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Abstract: TiN/AlOx:Ti/TaOx/TiN memory devices using bilayer resistive switching memory
demonstrated excellent durability and capability of QLC (quad-level cell) memory devices. The best
nonvolatile memory characteristics with the lowest operation current and optimized 4 bit/cell states
were obtained using the Incremental Step Pulse Programming (ISPP) algorithm in array. As a result,
a superior QLC reliability (cycle endurance > 1 k at each level of the QLC, data retention > 2 h at
125 ◦C) for all the 4 bits/cell operations was achieved in sub-µm scaled RRAM (resistive random
access memory) devices.

Keywords: ReRAM; resistive switching; ISPP; QLC

1. Introduction

The paradigm shift from a planar to vertical 3D structure of modern electronic devices
is not a choice anymore. In the nonvolatile memory field, a 3D stackable crossbar-type
ReRAM (resistive switching random access memory) device has been considered as the
next-generation stand-alone memory device due to its simple structure, wide range of
operational currents and fast write/erase speed. However, manufacturing high-density
crossbar resistive memory cannot be realized simply by stacking multi floors or the scaling
of device technology because the technology enablement unavoidably results in a rapid
increase in the cost of device fabrication [1]. In this context, its main advantage over flash is
that it is both more durable and requires far less energy per write. At present, long-term
NAND flash scaling faces a number of problems, such as a flash built on smaller process
nodes being less durable. An extension from MLC (multi-level cell) to TLC (triple level
cell) has only been acceptable to a few limited applications due to the drastically reduced
number of write cycles that a TLC flash can perform [2–4]. The QLC (quad levelcell) is
still questionable. In theory, a resistance switching memory could solve a number of these
problems. In this research, highly reliable ReRAM cells with QLC characteristics were
fabricated using a bilayer structure for cross-point memory applications. Reproducible
QLC behavior was successfully observed and elucidated by an oxygen ion migration
model. Moreover, a new programming algorithm was developed for a more reliable and
uniform QLC operation [5–9]. Recently, in-memory processing applications have attracted
attention as cutting-edge chip technology that not only stores data in memory, but can also
perform data operations. Accordingly, there is high interest in the resistive switching (RS)
of various metal oxide materials for use in the implementation of in-memory computing
utilizing next-generation, nonvolatile memory [10–24]. In this situation, as the amount
of user data grows exponentially, low-energy operation is essential. To this end, new
devices must meet high operating speeds, low operating voltages and high reliability.
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As a candidate to meet these requirements, RS random access memory (RRAM) shows
excellent performance in terms of speed and reliability [25,26]. However, many RRAM
studies conducted so far have been conducted in the high-current region (over 10 µA),
making them unsuitable for future demanding electronic device applications [27–29]. The
reason is that the reliability of the RRAM resistance state becomes difficult to achieve as
the operating current decreases [30–33]. Approaches are being undertaken to overcome
the reliability issue by adopting several types of electrodes or by changing the stacked
structure [34,35], but there are still difficulties. In this study, we used Ti-doped alumina (Ti:
Al2O3, TAO) and TaOx as the RS and oxygen reservoir, respectively. Our device showed
4-bit characteristics and stable retention characteristics (125 ◦C, 2 h) at a low operating
current (<1 µA). Ti doped into the RS layer played a central role in the generation of oxygen
vacancies, resulting in excellent and gradual RS behavior. TaOx, used as an oxygen storage
layer, also acts as an external load resistor to help achieve multibit operation and reliable
retention characteristics.

2. Materials and Methods

The manufactured RS devices had a crossbar structure, and the cell size was 100 nm2.
We patterned TiN (Pioneer Materials, Chongqing, China) as the bottom electrode (BE)
by e-beam lithography and photolithography. TAO layer was deposited by the atomic
layer deposition (ALD) technique while maintaining a temperature of 200 ◦C. Trimethyl
aluminum (TMA, Merck, Darmstadt, Germany), titanium isopropoxide (TTIP, Merck,
Darmstadt, Germany) and H2O were used as sources of Al, Ti and O, respectively. TiO2
and Al2O3 were alternately deposited in super cycle ALD to form a 5 nm thick TAO layer.
A 20 nm thick TaOx layer was deposited using a radio-frequency (RF) reactive sputtering
method, of which the oxygen flow rate was 5 sccm. The base pressure for sputtering was
5 × 10−7 torr, and the working pressure was 1 × 10−3 torr. After TaOx layer formation,
TiN top electrodes (TE) were patterned using the same process as used for the BE, and the
TE and BE were crossed perpendicularly to make the crossbar-type device. The thermal
annealing test was conducted using furnace equipment to check retention performance
by baking at 125 ◦C for 2 h. To check the amount of Ti in AlOx, compositional analyses
of the TiN/AlOx:Ti structure were performed based on the depth profile obtained via
Auger electron spectroscopy (AES, PHI-700 ULVAC-PHI, Kanagawa, Japan). The electrical
properties of our RS devices were tested using a semiconductor parameter analyzer (SPA,
Keithley 4200 SCS, Beaverton, OR, USA) and arbitrary function generator (AFG, Agilent
81150A, Beaverton, OR, USA). The RF circuit-switching module accessed the two-terminal
electric circuits between the SPA and the AFG, alternately. During all measurements, the
TE was biased, while the BE was grounded. During multibit measurement, we used ISPP
and the error check and correction (ECC) method (details concerning these methodologies
available elsewhere).

3. Results

Figure 1a,b shows the SEM (ZEISS, Jena, Germany) and TEM (JEOL, Akishima, Japan)
image of TiN/AlOx:Ti/TaOx/TiN memory devices. The thickness of the AlOx film was
approximately 5 nm and the thickness of the TAO was confirmed to be 20 nm, respectively.
Figure 2a,b shows the I–V characteristics according to the Ti 0% and 10% doping of Al2O3,
which was the RS layer, respectively. To prevent a permanent dielectric breakdown, the
compliance current (CC) was set to 1 uA during the ‘SET’ (resistance change from high-
resistance state (HRS) to the low-resistance state (LRS) by external bias) measurement.
The Ti 10%-doped Al2O3 device showed a very uniform distribution of the SET operating
voltage at ~6 V and a RESET (resistance change from LRS to HRS) voltage distribution
between −2.5 V and −3 V. Figure 2c,d shows the depth profile of AES to analyze the
amount of Ti inside the AlOx thin film of both devices. As a result of the analysis, it was
confirmed that about 10% of Ti was doped inside AlOx, which would have improved the
RS curve as well as other properties.
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Figure 2. (a,b) show the DC I–V characteristics of the Ti 0% and 10% RRAM devices, respectively.
(c,d) show the AES depth profile of devices.

Figure 3a,b compares the retention of RRAM devices doped with Ti 0% and Ti 10%,
respectively. They were baked at 125 ◦C for 2 h and, as a result of the before and after
comparison, it was observed that the retention of the LRS of the device doped with Ti 0%
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was deteriorated. However, in the device doped with Ti 10%, it was observed that the LRS
was stably maintained after 6 h. As a result, the Ti in AlOx strengthened the retention of
the device. Figure 3c,d schematically shows the mechanism of the RRAM device. The RS
cycle started in the initial state. When a positive voltage was applied to the upper electrode
(TE), oxygen ions moved from the resistive switching layer (Ti:AlOx) to the oxygen ion
reservoir layer (TaOx) in Figure 3c. As a result, conduction paths were formed, resulting
in an LRS state. The device then transitioned to HRS (Figure 3d) via a RESET operation.
Then, the oxygen ions came out of the reservoir layer and the conduction paths were
broken. However, the initial resistance of the primordial device was not fully recovered
in HRS, indicating that some of the metal phase connections may have been lost and the
electrically conductive paths may have been completely blocked by recombination with
oxygen during RESET.
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Figure 3. (a,b) show the retention characteristics of the Ti 0% and 10% RRAM devices, respectively. The
schematic figures for a sequential RS cycle. (c,d) show the LRS the HRS of the RRAM device, respectively.

As shown in Figure 4, the cells subjected to the ISPP pre-cyclic pulse had a narrower
distribution of resistance states. Compared to the initial state cells that did not use the ISPP
pre-cycling method, cells to which ISPP pre-cycling was applied were highly likely to show
an improved performance of the 4-bit/cell operation. A uniformly formed microresistive
switching region in a cell could be considered to benefit from a uniform and stable performance.
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Figure 4. (a) Shows that the initial resistance states moved to the desired target range by the pre-cycle.
(b) Comparison before and after applying ISPP algorithm.

For the current limiting the application of an electrical pulse, a cell-specific ‘self-
compliance’ effect was introduced, as shown in Figure 5a. After the SET operation of the
cell, the magnetic compatibility region could function as an external resistor to control the
sudden increase in the current. As a current-limiting device, the self-compliance effect
helped achieve stable and reliable multibit performance without electrical errors during
the ISPP operation. It was confirmed that applying the electric pulse pre-cycle method
to a clean cell was effective in improving the device’s operation yield, minimizing the
number of pulses (NOP), and improving the resistance-state distribution. Figure 5b is
the result of measuring the endurance of the cell and the initial cell to which the ISPP
algorithm was applied to for 100 k cycles. As a result of applying the ISPP algorithm
targeting the Level 1 current range, it was confirmed that it was perfectly within the desired
range current. This method was then applied to obtain a 4-bit result. Figure 5c confirms
the retention of Level 1 and Level 15 of the LRS state. As a result, stable retention was
confirmed at 125 ◦C for 7200 s. In RRAM operating with a low current, finding a stable
current range of Level 1 was a very important part of the multi-bit test. Figure 5d shows
that the experimental pulse switching and simulation results agreed, which shows how
many multi-bits could be divided. Figure 5e is the result of dividing from Level 1 to
Level 15, while showing an endurance of 1 k cycles for each level. At this time, the HRS
state was safely maintained. Figure 5f shows the distributions in 4 bits/cell operation
using the ISPP verifying in array. The tested data were characterized at 1 k SET/RESET
cycles, which was within the nominal lifetime of the experimental RRAM memory. In
qualifying the state overlap probability (SOP) between the resistance states, we assumed
that the obtained resistance values obeyed a Gaussian distribution, and evaluated the SOP
values using the equation σ = m2−m1

µ2−µ1
, where m2, m1, µ2, and µ1 represent the average and

standard deviations between neighboring resistance states, respectively. This equation
implies that the larger the value of σ, the smaller the SOP. The distribution of each state
was distinguishable from one another (lower than 2.45σ (0.71%) overlap in the worst case
of the 4 bits/cell). The data indicated an excellent reliability performance in the 4 bits/cell
RRAM devices.
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4. Conclusions

By using the ISPP algorithm, we successfully achieved a 4 bits/cell approach in the
sub-µm scaled RRAM devices in array. The sub-µm scaled RRAM devices exhibited a
superior QLC reliability (cycle endurance > 1 k @each level, data retention > 2 h at 125 ◦C).
Higher Ti concentrations in the TAO layer generated more leakage current characteristics
and were not suitable for a stable RS operation. The SET and RESET operating voltages
must still be high to facilitate a low-power RS operation depending on energy dependency.
However, the QLC properties achieved in nonvolatile memory may provide guidance for
the resistive switching of various metal oxide materials to be used in the implementation of
in-memory computing utilizing next-generation, non-volatile memory in the future.
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