Performance of Asphalt Rubber Mixture Overlays to Mitigate Reflective Cracking
Abstract
:1. Introduction
2. Experimental Programme
2.1. Asphalt Mixtures
2.2. Four-Point Bending Modulus and Fatigue Tests
2.3. Reflective Cracking Tests
2.4. Numerical Simulation
3. Results
3.1. Damage Evaluation
3.2. Reflective Cracking Laboratory Tests
3.3. Von Mises Strain Related from RCD Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Bondt, A.H. Anti-Reflective Cracking Design of (Reinforced) Asphaltic Overlays. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1999. [Google Scholar]
- Trevino, M.; Dossey, T.; McCullough, F.B.; Yildirim, Y. Applicability of Asphalt Concrete Overlays on Continuously Reinforced Concrete Pavements; Report No. FHWA/TX-05/0-4398 1; U.S. Department of Transportation, Federal Highway Administration, Texas Department of Transportation: Austin, TX, USA, 2003. [Google Scholar]
- Gajewski, J.; Sadowski, Y. Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating artificial neural networks and finite element method. Comp. Mater. Sci. 2014, 82, 114–117. [Google Scholar] [CrossRef]
- Williams, C.R.; Chen, C.; Buss, A. Reflective Crack Mitigation Guide for Flexible Pavements; Report No. IHRB Project TR-641; Iowa Highway Research Board, Iowa Department of Transportation: Ames, IA, USA, 2015. [Google Scholar]
- Von Quintus, L.H.; Mallela, J.; Lytton, L.R. Techniques for mitigation of reflective cracks. In Proceedings of the FAA Worldwide Airport Technology Transfer Conference, Atlantic City, NJ, USA, 20–22 April 2010; U.S. Federal Aviation Administration (FAA): Washington, DC, USA, 2010. [Google Scholar]
- Baek, J.; Al-Qadi, I.L. Finite element method modeling of reflective cracking initiation and propagation: Investigation of the effect of steel reinforcement interlayer on retarding reflective cracking in hot-mix asphalt overlay. Transp. Res. Rec. 2006, 1949, 32–42. [Google Scholar] [CrossRef]
- Irwin, G.R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Germann, F.P.; Lytton, R.L. Methodology for Predicting the Reflection Cracking Life of Asphalt Concrete Overlays; Report No. 207-5; Texas State Department of Highways and Public Transportation: Austin, TX, USA, 1979. [Google Scholar]
- Paris, P.C.; Erdogan, F. A Critical analysis of crack propagation laws. J. Basic. Eng.-Trans. ASME 1963, 3, 85. [Google Scholar] [CrossRef]
- Francken, L.; Vanelstraete, A.; de Bondt, A.H. Modelling and Structural Design of Overlay Systems; RILEM Report No.18; Prevention of Reflective Cracking in Pavements, E & SPON: London, UK, 1997. [Google Scholar]
- Ullidtz, P. Modelling Flexible Pavement Response and Performance, 1st ed.; Technical University of Denmark: Lyngby, Denmark, 1998; pp. 1–205. [Google Scholar]
- Zhou, F.; Scullion, T. Overlay Tester: A Rapid Performance Related Crack Resistance Test; Technical Report No. FHWA/TX-05/0-4467-2; Texas Transportation Institute & Texas Department of Transportation: Springfield, VA, USA, 2004. [Google Scholar]
- Vanelstraete, A.; de Bondt, A.H. Cracking Prevention and Use of Overlay Systems; RILEM Report 18; Prevention of Reflective Cracking in Pavements, E & SPON: London, UK, 1997. [Google Scholar]
- Pais, J.C. Consideração da propagação de fendas no dimensionamento de reforços de pavimentos flexíveis [Reflective Cracking Consideration on Flexible Overlay Pavement Design]. Ph.D. Thesis, Universidade do Minho, Guimarães, Portugal, 1999. (In Portuguese). [Google Scholar]
- Minhoto, M.; Pais, J.C.; Pereira, P.A.A.; Santos, L.P. The influence of temperature variation in the prediction of the pavement overlay life. Road Mater. Pavement Des. 2005, 6, 365–384. [Google Scholar] [CrossRef]
- Colombier, G. Cracking in Pavements: Nature and Origin of Cracks; RILEM Report 18; Prevention of Reflective Cracking in Pavements, E & SPON: London, UK, 1997. [Google Scholar]
- Molenaar, A.A.A.; Potter, J. Assessment and Evaluation of the Reflective Crack Potential; RILEM Report 18; Prevention of Reflective Cracking in Pavements, E & SPON: London, UK, 1997. [Google Scholar]
- Minhoto, M.J.C. Consideração da temperatura no comportamento à reflexão de fendas dos reforços de Pavimentos rodoviários flexíveis [Temperature Consideration in Reflective Cracking Behaviour in Overlays of Flexible Pavements]. Ph.D. Thesis, Universidade do Minho, Guimarães, Portugal, 2007. (In Portuguese). [Google Scholar]
- Minhoto, M.; Pais, J.C.; Pereira, P.A.A. The temperature effect on the reflective cracking of asphalt overlays. Road Mater. Pavement Des. 2008, 9, 615–632. [Google Scholar] [CrossRef]
- Pais, J.C.; Pereira, P.A.A.; Sousa, J.M.B.; Capitão, S. Evaluation of the load associated cracking in flexible pavements. In Proceedings of the 6th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Lisbon, Portugal, 24–26 June 2002. [Google Scholar]
- Montestruque, G.E. Contribuição para a elaboração de método de projeto de restauração de pavimentos asfálticos usando geossintéticos em sistemas anti-reflexão de trincas [Contribution to Asphalt Pavements Design Overlay Method Using Geosynthetics in Cracks Anti-Reflection Systems.]. Ph.D. Thesis, Instituto Tecnológico da Aeronáutica—ITA, São José dos Campos, São Paulo, Brazil, 2002. (In Portuguese). [Google Scholar]
- Pais, J.C.; Amorim, S.; Minhoto, M. Impact of traffic overload on road pavement performance. J. Transp. Eng. 2013, 139, 873–879. [Google Scholar] [CrossRef]
- Monismith, C.L.; Epps, J.A.; Kasianchuk, A.; McLean, D.B. Asphalt Mixture Behaviour on Repeated Flexure; Report No. TE 70-5; University of California: Berkeley, CA, USA, 1971. [Google Scholar]
- Sousa, J.B.; Pais, J.C.; Saim, R.; Way, G.; Stubstad, R.N. Development of a mechanistic empirical based overlay design method for reflective cracking. Road Mater. Pavement Des. 2002, 6, 339–363. [Google Scholar] [CrossRef]
- Loria, L.; Hajj, E.Y.; Sebaaly, P.E. Assessment of reflective cracking models for asphalt pavements. Spec. Publ. Geotech. 2011, 213, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Delbono, L.; Fensel, E.; Curone, L. Evaluation of reflective cracking under dynamic loads interposing geosynthetic materials at different levels of the asphalt reinforcement layer. Rev. Ing. Constr. 2015, 30, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Walubita, L.F.; Fuentes, L.; Lee, S.I.; Guerrero, O.; Mahmouf, E.; Naik, B.; Simate, G.S. Correlations and preliminary validation of the laboratory monotonic overlay test (OT) data to reflective cracking performance of in-service field highway sections. Constr. Build. Mater. 2021, 267, 121029. [Google Scholar] [CrossRef]
- Chen, C.; Lin, S.; Williams, R.C.; Ashlock, J.C. Non-destructive modulus testing and performance evaluation for asphalt pavement reflective cracking mitigation treatments. Balt. J. Road Bridge Eng. 2018, 13, 46–53. [Google Scholar] [CrossRef]
- Hou, F.; Li, T.; Li, Y.; Guo, M. Research on the anti-reflective cracking performance of a full-depth asphalt pavement. Sustainability 2021, 13, 9499. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Yang, J.; Wang, H. Numerical simulation on reflective cracking behavior of asphalt pavement. Appl. Sci. 2021, 11, 7990. [Google Scholar] [CrossRef]
- Pais, J.C. The reflective cracking in flexible pavements. Rom. J. Transp. Infrastruct. 2013, 2, 63–87. [Google Scholar] [CrossRef] [Green Version]
- Alneami, A.H.; Almudadi, T.H. A laboratory tool used to evaluate the reflective cracking in overlay asphalt pavement. AREJ 2011, 19, 11–25. [Google Scholar]
- Deilami, S.; White, G. Review of reflective cracking mechanisms and mitigations for airport pavements. In Proceedings of the 28th ARRB International Conference—Next Generation Connectivity, Brisbane, Australia, 29 April–2 May 2018; National Technical University of Athens—Road Safety Observatory: Brisbane, Australia, 2018. [Google Scholar]
- Fontes, L.P.T.L.; Trichês, G.; Pais, J.C.; Pereira, P.A.A. Evaluating permanent deformation in asphalt rubber mixtures. Constr. Build. Mater. 2010, 24, 1193–1200. [Google Scholar] [CrossRef]
- Souliman, M.; Eifert, A. Mechanistic and economical characteristics of asphalt rubber mixtures. Adv. Civ. Eng. 2016, 2016, 8647801. [Google Scholar] [CrossRef]
- Asgharzadeh, S.M.; Sadeghi, J.; Peivast, P.; Pedram, M. Fatigue properties of crumb rubber asphalt mixtures used in railways. Constr. Build. Mater. 2018, 184, 248–257. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Fu, L.; Guo, M.; Zhang, L. Influence of crumb rubber and tafpack super on performances of SBS modified. Road Mater. Pavement Des. 2019, 20, 1200. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Y.; Ren, W.; Huang, K. Performance evaluation of asphalt rubber mixture with additives. Materials 2019, 12, 1200. [Google Scholar] [CrossRef] [Green Version]
- Klinsky, L.M.G.; Bardini, A.S.S.; De Faria, V.C. Evaluation of permanent deformation of asphalt rubber using multiple stress creep recovery tests and flow number tests. Transportes 2020, 76–86. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhang, H.; Apostolidis, P.; Scarpas, T.; Erkens, S. Asphalt-rubber interaction and performance evaluation of rubberised asphalt binders containing non-foaming warm-mix additives. Road Mater. Pavement Des. 2020, 21, 1612–1633. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Li, H.; Geng, J.; Tian, Y.; Li, Z.; Xiong, R. Production and performance of desulfurised rubber asphalt binder. Int. J. Pavement Res. 2017, 10, 262–273. [Google Scholar] [CrossRef]
- Castillo, C.A.T.; Hand, A.J.; Sebaaly, P.E.; Haaj, E.Y.; Piratheepan, M. Evaluation of cracking resistance of tire rubber–modified asphalt mixtures. J. Transp. Eng. Part B Pavements 2021, 147, 04021019. [Google Scholar] [CrossRef]
- Xu, X.; Leng, Z.; Lan, J.; Wang, W.; Yu, J.; Bai, Y.; Sreeram, A.; Hu, J. Sustainable practice in pavement engineering through value-added collective recycling of waste plastic and waste tyre rubber. Eng. J. 2021, 7, 857–867. [Google Scholar] [CrossRef]
- Li, D.; Leng, Z.; Zou, F.; Yu, H. Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. J. Clean. Prod. 2021, 303, 127082. [Google Scholar] [CrossRef]
- Alfayez, S.A.; Suleiman, A.R.; Nehdi, M.L. Recycling tire rubber pavements: State of the art in asphalt. Sustainability 2020, 12, 9076. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y.; Wang, H.; Shu, B.; Barbieri, D.M.; Norambuena-Contreras, J. Enhanced storage stability and rheological properties of asphalt modified by activated waste rubber powder. Materials 2021, 14, 2693. [Google Scholar] [CrossRef]
- California Department of Transportation (Caltrans). Asphalt Rubber Usage Guide; State of California Department of Transportation Materials Engineering and Testing Services Office of Flexible Pavement Materials: Sacramento, CA, USA, 2006. [Google Scholar]
- Asphalt Institute. The Asphalt Handbook, Manual Series No. 4 (MS-4); Asphalt Institute: Lexington, KY, USA, 1989. [Google Scholar]
- Departamento Nacional de Infraestrutura de Transportes (DNIT). Pavimentos flexíveis—Especificação de serviço 031 [Flexible Pavements—Specification 031]; Departamento Nacional de Infraestrutura de Transportes, Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 2006. (In Portuguese) [Google Scholar]
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Dunning, R.L. Investigation and Evaluation of Ground Tire Rubber in Hot Mix Asphalt; National Center for Asphalt Technology No. 89-3: Auburn, AL, USA, 1989. [Google Scholar]
- ASTM D3497. Standard Test Method for Dynamic Modulus of Asphalt Mixtures; American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2003. [Google Scholar]
- AASHTO TP8. Standard Test Method for Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending. Standard Based on SHRP Product 1019; Reapproved 1996, Reconfirmed in 2001; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 1994. [Google Scholar]
- Sousa, J.B.; Shatnawi, S.; Cox, J. An approach for investigating reflective fatigue cracking in asphalt-aggregate overlays. In Proceedings of the Third International RILEM Conference on Reflective Cracking in Pavements, Maastricht, The Netherlands, 2–4 October 1996. [Google Scholar]
- ANSYS. ANSYS 10.0 Multiphysics Computer Program; Theory Reference—Realise 2005; ANSYS, Inc.: Canonsburg, PA, USA, 2005. [Google Scholar]
Mixture | Asphalt Base | Crumb Rubber | Rubber Content | Gradation Type | Voids Content | Asphalt Content |
---|---|---|---|---|---|---|
GGGCR | PEN 30/45 1 | Cryogenic | 17% | Gap-graded [47] | 6.0% | 8.0% |
DGACR | PEN 30/45 1 | Ambient | 17% | Dense-graded [48] | 5.0% | 7.0% |
CONV | PEN 50/7 0 2 | - | - | Dense-graded [49] | 4.0% | 5.5% |
Temperature (°C) | Mixtures and Dynamic Modulus (MPa) | ||
---|---|---|---|
GGGCR | DGACR | CONV | |
15 | 6516 | 7344 | 8516 |
20 | 5174 | 6132 | 6451 |
25 | 3833 | 4921 | 4387 |
Mixtures | Fatigue Parameters and Cycles for 100 × (10−6 mm/mm) Strain | |||
---|---|---|---|---|
a | b | R2 | N100 (Cycles) | |
GGGCR | 2.782 × 1017 | 4.597 | 0.96 | 1.78 × 108 |
DGACR | 4.852 × 1019 | 5.463 | 0.99 | 5.74 × 108 |
CONV | 1.185 × 1015 | 4.037 | 0.99 | 9.99 × 106 |
Temperature (°C) | Dynamic Modulus (MPa) | Poisson’s Coefficient |
---|---|---|
−5 | 12,000 | 0.35 |
0 | 9000 | 0.35 |
5 | 6500 | 0.35 |
10 | 4000 | 0.35 |
15 | 2500 | 0.35 |
25 | 680 | 0.35 |
Layer | Resilient Modulus (MPa) | Poisson’s Coefficient |
---|---|---|
Granular base | 270 | 0.40 |
Subgrade | 90 | 0.45 |
Temperature (°C) | Mixtures and Dynamic Modulus (MPa) | ||
---|---|---|---|
GGGCR | DGACR | CONV | |
−5 | 11,881 | 12,188 | 16,773 |
5 | 9199 | 9788 | 12,644 |
15 | 6516 | 7344 | 8516 |
20 | 5174 | 6132 | 6451 |
25 | 3833 | 4921 | 4387 |
40 | 1746 | 2691 | 1678 |
50 | 1026 | 1795 | 871 |
Coefficients | Mixtures | ||
---|---|---|---|
GGGCR | DGACR | CONV | |
a | −2.1 × 10−3 | −9.32 | −3.3 × 10−4 |
b | −0.807 | −1.523 | −0.632 |
c | −4.695 | −5.684 | −4.191 |
Tmax1 (°C) | ΔT2 (°C) | Mixtures | ||
---|---|---|---|---|
GGGCR | DGACR | CONV | ||
25 | 25 | 4.793 × 10−4 | 1.088 × 10−4 | 3.912 × 10−3 |
35 | 10 | 3.528 × 10−2 | 1.067 × 10−2 | 1.150 × 10−1 |
15 | 15 | 1.440 × 10−4 | 3.453 × 10−5 | 1.249 × 10−3 |
10 | 10 | 8.775 × 10−5 | 2.167 × 10−5 | 6.592 × 10−4 |
25 | 15 | 7.068 × 10−4 | 1.441 × 10−4 | 5.108 × 10−3 |
Coefficients | Mixtures | ||
---|---|---|---|
GGGCR | DGACR | CONV | |
a | 1.94 × 10−8 | 4.05 × 10−8 | 2.17 × 10−7 |
b | 4.37 | 3.96 | 3.97 |
c | −0.177 | −0.232 | −0.130 |
Test/Parameter | Mixtures | ||
---|---|---|---|
GGGCR | DGACR | CONV | |
Damage | |||
Life (years) | 74.9 | 268.5 | 12.8 |
Relative life | 5.9 | 21.0 | 1.0 |
Four-point bending | |||
ε (10−6) 1 | 100 | 100 | 100 |
N100 (cycles) | 1.78 × 108 | 5.75 × 108 | 9.99 × 106 |
Relative life | 17.8 | 57.7 | 1.0 |
Numerical simulation | |||
εVM (10−6) 2 | 154 | 128 | 141 |
Fatigue life (cycles) | 1.23 × 109 | 8.41 × 108 | 1.06 × 108 |
Relative life | 11.6 | 7.9 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thives, L.P.; Pais, J.C.; Pereira, P.A.A.; Minhoto, M.C.; Trichês, G. Performance of Asphalt Rubber Mixture Overlays to Mitigate Reflective Cracking. Materials 2022, 15, 2375. https://doi.org/10.3390/ma15072375
Thives LP, Pais JC, Pereira PAA, Minhoto MC, Trichês G. Performance of Asphalt Rubber Mixture Overlays to Mitigate Reflective Cracking. Materials. 2022; 15(7):2375. https://doi.org/10.3390/ma15072375
Chicago/Turabian StyleThives, Liseane Padilha, Jorge C. Pais, Paulo A. A. Pereira, Manuel C. Minhoto, and Glicério Trichês. 2022. "Performance of Asphalt Rubber Mixture Overlays to Mitigate Reflective Cracking" Materials 15, no. 7: 2375. https://doi.org/10.3390/ma15072375
APA StyleThives, L. P., Pais, J. C., Pereira, P. A. A., Minhoto, M. C., & Trichês, G. (2022). Performance of Asphalt Rubber Mixture Overlays to Mitigate Reflective Cracking. Materials, 15(7), 2375. https://doi.org/10.3390/ma15072375