. UCNPs can be employed to improve
image contrast and sensitivity of in vivo imaging [70,71]. However, more research and
testing are needed to fully comprehend the effect of nanoparticle size on optical proper-
ties to help optimize them for in vitro luminescence imaging [72–74]. Various imaging
modalities used in pre-clinical studies and imaging science are depicted in Figure 6. Of
these imaging modalities, PET/MRI shows the greatest clinical potential because MRI uses
protons present in the soft tissue in the human body contrast paired with PET sensitivity.
MRI produces better in vivo images together with good deep-tissue contrast and spatial
resolution because tissue penetration is limited to a few mm [75].
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Figure 6. Development of UCNPs in imaging modalities.

Tian et al. synthesized a novel Nd3+-sensitized Er@Y@Nd@Gd core@multishell UCNP
with carboxy-terminated silica and UEA-I. This UCNP@SiO2-UEA-I has high SW480 tumor-
targeting potential. The ultrasmall SW480 tumor in the Balb/c nude mouse is observed
using in vivo UCL imaging with UCNP@ SiO2-UEA-I. The findings suggest that the red
UCL-emitted UCNP@SiO2-COOH bioconjugates with a minimized heating effect have
much potential for sensitive deep-tissue biomedical imaging; synthesized UCNP@SiO2-
UEA-I can serve as an efficient optical probe for early diagnosis of SW480 tumors [76]. A
multifunctional nanocluster bomb (UCGM nanoparticles), CeOx, graphite-C3N4 (g-C3N4)
NPs, and metformin (Met) were developed to alleviate hypoxia by oxidizing H2O2 to O2.
In vivo UCL was used to monitor the distribution of UCGM NPs after they were injected
into HepG2 tumor-bearing mice. Meanwhile, g-C3N4 NPs were released from UCGM NPs
and, due to their tiny size, they penetrate tumor tissue deeply. Before the IV injection of
UCGM NPs, there was no in vivo reinforcement in CT in the tumor, but after the injection,
there was a significant CT signal in the tumor. UCGM NPs can serve as multifunctional
theranostic agent for use in PTT/PDT-based therapy guided by UCL/CT/MRI trimodel
imaging in vivo because of their great capacity to combat tumor hypoxia [77].

NaYF4 is conventionally the most notable system that has been employed in cellular
and in vivo imaging. Hence, small-animal imaging and deep-tissue imaging are performed
using NaYF4 UCNPs doped with Er3+ or Tm3+ that emit 800 nm NIR light, and have a
better contrast that can be further improved by separating the long-lived luminescence from
scattered light by tissue components using time-gated measurements [78]. In addition, there
is significant use of UCNPs for super-resolution imaging based on stimulated emission
depletion microscopy (STED), as reported by the Kolesov et al. [79]. The development of
UCNP probes has promoted the translation of UCNPs application in cellular imaging. It
is believed that UCNPs comprising both opportunities and limitations will attract great
concern as probes for super-resolution microscopy [80]. Table 2 summarizes recent studies
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on the development of UCNPs for bioimaging, together with their composition/modifier
and the synthesis route used to create UCNPs.

Table 2. Composition and synthesis of UCNPs for bioimaging application.

Composition/Modifier Results Route of Synthesis References

β-NaY/GdF4: Yb, Er, Tm (UCNP) Targets the lymphatic node, used for MR and
CT imaging Thermal decomposition [81]

NaYF4:Yb3+, Er3+

/DEVD peptide

In vitro and in vivo fluorescence results
demonstrated the potency of tumor cell killing
and significant suppression of tumor growth

without any detectable side effects

Hydrothermal method [82]

NaYF4:5%Nd@NaGdF4/DSPE-
PEG2000

Strongest photoluminescence among the
resultant NCs for NIR-II fluorescence imaging,
and possess strong paramagnetism and X-ray

attenuation for MRI and CT imaging

Liquid–solid-solution [83]

NaLuF4:Gd3+/Yb3+/Tm3+/Oleic acid Used for fluorescence imaging/MRI Solvothermal method [84]

NaYbF4:Tm3+/PEG

CT and strong NIR-fluorescent imaging that
demonstrates both high in vitro and in vivo
performances in the dual-bioimaging; very

low cytotoxicity

User-friendly method [85] [86]

NaYF4: Yb, Er@NaYF4: Yb, Nd UCNPs
/Folate–chitosan

Effective UCL/CT imaging and combined
chemotherapy and photothermal therapy - [87]

5.2. UCNPs in Biosensing

Many optically based biosensing methods have great potential for monitoring biomed-
ical substances at clinically relevant levels; however, many of these methods encounter
the problem of serum or whole blood autofluorescence and upconversion materials help
resolve this issue. UCNPs exhibit minimal autofluorescence and deep tissue penetration,
allowing them to be used in biological and environmental monitoring, detection, and sens-
ing. Once UCNPs are synthesized, they can be easily functionalized and utilized as sensing
nanoprobes to detect circulating cancer biomarkers. The capabilities of Ln-doped UCNPs
in various biological sensing/detection depend on resonance energy transfer (RET) [88].
Fluorescence resonance energy transfer (FRET) is a nonradioactive process that describes
the transfer of energy from a donor fluorophore to an acceptor fluorophore via a nonra-
diative dipole−dipole coupling [89,90] (Figure 7). These FRET systems were created by
combining UCNP’s as an energy donor and organic dyes or QDs that act as an energy
acceptor [91]. FRET typically offers greater freedom for upconverted emission wavelengths
than the one which is formed solely by the Ln3+ ions. The FRET systems, which were
developed using upconversion nanoparticles and gold nanoparticles for the detection sys-
tem, have significant implications for biosensing and are frequently used in UCNP-based
homogeneous tests. Zhen et al. proposed the use of UCNPs with confined emitters and
bared surfaces as the luminophore and Ca2+ as a proof-of-concept target to develop a LRET-
based nanoprobe. By simply altering the Ca2+ receptor into different recognition units,
such as peptides, aptamers, and small-molecule ligands, this technique can be adapted
to build numerous UC nanoprobes [92]. Their theory proposed the sandwich structure
upconversion nanoparticles (SWUCNPs) with a core–inner-shell–outer-shell architecture,
wherein the emitting ions (Ln3+) are precisely placed in the inner shell near the particle
surface, close to external energy acceptors.

Several research groups have reported the usage of Ln doped-UCNPs in FRET-based
detection [93]. Nd3+-UCNPs sensor is an excellent emitter that has low autofluorescence and
a high penetration depth to biological samples. The oleic ligands from the core@shell UC-
NPs were readily removed by acid treatment, resulting in water-dispersible Nd3+-UCNPs.
An ultrasensitive and selective approach for detecting miRNA with surface functionalized
Au NPs-thiolated single-stranded DNA was proposed based on the chiroplasmonic and
upconversion luminescence features of Au-UCNP pyramids as intracellular nanoprobes.
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The results indicate that an ultrasensitive and efficient chiral nanostructure-based detection
approach can be used to identify biological systems [94]. Another intriguing aspect of
UCNPs is their luminescence intensity, which is substantially temperature dependent.
The nanoparticle-based thermometer provides a variety of alternatives for measuring the
two-dimensional distribution of temperature and is important for understanding sub-
cellular processes [95]. Lin et al. created a model of a multilayer nanocomposite struc-
ture NaYbF4:2%Er@NaYF4@MSN@Au@SiO2@Ag2S to depict the temperature distribution
among nanoparticles. They concluded that these temperature-sensitive luminous probes,
which are nanoscale in size, can be useful tools for high-resolution thermal sensing in micro
areas [96]. Wolfbeis et al. studied temperature sensing with UCNPs of various sizes and RE
dopants and found that the core–shell structured hexagonal (NaYF4:Yb20%Er2%)/NaYF4
UCNPs are better suited for temperature sensing because they can resolve temperature
differences of less than 0.5 ◦C in the physiological range between 20 and 45 ◦C [97]. Addi-
tionally, Li et al. developed a new type of fluorescence temperature fiber optic sensor that
uses NaYF4:Er3+, Yb3+ nanocrystals as the sensing unit. Results suggest that such UCNPs
are highly stable and reliable, and prove the rationality of fluorescence fiber optic sensor’s
design and its feasibility [98]. As a result, UCNPs are a great alternative for the design of
temperature sensors, which account for the majority of the sensor market worldwide. It
will promote the development of temperature sensors in industrial detection and other
areas. Table 3 presents a summary of recent research on the development of UCNPs as
attractive nanocarriers in biosensing applications.

Figure 7. Mechanism of FRET resulting in fluorescence.

Table 3. UCNPs used in biosensing.

Mechanism Biomarker Probes Limit of
Detection (LOD) Applications Reference

Fluorescence CaF2:RE3+@MSN+
Fe3O4

Oligonucleotide 100 nM
Multiple breast
cancer-related

miRNA biomarkers.
[99]

Fluorescence Dipicolinic acid
(DPA) UCNPs−TPP/EBT 0.9 µM Analysis of DPA in

human serum. [100]

Luminescence
resonance

energy transfer
Fe3+

NaYF4:Yb,Er,Tm@NaGdF4/
Nile red derivative
(NRD) fluorescent

106.2 nM

Development of
mPEG-UCNPs-NRD

nanostructure used for
detecting the

intracellular Fe3+.

[101]
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Table 3. Cont.

Mechanism Biomarker Probes Limit of
Detection (LOD) Applications Reference

Fluorescence
resonance

energy transfer
Microrna-122 NaGdF4@NaGdF4:

Yb,Er@DNA 10−13 M

Sandwich-hybridization
observed between
miR-122 and the
designed DNAs.

[102]

Photoelectrochemical
(PEC) aptasensing

Carcinoembryonic
antigen

NaYF4:Yb, Tm@TiO2
upconversion microrods 3.6 pg/mL

NIR light-mediated PEC
aptasensing system

exhibiting a PEC
response towards target
CEA and its detection.

[103]

Fluorescence Cyt c aptamer NaYF4:Yb,Er@
NaGdF4@PDA@AP 20 nM

Intracellular Cyt c
evaluation using

UCNP@PDA@AP.
[104]

Luminescence
resonance

energy transfer

Carbohydrate
antigen125 (CA125)

Polyacrylic acid
(PAA)-coated UCNPs 9.0 × 10−3 U/mL−1

CA125 quantification in
human serum,
construction of

point-of-care testing
(POCT) devices.

[105]

Fluorescence Prostate-specific
antigen (PSA) Anti-PSA antibodies 0.01 ng/mL

Biochip sensor for early
diagnosis of

cancer markers.
[106]

5.3. UCNPs in Drug Delivery

The ability of nanocarriers to encapsulate poorly soluble drugs and minimize drug
side effects is a significant advantage over traditional drug delivery systems. Nanocarriers
are amenable for functionalization with imaging moieties and targeting ligands, further
incrementing their functionality. UCNP-based drug delivery systems are reported to
enhance the efficacy of a wide range of drug payloads and improve the solubility, stability,
biodistribution, and pharmacokinetics of drugs [107,108]. Ln-doped UCNPs facilitate cell
endocytosis and have good therapeutic effect due to their tiny particle size [109]. These
nanoparticles subsequently release the drug and deliver them into tumor cells within a
specified time limit. They improve the efficacy of the controlled drug release while reducing
cell death, adverse effects, and tissue damage. UCNP-based nanocomposites are used
as drug delivery systems and drug monitoring devices to address the needs of disease
diagnostics and therapeutics.

Photoinduced reactions such as photocleavage and photoisomerization are used in
drug delivery systems. UCNPs, by virtue of their ability to emit UV light on excitation with
NIR light, serve as attractive materials for photoinduced drug delivery. Photocleavage and
photoisomerization of light-sensitive molecules can be induced by Yb3+ and Er3+ co-doped
UCNPs and they can emit UV light under 980 nm NIR excitation, which is primarily
used as probes for in vitro and in vivo bioimaging. UCNPs can enhance the efficiency
of drug delivery when used to induce photocleavable reactions in presence of NIR light.
Combination of the high penetration depth of NIR light and low energy requirement of
UCNPs makes them compatible for use with economical CW lasers instead of high-energy
pulsed lasers [110].

Wang et al. [111] prepared oleic-acid-capped β-NaGdF4: Yb3+, Er 3+ @β-NaGdF4
UCNP UCNPs coated with NIR light-absorbing polymer polydopamine (PDA) using a
water-in-oil microemulsion method, to obtain monodisperse, stable, noncytotoxic core–
shell-structured nanospheres UCNP@PDA core–shell nanocomposites. These hydrophobic
NPs were subsequently modified with amino-terminated polyethylene glycol (mPEG-
NH2) to improve the stability of UCNP@PDA in physiological conditions. The PDA
shell exhibited a strong photothermal effect and provided an active surface for loading
doxorubicin (DOX) via π–π stacking and hydrogen-bonding interactions. Owing to the
high UCL emission, T1 relaxivity value, and CT contrast enhancement of UCNP cores,
trimodal imaging (UCL/MRI/CT) of a mouse-bearing colorectal (SW620) tumor was
achieved by PEGylated UCNP@PDA with a 5 nm thickness PDA shell (UCNP@PDA
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5 -PEG). DOX-loaded UCNP@PDA 5 -PEG (UCNP@PDA 5 -PEG-DOX) demonstrated
excellent synergistic efficacy in in vitro cell culture and in vivo animal experiments. Their
results suggested that drug-loaded UCNP@PDA core–shell nanocomposite can be used
as an efficient nanoplatform for biomedical applications, including chemo photothermal
therapy and multimodality imaging. The UCNP@PDA 5 -PEG-DOX, in combination with
808 nm NIR-laser irradiation, exhibited a synergistic interaction between PTT and the
enhanced chemotherapy, resulting in complete eradication of tumor without regrowth.
The leakage study, hemolysis assay, histology analysis, and blood biochemistry assay
revealed that these nanocomposites had negligible organ toxicity. These results indicate
that UCNP@PDA 5 -PEG can be applied as efficient multimodality contrast agents for UCL,
MR, and CT imaging. The advantages of this strategy include its simplicity as the dopamine
monomers can be directly polymerized on the UCNP surface via water-in-oil microemulsion
technique, and the thicknesses of PDA shell can be controlled by variation in the number
of dopamine monomers used in the reaction mixture; its amenability to functionalization
by reaction with thiol and amino-terminated molecules via Michael addition or Schiff base
reaction; its utility as an efficient nanoprobe for UCL/MRI/CT multimodality imaging and
the application of the PDA shell as a drug carrier with high photothermal conversion agent
resulting in chemophotothermal synergistic killing of tumors.

Liu et al. [112] developed a unique nanolongan delivery system that utilized a com-
bination of ferroptosis−apoptosis (co-deliver an iron element and a chemotherapeutic
drug) for improved anticancer efficacy of DOX. This comprised one core (UCNP) in one
gel particle (Fe3+ cross-linked oxidized starch) with several on-demand conversions. The
charge conversion of nanolongan surface sourced from 2,3-dimethyl maleic anhydride
(DMMA) decoration conferred long circulation for utilizing the EPR effect and enabled
more efficient uptake by tumor cells accompanied with subsequent lysosome escape. The
core UCNP with the light conversion from NIR to UV circumvented the impediment of
limited penetration depth and enabled the reduction of Fe3+ to Fe2+ (Figure 8).

Figure 8. UCNP and DOX were loaded into gel nanoparticles and modified with PEI and DMMA to con-
struct a nanolongan schematic with multiple transformations and corresponding anticancer mechanisms.
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The nanolongan gel network developed could be deconstructed owing to this valence
conversion, leading to the rapid release of Fe2+ and DOX. Cytotoxicity studies of the
formulations developed (DGU: Fe; DGU: Fe + L; Dox; DGU: Fe/Dox and DGU: Fe/Dox + L)
using the CCK8 assay on 4T1 and MCF7 cell lines indicated a dose-dependent response
with DGU: Fe/Dox+ L formulation being the most cytotoxic, emphasizing the merits of
co-operation of ferroptosis and apoptosis in the nanolongan formulations. Biodistribution
studies in the 4T1-xenografted mouse model demonstrated that DMMA decoration resulted
in prolongation of circulation time and increased tumor cell uptake via tumor-targeted
delivery. In vivo efficacy studies in 4T1-xenograft mice indicated that DGU: Fe/Dox + L
treatment showed enhanced therapeutic effect and complete tumor elimination at a higher
dose, resulting in a 100% survival rate at 55 days along with a significant antimetastasis
effect. Safety studies indicated that the DGU: Fe/Dox + L group showed lower toxicity
than DOX due to targeted delivery to tumor. Their work demonstrated superior anticancer
efficacy for this combination and can be extended to other anticancer agents for improved
therapeutic efficacy. Table 4 presents a summary of recent research on the development of
UCNPs as attractive nanocarriers in drug delivery.

Table 4. UCNPs in drug delivery.

Material
Composition

Payload Drug in
UCNPs

UCL Excitation
(nm)

Therapeutic
Efficacy/Drug

Loading Efficiency
Release Profile Results References

UCNPs@PDL
PDL-poly-D-lysine DOX 980 nm - -

Nanotheranostic agent
developed to achieve

highly localized
therapy with great
therapeutic efficacy

against
malignant tumors

[113]

NaYF4:Yb3+, Tm3+ DOX 980 nm -
Increase in DOX

release by activation
of NIR light

Development of NIR
light-triggered drug

release of encapsulated
DOX molecules by

using UCNP/polymer
nanomaterials in

diblock copolymer
self-assembly

[114]

UCNPs@MIL-PEG DOX 980 nm Therapeutic
efficacy-60%

Less than 20% at
pH = 7.4

UCNPs@MIL-100–
60% after 30 h at

pH 7.4 and 80% after
50 h;

UCNPs@MIL-PEG
reaches less than 20%

at pH 7.4

Application of
multifunctional

UCNPs@MIL-PEG
nanoparticles for

UCL/MR dual-mode
imaging and

pH-responsive
anticancer

drug delivery

[115]

NaYF4: Tm3+, Yb3+ Nile Red 980 nm - -

Synthesized hybrid
nanoparticles release

the Nile red in response
to a NIR-triggered drug

release stimulus

[116]

NaYF4:
Yb,Er/PAA/PEI

nanoparticles
MDR1-siRNA 980 nm Drug loading

rate: 34.1%

50% MDR1-siRNA
released from

UCNP/PAA/PEI/
MDR1-siRNA

complex

UCNP nano
complex—effective in

gene silencing in
paclitaxel-resistant

ovarian cancer cells and
resensitizes them to
paclitaxel treatment

[117]
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Table 4. Cont.

Material
Composition

Payload Drug in
UCNPs

UCL Excitation
(nm)

Therapeutic
Efficacy/Drug

Loading Efficiency
Release Profile Results References

UCNPs@SiO2@
PNBAM/MAA DOX 980 nm Drug loading

rate: 7.23 wt%

Release rate
constants and the

correlation
coefficients

4.15 × 10−6 and 0.98
(pH 7.4 and visible
light), 2.64 × 10−5

and 0.99 (NIR light),
3.26 × 10−5 and 0.97
(pH 4.5 and visible
light), 2.59 × 10−4

and 0.99 (pH 4.5 and
NIR light),

respectively

NIR irradiation and
acidic conditions are

beneficial to drug
release; this controlled
release feature makes
the nanocomposite a

promising carrier
of drugs

[118]

NaYF4:Er/Yb@
NaGdF4 ePEG DOX 980 nm - -

Nuclear-targeted
UCNPs-based

theranostic systems
combined with

MR/optical imaging for
cell nuclei and direct
nuclear drug delivery

functionalities to
deliver drugs into the

cell nuclei
more efficiently

[119]

NaYF4:Yb/Tm/Er hydrophobic AB3 980 nm Loading efficiency:
16.7 wt%

Released without the
980 nm laser

(<14 wt%) after 16 h.
With a 10 min

irradiation of 980 nm
laser—nearly 75 wt%

of drugs released
after 16 h

A superior
chemotherapy efficacy,
whereas in vivo studies

demonstrated that
AB3-loaded

UCNP-based micelles
capable of targeted

combination
chemotherapy and

PDT—provides a better
antitumor efficacy

compared to
chemotherapy or PDT

alone, without any
apparent

systemic toxicity

[120]

5.4. UCNPs in Photodynamic Therapy (PDT)-Based Drug Delivery

PDT employs photodynamic effects to diagnose and treat several diseases including
prostate cancer [121,122] and offers the advantage of low invasiveness and toxicity [123].
It involves three components, which include photosensitizer (PS) molecules, light source,
and oxygen within the tissue at the disease site [124]. The principle of PDT showing the
activation of the photosensitizer due to the excitation with light and the energy transfer
to molecular oxygen is depicted in Figure 9. A light source is required for functioning
in addition to the photosensitizers. Any light source with the appropriate wavelength
and intensity can be utilized. Reactive oxygen species (ROS) created during PDT can
eliminate tumors in a variety of ways, including directly triggering tumor cell necrosis
and/or apoptosis, ultimately leading to cellular toxicity [125].

One of the most significant benefits of PDT is to treat the lesion area selectively under
light irradiation while leaving normal tissues unaffected [126]. The engagement of UCNPs
in PDT is clinically significant because it offers a novel way to treat deep-tissue tumors. It is
based on the fact that UCNPs can efficiently convert deeply penetrating NIR light to visible
wavelengths, which can activate photosensitizers, resulting in the production of cytotoxic
1O2. The PDT effect of the UCNP-based delivery system is evaluated by combining
oleic acid-coated UCNPs with angiopep-2/cholesterol-conjugated poly (ethylene glycol)
and hydrophobic photosensitizers [127]. The results showed that ANG-IMNPs could
deliver dual photosensitizers to brain astrocytoma tumors selectively, resulting in successful
PDT/PTT conjugation and a significantly enhanced median survival. The therapeutic
efficacy of ANG-IMNPs demonstrated in this study implies that they can overcome the
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blood–brain barrier (BBB) and develop a glioblastoma multiforme (GBM) treatment. PDT
research is undertaken to expand the platform of photosensitizers. It has the advantage
of being able to provide the drug directly to the patient because cancer cells, due to their
increased metabolism and absorption, only congregate in large numbers in tumors, causing
no harm to healthy cells.

Figure 9. Type I and Type II reactions in PDT (photodynamic therapy).

6. Pharmacokinetics (PK) of UCNPs

The absorption, distribution, metabolism, elimination, and toxicity (ADMET) together
describe a drug’s overall disposition via pharmacokinetics, or what the body does to a drug,
which plays a major role in drug development. The pharmacokinetic profile of UCNPs is
an area with very few studies reported in comparison to the development of UCNPs for
diverse biomedical applications. This is vital for assessing the feasibility of their translation
to the clinic for therapeutic and diagnostic applications. Few toxicity studies of UCNPs
developed as drug carriers and contrast agents are reported in mice with a vast number of
UCNPs in vitro toxicity studies reported on different cell lines [128]. Most of the in vivo
toxicity studies utilized the intravenous route of administration, although one study by
Ortgies et al. reported toxicity studies of UCNPs developed for multiplexed imaging and
drug delivery via the oral route of administration, which is the most common route for
drug delivery.

Sun et al. [128] developed 50 nm-sized silica-coated NaYF4: Yb, Er NPs (NaYF4:Yb,
Er@SiO2) and evaluated their bioavailability, biodistribution, and toxicity in mice via
the oral and intravenous routes by using TEM and ICP–MS. Their results demonstrated
that the biodistribution was a function of the route of administration, the UCNPs post-
oral administration were absorbed in the intestine via Peyer’s patches as confirmed by
TEM studies and the UCNPs via intravenous route were observed to be trapped in the
hepatocytes. NaYF4: Yb, Er@SiO2 nanoparticles were found to accumulate in the bone,
stomach, and intestine on oral administration, and in the liver and spleen on intravenous
dosing. They did not report any significant toxicity of NaYF4: Yb, Er@SiO2 post 14 days
oral dosing at 100 mg/kg.
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Li et al. [129] investigated the long-term in vivo distribution and toxicity of polyacrylic
acid-coated NaYF4 upconversion nanophosphors (PAA-UCNPs) as NIR- to-NIR lumines-
cence probes. The results of in vitro cytotoxicity studies showed that PAA-UCNPs had no
significant effects on the proliferation of KB cells with retention of high cellular viability of
more than 80% after 48 h incubation with PAA-UCNPs (480 mg/mL). Biodistribution stud-
ies illustrated that a high amount of PAA-UCNPs was found in the liver and spleen with a
slow renal clearance. The results of in vivo toxicity studies in mice demonstrated that the
mice survived for 115 days without any evident (observational, histological, hematological,
and biochemical) toxic effects post intravenous dosing of 15 mg/kg of PAA-UCNPs. Their
studies provide encouraging evidence in terms of safety and biodistribution for translating
the use of PAA-UCNPs for long-term in vivo imaging to the clinic.

7. Outlook and Perspectives

Upconversion nanoparticles represent a unique class of lanthanide-doped nanomate-
rials capable of converting near-infrared excitation into visible and ultraviolet emission.
Their unique optical properties have expanded the landscape of their applications, ranging
from drug delivery to bioimaging and biosensing. In this review, we presented current
strategies used in the efficient synthesis of UCNPs and recent developments in their utility
in biomedical applications. The intrinsic advantages of UCNPs, such as no background
autofluorescence, minimal background tissue damage, and long penetration depth in
biological tissues, are anticipated to keep UCNPs at the forefront of biological imaging
and therapeutics. Their unique optical properties make them amenable to appropriate
functionalization and they can be designed for effective delivery and release of drug pay-
loads in response to a specific stimulus. Several NIR-responsive drug delivery systems
based on UCNPs are reported in the literature, which appear to be promising additions in
detection, bioimaging, drug delivery, and PDT, especially in cancer therapeutics. Some ra-
diology departments have started using these modalities as the next-generation technology.
There is scope for improving the efficiency of upconversion to promote wider utilization
under in vivo settings and the development of surface treatment techniques for targeted
drug delivery.

Furthermore, the toxicity of these nanoparticles has lately been thoroughly addressed
and the results of these investigations indicate that UCNPs show reduced toxicity in both
in vitro and in vivo studies. Although various UCNP-based theranostic nanoplatforms
have showcased immense potential, very few have entered into the clinical stage. Limited
information on the long-term in vivo biological effects is one of the major barriers to the
clinical translation of UCNPs. Given the complexity of many UCNP carrier systems,
the question of the stability of these structures in the human biological environment for
extended periods remains a biosafety concern. As a result, more research into the long-term
stability of UCNPs in biological systems is required. Furthermore, once these UCNP-based
nanoparticles are ingested, their function within the body and interaction with the nervous
and immune systems is an important aspect that needs more explorative studies.

Another area that needs to be improved is the efficient integration of commercially
available imaging equipment with upconversion nanocrystals. These nanocrystals, in
contrast to fluorescent dyes and quantum dots, require excitation in the infrared regime,
which means that standard commercial equipment cannot be used for quantitative measure-
ments. Advances in fundamental nanophenomena in upconversion necessitate complex
instrumentation, and a collaborative effort across a wide range of disciplines will have
a significant impact in these areas. The detrimental effect of concentration quenching in
luminescent materials restricts access to a high level of luminescence intensity, thereby
limiting their future applications. The limitation imposed by the concentration quenching
threshold becomes a real issue for nanoscale luminescent materials.

UCNPs have attractive applications in biomedical and healthcare sectors including
drug delivery, diagnostics, and theranostics. These applications depend on biocompatible
products without or with negligible hazard to human cells, tissues, and organs. Translation
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of UCNPs is associated with challenges of reproducible synthesis, effective control over the
NP size and shape, preparation of a biocompatible surface architecture with biorecognition
elements for labeling target sites, light activation, theranostics, and drug delivery. Safety
concerns and socioeconomic uncertainties are some of the important barriers to translational
process in nanomedicine. Several deficiencies need to be addressed such as how they fit into
clinical pathways, data consistency, and imaging techniques, but the potential is undeniable.
With the present scenario of extensive research in nanotechnology development, it is
conceivable that UCNPs will soon be placed among the mainstream nanoprobes that will
be commonly utilized in both laboratories and clinics.
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