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Abstract: The kinetics and mechanism of ternesite formation (calcium sulfosilicate, Ca5(SiO4)2SO4,
C5S2$) were investigated by studying the reaction between beta-dicalcium silicate (β-C2S) and
calcium sulfate dihydrate (CaSO4·2H2O). Mineralogical composition development was monitored
using X-ray diffraction (XRD) and backscattered scanning electron microscopy (BSEM) coupled
to energy-dispersive X-ray spectroscopy (EDS). Ternesite can form in the 1100 to 1200 ◦C range
by the solid-phase reaction of β-C2S and CaSO4. The formation of ternesite is favored by increas-
ing the sintering temperature or extending the sintering time. The solid-phase reaction is carried
out by diffusion of CaSO4 to β-C2S. The kinetics equation of ternesite is consistent with three-
dimensional diffusion models (3-D model, D3 model or Jander model). The equation of the D3
model is 1 − 2α/3 − (1 − α)2/3 = kt. On the basis of the Arrhenius equation, the activation energy of
ternesite is 239.8 kJ/mol.

Keywords: ternesite; formation mechanism; formation kinetics; activation energy

1. Introduction

The Portland cement industry contributes 5% of global CO2 emissions due to the
breakdown of limestone and the burning of chemical fuels [1]. Sulfoaluminate (CSA)
cement is considered an ideal alternative to Portland cement, owing to its low level of
energy consumption and low CO2 emissions in the manufacturing process [2–5]. However,
the limited supply of aluminum-containing raw materials and their high price restrict the
application of CSA cement. Ternesite is a typical intermediate phase in conventional calcium
sulfoaluminate (CSA)-type clinker production processes. This mineral is usually formed
as an intermediate transition compound in the pre-tropical zone during the preparation
of silicate clinker [6–11]. In sulfate aluminate cement clinker, it is mainly formed when
there is an excessive amount of gypsum dispensed in the raw meal or when the calcination
temperature is too low [12–14]. When the aluminum phase is present, ternesite (C5S2$) is
a clinker phase with hydration activity. It can bridge the intermediate gap between the
fast reaction of ye’elimite and the late strength contribution of belite [15]. Belite–calcium
sulfoaluminate–calcium sulfosilicate (BYT) system cement combines the advantages of
high early strength of CSA cement and the excellent durability of belite cement. On the
other hand, BYT clinker has the following benefits: low sintering temperature, low CO2
emissions, and easy availability of raw materials [16]. Therefore, BYT system cement have
become the focus of global research in recent decades.

The formation of ternesite has been studied by several authors [17–19]. Ternesite
can be formed as an intermediate phase in CSA cement clinker at 900 ◦C; it decomposes
above 1200–1280 ◦C to C2S and CaSO4 [20]. Jing G. [21] systematically analyzed the
kinetics of C5S2$ formation by different C2S polycrystals, and the results showed that
β-C2S is more likely to form C5S2$. K. Ben Addi et al. [22] studied the mineralogical
evolution of sulfoaluminate clinker and found that ternesite formed at 800 ◦C, and the
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clinker, which contained ye’elimite, belite, and ternesite, formed at temperatures between
1100 and 1250 ◦C, was stable. W. Gutt et al. [23] prepared pure calcium silicosulfate by
sintering mixtures of calcium carbonate, crushed quartz, and CaSO4·2H2O for 150 h at
1150 ◦C. Y. B. Pliego-Cuervo [24] synthesized calcium silicosulfate by heating a mixture of
beta-dicalcium silicate (β-C2S) and CaSO4 at 1100 ◦C for 24 h, and the purity was higher
than 95%. G. Choi [25] reported that oxidized components can completely react to form
pure ternesite during 10 days in a closed system using stoichiometric amounts of belite and
calcium sulfate at 1075 ◦C. T. Hanein [18] presented an approach to synthesize ternesite
with a high purity of 99% by sintering stoichiometric amounts of the produced belite and
CaSO4 at 1175 ◦C for 3 days. Liu L. et al. [26] found that the optimum sintering temperature
for the formation of high-purity ternesite was about 1200 ◦C for 12 h by controlling the
fineness of the raw material (especially SiO2), and the purity could be as high as 96.3% in a
closed system.

However, the sintering mechanism and formation kinetics of ternesite have not
been systematically studied. In this paper, the formation of ternesite from β-C2S and
CaSO4·2H2O was investigated in detail through isothermal treatment by mixing synthetic
β-C2S and CaSO4·2H2O from 1100 to 1200 ◦C.

2. Materials and Methods
2.1. Raw Materials and Samples Preparation

The starting materials used in this study were high-purity calcium carbonate (CaCO3),
quartz (SiO2) and calcium sulfate dihydrate (CaSO4·2H2O), all from Sinopharm Chemical
Reagent Co., Ltd. (Dongguan, China). Table 1 indicates the chemical composition of the
starting materials used for the preparation, showing the high purity of the raw materials
used. The particle size distribution (PSD) of the raw powder was obtained using a Microtrac
S3500 laser size analyzer (Malvern). Before measurement, the powder (approximately
80 mg) was added to 20 mL of anhydrous ethanol, and the mixture was ultrasonicated for
1 min to disperse the solid particles. Table 2 shows the physical characteristics of these
raw materials. Figure 1 shows the results of the particle size distributions (PSDs) for the
three raw materials. The chemical reagents were weighed accurately in accordance with
the stoichiometric ratio of 2CaO·SiO2. One percent B2O3 (mass % of the total sample) was
added to stabilize the β-C2S. The mixture of CaCO3, SiO2, and B2O3 was homogenized
through ball milling for 12 h. Then, 5% water by weight was added to the mixture. The
mixture was pressed into disks, which were oven-dried for 2 h at 105 ◦C. The dried disks
were heated in a resistance furnace from 30 to 1450 ◦C. During calcination, the pressed
sample cake was placed in the sealed Al2O3 crucible and then put into the electric furnace
together with the heating rate of 10 ◦C/min. In order to promote the full decomposition
of calcium carbonate, the temperature is kept for 30 min when the temperature reaches
900 ◦C. Heating continued to the specified temperature, after which point it was kept warm
for a period of time. Take it out after firing and cool it with a fan to get the clinker sample
(Figure 2). After sintering at 1450 ◦C for 2 h, the disks were removed from the resistance
furnace and cooled. The purity of the β-C2S was determined using the Rietveld method;
its f-CaO content was 0.15% (Figure 3). The synthesized C2S was ground to a fineness of
200 mesh for the preparation of ternesite.

Table 1. Chemical composition (XRF) of raw materials used to prepare ternesite, expressed as wt% of
oxide; LOI = loss of ignition at 1100 ◦C. When the total content (except LOI) is not equal to 100 wt%,
the remaining 0.01 wt% is the total content of other trace oxides.

f-CaO SiO2 Al2O3 Fe2O3 SO3 Na2O SrO MgO TiO2 P2O5 Sum LOI

CaCO3 99.74 0.03 0.05 0.02 0.00 0.04 0.03 0.04 0.02 0.02 99.99 43.10
SiO2 0.01 99.80 0.03 0.01 0.00 0.04 0.04 0.03 0.03 0.00 99.99 0.01

CaSO4·2H2O 42.93 0.06 0.01 0.00 56.93 0.02 0.03 0.02 0.00 0.00 99.99 20.60
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Table 2. Physical characteristics of the raw materials.

Raw Material Calcium Carbonate Quartz Calcium Sulfate Dihydrate

Mineralogical analysis (a) CaCO3 SiO2 CaSO4·2H2O
Particle size (b) d10 (µm) 13.76 4.49 7.81

d50 (µm) 22.46 26.59 34.65
d90 (µm) 36.38 64.32 92.71

(a) XRD phase identification. (b) Laser diffraction granulometry.
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Then, the sieved C2S and CaSO4·2H2O were proportioned in a molar ratio of 2:1 and
mixed well. The mixture was pressed into disks. The disks were heated to 1100, 1125, 1150,
1175, and 1200 ◦C. At every temperature, the disks were sintered for 0, 0.25, 0.5, 0.75, 1, 2,
4, 8, 10, or 12 h. Then, the sintered disks were removed from the resistance furnace and
cooled immediately.

2.2. Characterization
2.2.1. X-ray Fluorescence (XRF) Analysis

The chemical composition of raw materials was analyzed by X-ray fluorescence (XRF)
analysis. The samples were tested using a Philips PW2400 XRF spectrometer, and the data
were analyzed using UniQuant software. The samples were analyzed for loss on ignition at
1100 ◦C.

2.2.2. Particle Size Distribution (PSD) Analysis

The particle size distribution (PSD) of the raw powder was obtained using a Microtrac
S3500 laser size analyzer (Malvern). Before measurement, the powder (approximately
20 mg) was added to 20 mL of anhydrous ethanol. Each raw material was measured
ultrasonically twice, and the average value was taken as the final data.

2.2.3. X-ray Diffraction (XRD) Data Record and Analysis

To determine the phase composition of the samples, the X-ray powder diffraction
(XRPD) test was executed using a Rigaku Miniflex 600 with CuKa radiation (λ = 0.15405 nm).
The measurements were performed from 5◦ to 70◦ (2θ) with a 0.01◦ step size and 0.2 s
dwelling time. The qualitative analysis was performed with the software Search Match.
On the basis of phase determination, the phase was quantified by HighScore Plus software
with Rietveld refinement based on the following structural model: C5S2$ [27] (ICSD 85123),
β-C2S [28] (ICSD 81096), and C$ [29] (ICSD 1956). The refinement parameters included
background parameters, phase scaling factors, cell parameters, zero shifts, peak pattern
parameters, and orientation corrections. The calculation formula used for quantitative
analysis is as follows [30,31]:

Wα =
SαραV2

α µs

G
(1)

where G is the G value of the given standard material; because the alumina standard has the
characteristics of amorphous face orientation and very small grains, the standard material
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is α-Al2O3, and the measured G value is 3.69 × 10−44. The µs is used to determine the mass
attenuation coefficient of the sample. According to the oxide content of the sample given in
X-ray fluorescence (XRF), the µs of each sample was calculated. Sα, Vα, ρα, and Wα are the
scale factor, volume, density, and mass fraction of the measured substance, respectively.

2.2.4. Thermogravimetric–Differential Scanning Calorimetry Analysis

To investigate the physical-chemical reactions during heating of the mixture of β-C2S
and CaSO4·2H2O, thermogravimetric–differential scanning calorimetry (TG-DSC) was
carried out on a Mettler Toledo TG/DSC 1600LF comprehensive thermal analyzer. The
mixture was heated from 50 to 1300 ◦C at a speed of 10 ◦C per minute under an atmosphere
of N2.

2.2.5. Backscattered Scanning Electron Microscopy (BSE) Analysis

Backscattered electron images (BSE) can be used to analyze the physical phase com-
position of the specimen. The specimen needs to be treated prior to the test by casting
and polishing it, followed by a conductive treatment using the metal coating method. The
instrument used for this test is a Japan Electronics JSM-5900 with a tungsten filament,
operating voltage of 15 kV, and an electron beam size of 30 nm.

3. Results and Discussion
3.1. The Physical-Chemical Reaction of the Mixture of β-C2S and CaSO4·2H2O

To investigate the sintering temperature range, we performed thermogravimetric–
differential scanning calorimetric (TG-DSC) analysis of the homogeneously mixed raw
materials by using a TGA/DSC1600 LF synchronous thermal analyzer. Figure 4 shows
the TG-DSC curves of the mixture calcined at temperatures ranging from 50 to 1300 ◦C.
Combining the TG results showed that the endothermic peak at approximately 137 ◦C
corresponded to the dehydration of CaSO4·2H2O. It was reported that anhydrous gyp-
sum converted into soluble gypsum, resulting in an exothermic peak at approximately
410 ◦C [32]. Moreover, the transformation of β-C2S into α′-C2S caused an endothermic
peak at approximately 700 ◦C [33]. Ternesite could be stable at temperatures ranging be-
tween 1000 and 1300 ◦C [18,23,26,34]; thus, the exothermic peak at approximately 1000 ◦C
indicated the formation of ternesite. The highest ternesite content could be achieved at tem-
peratures between 1100 and 1200 ◦C [34], and the formation reaction of calcium sulfosilicate
was exothermic [19]. Although it was previously reported [35] that calcium sulfate starts
decomposing above 1100 ◦C in an oxidizing atmosphere, the decomposition reaction of
calcium sulfate is endothermic [36]. Hence, the exothermic peaks at 1001 and 1145 ◦C were
attributed to the formation of calcium sulfosilicate. As reported by Diouri A. et al. [22], the
endothermic peak above 1200 ◦C and the mass loss may be ascribed to the decomposition of
calcium sulfosilicate and CaSO4. Consequently, the required calcination temperature range
must be between 1000 and 1200 ◦C for the formation of calcium sulfosilicate. The weight
decreases, so we still need to see whether SO3 volatilizes. According to the XRF results,
the volatilization of SO3 can be clearly seen in the oxide composition of raw material and
clinker heated to 1300 ◦C, which verifies our conjecture above.
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3.2. Factors That Influence of the Formation of Ternesite

Temperature is crucial to solid-state reactions. Figure 5 shows the XRD patterns of
samples calcined at different temperatures without holding time. The XRD peaks were
similar for the samples calcined at 1100, 1125, 1150, 1175, and 1200 ◦C. Ternesite formed at
1100 ◦C. The phases in all the samples included ternesite, C2S, and CaSO4 (C$).
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The strength of the diffraction peaks of ternesite increased, and that of the correspond-
ing reactants (C2S and CaSO4) decreased, with increasing calcination temperature. To
determine the quantities of each phase in the calcined samples, the XRD pattern of every
sample was fitted and refined by HighScore Plus. Figure 6 presents the fitted plot of the
sample calcined at 1200 ◦C for 1 h to exhibit the accuracy of the refinement. Based on
the refinement results, the quantity of each phase was calculated according to Equation
(1) and is given in Figure 7. The quantities of each phase varied with the calcination tem-
perature. The quantities of ternesite were greatly enhanced by increasing the calcination
temperature. At the same time, the quantities of the reactants decreased as they were
consumed. However, the content of the formed ternesite was only approximately 30%
at 1200 ◦C. Ternesite decomposed above 1200–1280 ◦C to C2S and CaSO4 [20]. Therefore,
it is difficult for ternesite to form completely by only enhancing the temperature. This



Materials 2022, 15, 2626 7 of 18

result illustrates that increasing the calcination temperature can promote the formation of
ternesite. However, CaSO4 and C2S cannot wholly react to form ternesite between 1100
and 1200 ◦C without preserving heat.
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CaSO4·2H2O at temperatures from 1100 ◦C to 1200 ◦C without holding time.

To promote the formation of ternesite, a mixture of C2S and CaSO4·2H2O was kept
at each temperature for 1, 2, 4, 8, 10, or 12 h. The contents of each phase are given in
Figure 8 for all the samples prepared under isothermal conditions. Prolonging the calcining
time promoted the formation of ternesite to a statistically significant extent. However,
the formation kinetics of ternesite changed with calcining time. The rate of formation of
ternesite was much higher at the initial stage than at the advanced stage at each calcination
temperature. This rate is mainly determined by the nature of the solid-state reaction.
During 12 h of calcining, CaSO4 and C2S did not react completely to form ternesite. The
maximum quantities of ternesite were almost the same, more than 70% at each calcination
temperature. However, the desired calcining time to obtain the maximum quantities of
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ternesite was different at each calcination temperature. As the calcination temperature
increased, the required holding time was shortened. For example, 5 h of holding time was
required at 1100 ◦C for the maximum quantities of ternesite, whereas 1 h was needed at
1200 ◦C. The higher the calcination temperature is, the quicker the initial formation rate
of ternesite. However, very little ternesite was produced after its quantity reached the
maximum value at any calcining temperature. The formation of ternesite in large amounts
suggested that it hindered the reaction of CaSO4 and C2S.
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CaSO4·2H2O at 1100 ◦C (a), 1125 ◦C (b), 1150 ◦C (c), 1175 ◦C (d), and 1200 ◦C (e) with calcining time.

3.3. Formation Mechanism of Ternesite

C5S2$ is formed at the expense of other phases such as C2S and CaSO4·2H2O. The
formation mechanism was further studied by BSE-EDS analysis. Figures 9 and 10 present
the results regarding the BSE analyses of ternesite samples calcined at different holding
times. First, the distribution between C2S and CaSO4·2H2O in Figure 9a is highly uniform,
and the change in C2S particle size can be observed. As the samples were calcined at
1100 ◦C without holding time (see Figure 9b), most C2S particles started to be enclosed by
particles of other phases, which indicates that the solid-phase reactions occurred between
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the phases. As the duration increased, a distinct C5S2$ product layer (see Figure 9c) could
be observed around the unreacted C2S and continued to form with a longer duration until
the entire C2S group was wholly superseded by C5S2$ (see Figure 9d). In the end, different
sizes of C5S2$ aggregates were synthesized, and the porosity of single ore samples obtained
was relatively high.
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Figure 9. BSE images of the samples: (a) is the raw mixture of β-C2S and CaSO4·2H2O, (b) is sample
treated at 1100 ◦C for 0 h, (c) is sample treated at 1100 ◦C for 1 h, (d) is sample treated at 1100 ◦C for
12 h. The inset of all EDS analysis represents the spectra of the marked spots in the images, where P1
represents C2S, P2 represents CaSO4, and P2 and P3 represent C5S2$. The black area represents the
portion of the pore filled with epoxy resin.
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Figure 10. BSE images of the areas of interest: (a) is the raw mixture of β-C2S and CaSO4·2H2O, (b) is
sample treated at 1100 ◦C for 0 h. All embedding maps for EDS analysis represent the spectra of the
marked points in the images. The black area represents the portion of the pore filled with epoxy resin.
BSE images of the areas of interest: (c) is sample treated at 1100 ◦C for 1 h, (d) is sample treated at
1100 ◦C for 12 h. All embedding maps for EDS analysis represent the spectra of the marked spots in
the images. The black area represents the portion of the pore filled with epoxy resin.

Figure 10 shows an enlarged view of the ternesite formation mechanism, containing
more details. The EDS energy spectra of the marked points in Figure 8a and the correspond-
ing elemental distributions confirm the particle composition (where a1, a2, b1, b2, c1, and d1
are C2S; a3, b4, and c3 are C$; b3, c2, and d2 are C5S2$). Table 3 also shows the EDS statistics
results for all corresponding spots. In Figure 10a, it is apparent that the C2S particles were
surrounded by columns of C$ particles. At 1100 ◦C without duration (see Figure 10b),
C5S2$ was formed, and a reaction circle was further formed around C2S with a layered
structure centered on C2S. The C5S2$ layer was thinner in the middle, and the C$ layer was
thicker in the outer layer. As time increased to 1 h (see Figure 10c), more C5S2$ particles
formed and clustered around the product layer. Therefore, our study and that of previous
authors have shown that C2S acts as an intermediate phase and further reacts with C$ to
form C5S2$ [37]. Similarly, the formation of C5S2$ in this sintering process was controlled
by the diffusion of Ca2+ and SO4

2− through the product layer to the C2S structure, which
was mainly composed of C5S2$ (outer layer) and C2S (middle layer). When the duration
was extended to 12 h (see Figure 10d), the internal C2S and C$ were completely converted
to C5S2$. It is worth noting that these transition textures can only be observed on most
large C2S particles. Compared with smaller C2S particles, C5S2$ particles were easier to
form directly. In summary, the formation of C5S2$ benefits from the formation of the silicate
phase, which is a process that restricts transport.

Table 3. EDS spectral results of the marked spots in the image.

At%

Spots
P1 P2 P3 a1 a2 a3 b1 b2 b3 b4 c1 c2 c3 d1 d2

Ca/Si 2.0 2.4 2.0 2.0 2.1 1.9 2.5 2.0 2.4 2.2 2.4
Ca/S 1.0 5.0 1.0 5.2 1.0 5.0 1.0 5.0
Si/S 2.2 2.2 2.1 2.1
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According to XRD analysis and microstructure observation, the content of ternesite
rises with sintering temperature, but C2S and CaSO4 residues remain at 1200 ◦C. The
presence of these phases results from incomplete solid-state reactions between the reactants.
By extending the holding time, the formation of C5S2$ was also controlled by the diffusion
of Ca2+ and SO4

2− through the product layer into the C2S structure, which is mainly
composed of C5S2$ (outer layer) and C2S (middle layer). When the duration was extended
to 12 h (see Figure 9d), the inner C2S and C$ were completely transformed to C5S2$.
Compared with smaller C2S particles, C5S2$ particles were easier to form directly. In
conclusion, the formation of C5S2$ benefits from the formation of the silicate phase, which
is a process that restricts transport.

3.4. Formation Kinetics of Ternesite
3.4.1. Experimental Stage

The kinetic analysis of solid reactions has at least three main phases: (1) experimental
collection of data, (2) calculation of kinetic properties of the first-stage data, and (3) inter-
pretation of the significance of the parameters evaluated in the second stage. Motivations
for performing such analysis include stopping to predict the behavior under test condi-
tions from the collected results and general theoretical considerations of the factors that
determine the thermal stability and/or reactivity of the solid [38].

3.4.2. Computational Stage

These mathematical descriptions of the data are usually performed in the form of
“kinetic triads” (i.e., the Arrhenius parameters A and Ea and the reaction model f (α) (see
Table 4), also known as the conversion function), which are related to the experimental data
as follows [38]:

dα
dt

= A exp
(
− Ea

RT

)
f (α) (2)

For non-isothermal data, β = dT/dt is obtained at a fixed temperature condition, and
dα/dt in the above equation is replaced by β = dα/dT. A is the pre-exponential factor,
R is the molar gas constant (8.314 J/(mol·K)), and T is the temperature. Considering
that most of the reactions are located in a narrow temperature interval, the activation
energy is considered to be independent of temperature, and the dα/dt was substituted into
Equation (2) to identify the activation energy (Ea).

Table 4. Solid-state rate and integral expressions for different reaction models [39–41].

Model Differential Form f(α) = kt (a) Integral Form g(α) = kt Model Type

Power law (P2) 2α1/2 A1/2 Nucleation and growth models
Power law (P3) 3α2/3 A1/3

Power law (P4) 4α3/4 α1/4

Avrami–Erofeyev (A2) 2(1 − α)[−ln(1 − α)]1/2 [−ln(1 − α)]1/2

Avrami–Erofeyev (A3) 3(1 − α)[−ln(1 − α)]2/3 [−ln(1 − α)]1/3

Avrami–Erofeyev (A4) 4(1 − α)[−ln(1 − α)]3/4 [−ln(1 − α)]1/4

Contracting area (R2) 2(1 − α)1/2 1 − (1 − α)1/2 Geometrical contraction
models/Phase boundary controlContracting area (R3) 3(1 − α)2/3 1 − (1 − α)1/3

1-D diffusion (D1) 1/(2α) α2 Diffusion models
2-D diffusion (D2) −[1/ln(1 − α)] (1 − α)ln(1 − α) + α

3-D diffusion (D3) [3/(1 − α)2/3]/[2(1 − (1 − α)1/3)] [1 − (1 − α)1/3]2

3-D diffusion (D4) 3/[2(1 − α)−1/3 − 1] 1 − 2α/3 − (1 − α)2/3

Zero-order (F0/R1) 1 α Reaction-order models
First-order (F1) 1 − α −ln(1 − α)
Second-order (F2) (1 − α)2 [1/(1 − α)] − 1
Third-order (F3) (1 − α)3 (1/2) [(1 − α)−2 − 1]

(a) k is the slope of the kinetic equation, t is the reaction time, and α is the degree of reactivity.
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3.4.3. Interpretation

This last stage is undoubtedly the most difficult, because all the accumulated evidence
and the accompanying accumulated uncertainties must be evaluated. An attempt must
be made to relate the results of the calculations to the actual sequence of the physicochem-
ical processes occurring, i.e., the reaction mechanism. In general, this relationship can
be established only with the help of additional information obtained from microscopic,
spectroscopic, and structural studies. A prerequisite for establishing such a relationship
is the use of appropriate computational methods for processing experimental data. In
order to collect data suitable for adequate kinetic analysis, we have previously performed
experimental analysis of isothermal and non-isothermal experiments, as well as analysis of
BSE, etc. However, experimental data for different warming rates were not collected by us,
which may have had an impact on the results of the experiments.

2Ca2SiO4 + CaSO4·2H2O→Ca5(SiO4)2SO4 (3)

According to the BSE conclusion, the formation of C5S2$ was also controlled by the
diffusion of Ca2+ and SO4

2− through the product layer into the C2S structure, which is
mainly composed of C5S2$ (outer layer) and C2S (middle layer). We reviewed the relevant
literature [39] and found that the formation of C4A3$ has a similar structure, as Ca2 + and
SO4

2− also migrate to the product layer, and their model is the Jander diffusion model.
For studying the formation kinetics of solid-phase reactions, knowing what has been
reported before [38], we need to pay attention to many factors to ensure the accuracy of
the experiment. Firstly, for practical experiments, there are two ways to obtain consistent
isothermal and non-isothermal data acquisition for the kinetic triplet: (i) isothermal and
non-isothermal experiments do not have the same temperature range; (ii) true isothermal
conditions cannot be achieved in the very low (<0.02) and very high range (>0.98) of the
reaction degree α. The experimental α of this paper does not exceed 0.97. Moreover, for
isothermal experiments occurring in the range of non-isothermal experiments, especially
in multi-step processes, additional physical phenomena such as melting, polymorphic
transitions, sublimation, and evaporation of liquids formed during melting can affect the
correct description of the entire temperature range. In addition, a single heating rate is
used in this paper, so there are some limitations. The experiment in this paper purely used
a diffusion contraction model, as in Figure 11. In Figure 11, a is uniformly mixed raw
material, and b is sintered for 12 h. Therefore, this article does not need to consider this
factor. Since the experiment is a two-step synthesis, no intermediate phase is generated,
which also greatly reduces the difficulty of model building (Equation (3)).
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3.4.4. The ICTAC Kinetics Project

(1) Kinetic response model

Most solid-phase reactions are performed by measuring the mass (or mass fraction) of
reactants (or products), and reactivity is determined by the following definition:

α =
m0 −mt

m0 −m∞
(4)

Inside the equation, m0 is the initial weight percent, mt is the weight percent at moment
t, and m∞ is the ultimate (theoretical) weight percent. The models taking into account the
solid-state reactions are presented in Table 4 [40,41].

(2) Selection of reaction models

The selection of kinetic models was usually based on the comparison of the fit of data
from different models (Table 4) and the standard deviation of the fit results, combined
with modern analytical testing techniques such as microscopic analysis, wave spectroscopy,
XRD, product analysis, and analysis of generated gases [42]. These selection criteria were
the R2 values. Among all the models listed in Table 4, only the diffusion model seems to
be consistent and in agreement with the findings of BSE images (see Figure 10). It should
be noted that due to the similarity of these models to some extent, it may be difficult to
select a suitable reaction model based on data fitting for reactions with a degree of response
α < 0.7 [43].

Among these reaction models, the most commonly used is the Jander model (D3),
which can be used to describe the reactions between powders, especially some larger
powder particles [44,45]. The first-level reaction model (F1) gives a better fit only when the
particle size of the reactants is less than 3 µm. It has also been pointed out in the literature
that there is a need to maintain consistency in granularity of the reactants when performing
solid-phase reaction kinetics experiments to ensure a narrow particle size distribution for
the reaction [46], but in practice, this condition is generally difficult to achieve [47]. A wide
particle size distribution of reactants can affect the reaction rate [48], but the activation
energy is not affected by the change in particle size when isothermal experiments are
performed, provided that the experimental conditions are strictly controlled [45].

The expressions of these diffusion models are extremely similar, making them difficult
to distinguish [46]. Regarding the correlation coefficients (R2) for the D1, D2, D3, and D4
models, we present them in Table 5. Within these models, the Jander model produced
the highest R2 values and the smallest standard deviations in the formation reactions (see
Table 5). In summary, the Jander model is the most suitable for our kinetic equations.

Table 5. Comparison of correlation coefficient (R2) fitted by different kinetic functions.

Temperature/◦C D1 D2 D3 D4

1100 0.9995 0.9420 0.9909 0.9321
1125 0.9333 0.9679 0.9898 0.9779
1150 0.9618 0.9745 0.9822 0.9780
1175 0.8944 0.9266 0.9539 0.9373
1200 0.8716 0.9178 0.9601 0.9342

Average 0.9191 0.9507 0.9749 0.9608
Standard
Deviation 0.0458 0.0223 0.0154 0.0213

Obtaining the correct Ea value is possible regardless of the presence of PSD, and in the
calculation of the apparent rate constant k, a certain range of reactivity data needs to be
chosen to ensure a good linearity of the kinetic model for the reaction time t [45,49,50]. In
the present study, the model was fitted with different ranges of reactivity data. The perfect
linearity of the fit was determined (most fits were carried out at over 3 points).
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Only temperatures below 1200 ◦C are compatible with kinetic formation (see Figure 8).
In this range, the acquired kinetic accessories are shown in Figures 12 and 13. The illustra-
tions indicate the Arrhenius fit of the reaction constant. Moreover, the activation energy
(Ea) was calculated to be 239.8 kJ/mol for the formation of ternesite, and the preexponential
factor (A) was 3.0 × 104 s−1 (see Figures 11 and 12). The Ea of the formation of C5S2$ had
not been reported yet regardless of the “one-step” or “two-step” method. In their paper,
Hauke and colleagues [37] reported that the edge of C2S formed by the reaction of SiO2
and CaO represents a barrier between the reactants and that the further formation of C2S
must proceed through this barrier layer of the SiO2 structure by Ca2+ diffusion. Likewise,
the further formation of C5S2$ during this sintering process is governed by the diffusion
of Ca2+ and SO4

2− through the product layers into the SiO2 structure, which consists of
the predominantly formed C5S2$ (external) and C2S (intermediate). At the same time,
diffusion models have been widely applied to the formation kinetics of intermediate silicate
phases [51–53], suggesting some clues to the kinetics of C5S2$ formation from C2S and C$.
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Figure 13. Regression lines between lnk and 1/T.

4. Conclusions

The formation of C5S2$ from β-C2S and CaSO4·2H2O by sintering in the temperature
range from 1100 to 1200 ◦C is described by the following equation:
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In the temperature range from 1100 to 1200 ◦C, both the increase in sintering tempera-
ture and the extension of holding time promoted the formation of ternesite. The formation
of C5S2$ is facilitated by the formation of the intermediate silicate phase, which is a process
that restricts transport. After 12 h of holding at 1100 ◦C, the purity of the sample reached
95.3%. However, it is difficult to synthesize pure ternesite in a time period of 12 h. These
conclusions can be verified by microstructural observations using EDS mapping of BSE
micrographs.

By extending the holding time, the formation of C5S2$ was also controlled by the
diffusion of Ca2+ and SO4

2− through the product layer into the C2S structure, which is
mainly composed of C5S2$ (outer layer) and C2S (middle layer). The outermost layer
contains the C5S2$ stage, and the composition growth depends on the relationship between
the C2S and the CaSO4 stages; C5S2$ is formed by the diffusion of Ca2+ and SO4

2 from
the CaSO4 phase to the C2S phase. Finally, the formation rate of ternesite could be simply
described by the geometrically contracted Jander’s model. This model provides insight into
the relationship between beta-dicalcium silicate and calcium sulfate consumption grains
during clinking and ternesite formation.

The results reported in this paper provide an in-depth understanding and a phe-
nomenological description of ternesite solid-state formation, which can help cement de-
velopers find alternatives to expensive aluminum resources (CSA). The belite–calcium
sulfoaluminate–calcium sulfosilicate (BYT) cement system has the advantages of lower
CO2 emission and a lower firing temperature, that is, low energy consumption. Finally, this
study can give some guidance to subsequent researchers in the laboratory for the synthesis
of BYT system cement.

Ternesite formation was associated with solid-state reactions, and the formation veloc-
ity was controlled by diffusion in the temperature range from 1100 to 1200 ◦C. The kinetic
equation was confirmed by the D3 diffusion model, which was 1 − 2α/3 − (1 − α)2/3 = kt.
The activation energy of ternesite formation was calculated to be 239.8 kJ/mol. In the
future, we will study the formation kinetics of ternesite at different heating rates to further
improve the integrity of the experiment.
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