Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns
Abstract
:1. Introduction
2. Machine Learning and Optimization Methodologies
2.1. Machine Learning Models
2.1.1. Kernel Ridge Regression (KRR)
2.1.2. Support Vector Regression (SVR)
2.1.3. Lasso Regression
2.1.4. Gradient Boosting Machine (GBM)
2.1.5. Adaptive Boosting (AdaBoost)
2.1.6. Random Forest (RF)
2.1.7. Extreme Gradient Boosting (XGBoost)
2.1.8. Categorical Gradient Boosting (CatBoost)
2.2. Harmony Search Optimization
3. Results and Discussions
3.1. Machine Learning Model Performances
3.2. Application of the SHAP Algorithm
3.3. Development of the Predictive Equations
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Nomenclature | XGBoost | Extreme gradient boosting | |
KRR | Kernel ridge regression | ||
FRP | Fiber-reinforced polymer | SVR | Support vector regression |
GFRP | Glass fiber-reinforced polymer | CatBoost | Categorical gradient boosting |
CFRP | Carbon fiber-reinforced polymer | AdaBoost | Adaptive boosting |
Ag | Gross cross-sectional area | GBM | Gradient boosting machine |
spacingH | Spacing between transverse reinforcements | SHAP | Shapley additive explanations |
Pexp | Experimental axial load-carrying capacity | fc’ | Concrete compressive strength |
MAE | Mean average error | MAPE | Mean average percentage error |
RMSE | Root mean square error | R2 | Coefficient of determination |
HMS | Harmony memory size | HV | Harmony vector |
HMCR | Harmony memory consideration rate | PAR | Pitch adjustment rate |
Slenderness ratio | Longitudinal reinforcement ratio | ||
fuL | Ultimate strength of the longitudinal reinforcements | EFRP | Modulus of elasticity of the longitudinal reinforcements |
Appendix B
References
- Alsayed, S.H.; Alhozaimy, A.M. Ductility of concrete beams reinforced with FRP bars and steel fibers. J. Compos. Mater. 1999, 33, 1792–1806. [Google Scholar] [CrossRef]
- Cousin, P.; Hassan, M.; Vijay, P.V.; Robert, M.; Benmokrane, B. Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars. J. Compos. Mater. 2019, 53, 3651–3670. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, K.; Zhang, Q. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand. J. Build. Eng. 2022, 51, 104294. [Google Scholar] [CrossRef]
- Huang, L.; Chen, J.; Tan, X. BP-ANN based bond strength prediction for FRP reinforced concrete at high temperature. Eng. Struct. 2022, 257, 114026. [Google Scholar] [CrossRef]
- Deifalla, A. Punching shear strength and deformation for FRP-reinforced concrete slabs without shear reinforcements. Case Stud. Constr. Mater. 2022, 16, e00925. [Google Scholar] [CrossRef]
- El Zareef, M.A.; Elbisy, M.S.; Badawi, M. Evaluation of code provisions predicting the concrete shear strength of FRP-reinforced members without shear reinforcement. Compos. Struct. 2021, 275, 114430. [Google Scholar] [CrossRef]
- Truong, G.T.; Choi, K.K.; Kim, C.S. Punching shear strength of interior concrete slab-column connections reinforced with FRP flexural and shear reinforcement. J. Build. Eng. 2022, 46, 103692. [Google Scholar] [CrossRef]
- Arabshahi, A.; Tavakol, M.; Sabzi, J.; Gharaei-Moghaddam, N. Prediction of the effective moment of inertia for concrete beams reinforced with FRP bars using an evolutionary algorithm. Structures 2022, 35, 684–705. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B. Composite FRP reinforced concrete members with fiber reinforced polymer spirals. Structures 2021, 33, 1868–1877. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Chalioris, C.E.; Deifalla, A. Evaluating the shear design equations of FRP-reinforced concrete beams without shear reinforcement. Eng. Struct. 2021, 235, 112017. [Google Scholar] [CrossRef]
- Almahmood, H.; Ashour, A.; Sheehan, T. Flexural behavior of hybrid steel-GFRP reinforced concrete continuous T-beams. Compos. Struct. 2020, 254, 112802. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Afifi, M.Z.; Benmokrane, B. Proposed Slenderness Limit for Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns Based on Experiments and Buckling Analysis. ACI Struct. J. 2020, 117, 241–254. [Google Scholar] [CrossRef]
- Adam, M.A.; Said, M.; Mahmoud, A.A.; Shanour, A.S. Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Constr. Build. Mater. 2015, 84, 354–366. [Google Scholar] [CrossRef]
- Afifi, M.Z.; Mohamed, H.M.; Benmokrane, B. Strength and axial behavior of circular concrete columns reinforced with CFRP bars and spirals. J. Compos. Constr. 2014, 18, 04013035. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Benmokrane, B. Inelastic second-order analysis for slender GFRP-reinforced concrete columns: Experimental investigations and theoretical study. J. Compos. Constr. 2020, 24, 04020016. [Google Scholar] [CrossRef]
- Elchalakani, M.; Dong, M.; Karrech, A.; Mohamed Ali, M.S.; Huo, J.S. Circular concrete columns and beams reinforced with GFRP bars and spirals under axial, eccentric, and flexural loading. J. Compos. Constr. 2020, 24, 04020008. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, X.; Wang, Z.; Feng, S.; Gong, X.; Shumuye, E.D. Experimental study on bond performance of carbon-and glass-fiber reinforced polymer (CFRP/GFRP) bars and steel strands to concrete. Materials 2021, 14, 1268. [Google Scholar] [CrossRef]
- AlNajmi, L.; Abed, F. Evaluation of FRP bars under compression and their performance in RC columns. Materials 2020, 13, 4541. [Google Scholar] [CrossRef]
- Abdelkarim, O.I.; Ahmed, E.A.; Mohamed, H.M.; Benmokrane, B. Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars. Eng. Struct. 2019, 186, 282–296. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit neural network model for predicting FRP-concrete interfacial bond strength based on a large database. Compos. Struct. 2020, 240, 111998. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Sebt, M.H. Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete. Mater. Struct. 2015, 48, 1581–1602. [Google Scholar] [CrossRef]
- Raza, A.; Shah, S.A.R.; Haq, F.; Arshad, H.; Raza, S.S.; Farhan, M.; Waseem, M. Prediction of axial load-carrying capacity of GFRP-reinforced concrete columns through artificial neural networks. Structures 2020, 28, 1557–1571. [Google Scholar] [CrossRef]
- Murad, Y.; Tarawneh, A.; Arar, F.; Al-Zu’bi, A.; Al-Ghwairi, A.; Al-Jaafreh, A.; Tarawneh, M. Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Structures 2021, 33, 3163–3172. [Google Scholar] [CrossRef]
- Protchenko, K.; Leśniak, P.; Szmigiera, E.; Urbański, M. New Model for Analytical Predictions on the Bending Capacity of Concrete Elements Reinforced with FRP Bars. Materials 2021, 14, 693. [Google Scholar] [CrossRef] [PubMed]
- Bakouregui, A.S.; Mohamed, H.M.; Yahia, A.; Benmokrane, B. Explainable extreme gradient boosting tree-based prediction of load-carrying capacity of FRP-RC columns. Eng. Struct. 2021, 245, 112836. [Google Scholar] [CrossRef]
- Theodoridis, S. Machine Learning: A Bayesian and Optimization Perspective; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Spinger: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Scikit-Learn Documentation. Available online: https://scikit-learn.org/stable/modules/ensemble.html#forest (accessed on 14 March 2022).
- Feng, D.C.; Wang, W.J.; Mangalathu, S.; Hu, G.; Wu, T. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 2021, 235, 111979. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/stable/tutorials/model.html (accessed on 14 March 2022).
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Arama, Z.A.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability 2020, 12, 6087. [Google Scholar] [CrossRef]
- Yücel, M.; Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M.; Kim, S.; Geem, Z.W. Adaptive-Hybrid Harmony Search Algorithm for Multi-Constrained Optimum Eco-Design of Reinforced Concrete Retaining Walls. Sustainability 2021, 13, 1639. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Geem, Z.W. Harmony Search Optimization of Dispersed Laminated Composite Plates. Materials 2020, 13, 2862. [Google Scholar] [CrossRef] [PubMed]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Metaheuristic Optimization of Laminated Composite Plates with Cut-Outs. Coatings 2021, 11, 1235. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimization of Shear and Lateral–Torsional Buckling of Steel Plate Girders Using Meta-Heuristic Algorithms. Appl. Sci. 2020, 10, 3639. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Billah, M. CO2 Emission and Cost Optimization of Concrete-Filled Steel Tubular (CFST) Columns Using Metaheuristic Algorithms. Sustainability 2021, 13, 8092. [Google Scholar] [CrossRef]
- Bekdaş, G.; Cakiroglu, C.; Islam, K.; Kim, S.; Geem, Z.W. Optimum Design of Cylindrical Walls Using Ensemble Learning Methods. Appl. Sci. 2022, 12, 2165. [Google Scholar] [CrossRef]
- Bekdas, G. Optimum design of axially symmetric cylindrical reinforced concrete walls. Struct. Eng. Mech. 2014, 51, 361–375. [Google Scholar] [CrossRef]
- Bekdaş, G. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical Reinforced Concrete Walls. J. Optim. Theory Appl. 2014, 164, 342–358. [Google Scholar] [CrossRef]
- Ocak, A.; Nigdeli, S.M.; Bekdaş, G.; Kim, S.; Geem, Z.W. Adaptive Harmony Search for Tuned Liquid Damper Optimization under Seismic Excitation. Appl. Sci. 2022, 12, 2645. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Bekdaş, G.; Yücel, M.; Nigdeli, S.M.; Geem, Z.W. Harmony Search Algorithm for Structural Engineering Problems. In Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications; Carbas, S., Toktas, A., Ustun, D., Eds.; Springer Tracts in Nature-Inspired Computing; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
R2 | RMSE | MAE | MAPE | Time Elapsed | |
---|---|---|---|---|---|
Train (KRR) | 0.903 | 744 | 492 | 0.243 | 2.40 s |
Test (KRR) | 0.841 | 768 | 548 | 0.299 | |
Train (SVR) | 0.522 | 1646 | 604 | 0.182 | 2.67 s |
Test (SVR) | 0.520 | 1334 | 652 | 0.304 | |
Train (Lasso) | 0.971 | 399 | 236 | 0.096 | 2.36 s |
Test (Lasso) | 0.955 | 244 | 194 | 0.101 | |
Train (GBM) | 0.999 | 57.9 | 44.1 | 0.022 | 2.54 s |
Test (GBM) | 0.975 | 182.9 | 146 | 0.063 | |
Train (AdaBoost) | 0.973 | 384 | 284 | 0.119 | 2.64 s |
Test (AdaBoost) | 0.910 | 345 | 283 | 0.117 | |
Train (RF) | 0.993 | 193 | 80.7 | 0.027 | 2.95 s |
Test (RF) | 0.969 | 204 | 142.4 | 0.066 | |
Train (XGBoost) | 0.999 | 22.3 | 7.5 | 0.003 | 4.41 s |
Test (XGBoost) | 0.982 | 153.8 | 112.7 | 0.054 | |
Train (CatBoost) | 0.999 | 35.7 | 28.9 | 0.013 | 29.92 s |
Test (CatBoost) | 0.931 | 301 | 197.4 | 0.119 |
Equation | R2 |
---|---|
0.958 | |
0.950 | |
0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns. Materials 2022, 15, 2742. https://doi.org/10.3390/ma15082742
Cakiroglu C, Islam K, Bekdaş G, Kim S, Geem ZW. Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns. Materials. 2022; 15(8):2742. https://doi.org/10.3390/ma15082742
Chicago/Turabian StyleCakiroglu, Celal, Kamrul Islam, Gebrail Bekdaş, Sanghun Kim, and Zong Woo Geem. 2022. "Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns" Materials 15, no. 8: 2742. https://doi.org/10.3390/ma15082742
APA StyleCakiroglu, C., Islam, K., Bekdaş, G., Kim, S., & Geem, Z. W. (2022). Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns. Materials, 15(8), 2742. https://doi.org/10.3390/ma15082742