Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Treatment
2.2. Oxidation Treatment
2.3. Characterization
3. Results and Discussion
3.1. Microstructure
3.2. Oxidation Kinetics
3.3. Structure and Chemical Composition
3.4. Microstructure and Interface
4. Conclusions
- (1)
- The oxidation resistance was significantly improved due to the formation of a protective Al2O3 film induced by the fluorine effect during isothermal oxidation at 1000 °C (6.03 mg/cm2 weight gain for the bare Ti-45Al-8.5Nb alloys, but 0.81 mg/cm2 for the fluorine-treated Ti-45Al-8.5Nb alloys).
- (2)
- The Ti diffused along the artificial microcracks, resulting in a quick growth of TiO2 in a short time (2 h), while a continuous Al2O3 film was generated underneath the oxide scale during further isothermal oxidation (100 h).
- (3)
- The Al2O3 particles between the alloy and continuous Al2O3 film were reflected in the γ-TiAl and α2-Ti3Al phases, which improved the adhesion of the oxide scale (fluorine-treated specimen had a deep yellow oxide scale on the surface without any exfoliation). These findings represent significant progress towards reducing the high temperature oxidation resistance of TiAl intermetallics by surface fluorine modification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appel, F.; Paul, J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pollock, T.M. Alloy design for aircraft engines. Nat. Mater. 2016, 15, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Gui, W.Y.; Hao, G.J.; Liang, Y.F.; Li, F.; Liu, X.; Lin, J.P. Surface Modification by Electrolytic Plasma Processing for High Nb-TiAl Alloys. Appl. Surf. Sci. 2016, 389, 1161–1168. [Google Scholar] [CrossRef]
- Chen, G.; Peng, Y.B.; Zheng, G.; Qi, Z.X.; Wang, M.Z.; Yu, H.C.; Dong, C.L.; Liu, C.T. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 2016, 15, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Palomares-García, A.J.; Pérez-Prado, M.T.; Molina-Aldareguia, J.M. Effect of lamellar orientation on the strength and operating deformation mechanisms of fully lamellar TiAl alloys determined by micropillar compression. Acta Mater. 2017, 123, 102–114. [Google Scholar] [CrossRef]
- Gui, W.Y.; Liang, Y.F.; Hao, G.J.; Lin, J.P.; Sun, D.Y.; Liu, M.D.; Liu, C.; Zhang, H. High Nb-TiAl-based porous composite with hierarchical micro-pore structure for high temperature applications. J. Alloys Compd. 2018, 744, 463–469. [Google Scholar] [CrossRef]
- Gui, W.Y.; Qu, Y.H.; Zhang, H.; Lin, J.P. Cathode electrolytic plasma deposition of (Al0.9Cr0.1)2O3/γ-Al2O3 composite coatings onto Ti45Al8.5Nb0.1Y0.2W alloys for high-temperature applications. Materialia 2021, 15, 101002. [Google Scholar] [CrossRef]
- Gui, W.Y.; Lin, J.P.; Liu, M.D.; Qu, Y.H.; Wang, Y.C.; Liang, Y.F. Effects of Nano-NiO Addition on the Microstructure and Corrosion Properties of High Nb-TiAl Alloy. J. Alloys Compd. 2019, 782, 973–980. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Z.P.; Hao, G.J.; Liang, Y.F.; Ding, X.F.; Lin, J.P. Ni-doped Al2O3 coatings prepared by cathode plasma electrolysis deposition on Ti-45Al-8.5 Nb alloys. Appl. Surf. Sci. 2018, 455, 144–152. [Google Scholar] [CrossRef]
- Becker, S.; Rahmel, A.; Schorr, M.; Schutze, M. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys. Oxid. Met. 1992, 38, 425–464. [Google Scholar] [CrossRef]
- Kekare, S.A.; Aswath, P.B. Oxidation of TiAl based intermetallics. J. Mater. Sci. 1997, 32, 2485–2499. [Google Scholar] [CrossRef]
- Zhao, L.L.; Lin, J.P.; Chen, G.L.; Wang, Y.; Ye, F. Early oxidation behavior of Ti-50Al and Ti-45Al-8Nb alloys at high temperature. Acta Metall. Sin. 2008, 460, 368–374. [Google Scholar]
- Pflumm, R.; Friedle, S.; Schütze, M. Oxidation protection of gamma-TiAl-based alloys—A review. Intermetallics. 2015, 56, 1–14. [Google Scholar] [CrossRef]
- Cizek, J.; Man, O.; Roupcova, P.; Loke, K.; Dlouhy, I. Oxidation performance of cold spray Ti-Al barrier coated γ-TiAl intermetallic substrates. Surf. Coat. Technol. 2015, 268, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Samal, S.; Tyc, O.; Cizek, J.; Klecka, J.; Lukáč, F.; Molnárová, O.; de Prado, E.; Weiss, Z.; Kopeček, J.; Heller, L.; et al. Fabrication of thermal plasma sprayed NiTi coatings possessing functional properties. Coatings 2021, 11, 610. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, Y.R.; Wang, R.Y.; Wang, Y.L.; Cheng, F.; Ma, Y.; Hei, H.J.; Gao, J.; Zhou, B.; Wang, Y.S.; et al. Microstructure, oxidation behavior and adhesion of a CoNiCrAlTaY coating deposited on a high Nb-TiAl alloy by plasma surface metallizing technique. Vacuum 2020, 179, 109494–109504. [Google Scholar] [CrossRef]
- Braun, R.; Fröhlich, M.; Ebach-Stahl, A.; Leyens, C. Investigation on the oxidation behaviour of gamma titanium aluminides coated with thermal barrier coatings. Mater. Corros. 2008, 59, 539–546. [Google Scholar] [CrossRef]
- Panov, D.O.; Sokolovsky, V.S.; Stepanov, N.D.; Zherebtsov, S.V.; Panin, P.V.; Nochovnaya, N.A.; Salishchev, G.A. Oxidation resistance and thermal stability of a β-solidified γ-TiAl based alloy after nitrogen ion implantation. Corros. Sci. 2020, 177, 109003. [Google Scholar] [CrossRef]
- Wu, L.K.; Xia, J.J.; Jiang, M.Y.; Wang, Q.; Wu, H.X.; Sun, D.B.; Yu, H.Y.; Cao, F.H. Oxidation behavior of Ti45Al8.5Nb alloy anodized in NH4F containing solution. Corros. Sci. 2020, 166, 108447–108458. [Google Scholar] [CrossRef]
- Schutze, M.; Schumacher, G.; Dettenwanger, F.; Hornauer, U.; Richter, E.; Wieser, E.; Moller, W. The halogen effect in the oxidation of intermetallic titanium aluminides. Corros. Sci. 2002, 44, 303–318. [Google Scholar] [CrossRef]
- Zschaua, H.E.; Schutze, M.; Baumann, H.; Bethge, K. The time behaviour of surface applied fluorine inducing the formation of an alumina scale on gamma-TiAl during oxidation at 900 °C in air. Intermetallics 2006, 14, 1136–1142. [Google Scholar] [CrossRef]
- Donchev, A.; Richter, E.; Schutze, M.; Yankov, R. Improving the oxidation resistance of TiAl-alloys with fluorine. J. Alloys Compd. 2008, 452, 7–10. [Google Scholar] [CrossRef]
- Tang, G.Z.; Sun, K.W.; Ma, X.X.; Liu, W.J. Effects of NH4F solution dipping treatment on high temperature oxidation behaviors of γ-TiAl alloy. Trans. Nonferrous Met. Soc. China 2001, 21, 1535–1539. [Google Scholar]
- Zschaua, H.-E.; Schutze, M.; Baumann, H.; Bethge, K. Application of ion beam analysis for the control of the improvement of the oxidation resistance of TiAl at 900 °C in air by fluorine ion implantation and HF-treatment. Nucl. Instrum. Methods Phys. Res. B 2005, 240, 137–141. [Google Scholar] [CrossRef]
- Neve, S.; Masset, P.J.; Yankov, R.A.; Kolitsch, A.; Zschau, H.E.; Schütze, M. High temperature oxidation resistance of fluorine-treated TiAl alloys: Chemical vs. ion beam fluorination techniques. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 3381–3385. [Google Scholar] [CrossRef]
- Zhao, L.L.; Li, G.Y.; Zhang, L.Q. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 °C. Intermetallics 2010, 18, 1589–1596. [Google Scholar] [CrossRef]
- Yoshihara, M.; Miura, K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics 1995, 3, 357–363. [Google Scholar] [CrossRef]
- Lu, X.; He, X.B.; Zhang, B.; Qu, X.H.; Zhang, L.; Guo, Z.X.; Tian, J.J. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering. J. Alloys Compd. 2009, 478, 220–225. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhao, L.L.; Li, G.Y.; Zhang, L.Q.; Song, X.P.; Ye, F.; Chen, G.L. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 2011, 19, 131–136. [Google Scholar] [CrossRef]
- Lu, W.; Chen, C.L.; He, L.L.; Wang, F.H.; Lin, J.P.; Chen, G.L. (S)TEM study of different stages of Ti-45Al-8Nb-0.2W-0.2B-0.02Y alloy oxidation at 900 °C. Corros. Sci. 2008, 50, 978–988. [Google Scholar] [CrossRef]
- Donchev, A.; Schütze, M.; Kolitsch, A.; Yankov, R. Comparison of Different Fluorine-treatments for Improved High Temperature Oxidation Resistance of TiAl-alloys. Mater. Sci. Forum 2011, 1295, 145–150. [Google Scholar] [CrossRef]
- Donchev, A.; Gleeson, B.; Schutze, M. Thermodynamic considerations of the beneficial effect of halogens on the oxidation resistance of TiAl-based alloys. Intermetallics 2003, 11, 387–398. [Google Scholar] [CrossRef]
- Schutze, M.; Hald, M. Improvement of the oxidation resistance of TiAl alloys by using the chlorine effect. Mater. Sci. Eng. A 1997, 239–240, 847–858. [Google Scholar] [CrossRef]
- Friedle, S.; Pflumm, R.; Seyeux, A.; Marcus, P.; Schutze, M. ToF-SIMS Study on the Initial Stages of the Halogen Effect in the Oxidation of TiAl Alloys. Oxid. Met. 2018, 89, 123–139. [Google Scholar] [CrossRef]
- Yankov, R.A.; Shevchenko, N.; Rogozin, A.; Maitz, M.F.; Richter, E.; Mouller, W.; Donchev, A.; Schutze, M. Reactive plasma immersion ion implantation for surface passivation. Surf. Coat. Technol. 2007, 201, 6752–6758. [Google Scholar] [CrossRef]
- Dai, J.J.; Zhu, J.Y.; Chen, C.Z.; Weng, F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016, 685, 784–798. [Google Scholar] [CrossRef]
- Reddy, R.G.; Li, Y.; Mantha, D. Effect of niobium addition on the oxidation behavior of a Ti3Al alloy. High Temp. Mater. Process. 2003, 22, 73–86. [Google Scholar] [CrossRef]
- Zatsepin, A.; Boukhvalov, D.W.; Kurmaev, E.Z.; Zhidkov, I.S.; Kim, S.S.; Cui, L.; Gavrilov, N.V.; Cholakh, S.O. XPS and DFT study of Sn incorporation into ZnO and TiO2 host matrices by pulsed ion implantation. Phys. Status Solidi 2015, 252, 1890–1896. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Schutze, M. The initial stages in the oxidation of TiAl. Mater. Corros. 1997, 48, 13–22. [Google Scholar] [CrossRef]
- Masset, P.J.; Neve, S.; Zschau, H.E.; Schutze, M. Influence of alloy compositions on the halogen effect in TiAl alloys. Mater. Corros. 2008, 59, 609–618. [Google Scholar] [CrossRef]
Point | Composition/at % | |||
---|---|---|---|---|
Ti | Al | Nb | O | |
1 | 11.07 | 20.30 | 0.75 | 67.86 |
2 | 25.19 | 0.46 | 0.67 | 73.67 |
3 | 19.93 | 2.25 | 0.38 | 77.44 |
4 | 14.27 | 7.66 | 0.49 | 77.58 |
5 | 12.42 | 9.72 | 0.34 | 77.52 |
6 | 9.84 | 13.87 | 0.31 | 75.98 |
7 | 9.91 | 24.26 | 0.98 | 64.85 |
8 | 2.64 | 36.84 | 0.26 | 60.26 |
9 | 54.44 | 18.34 | 1.48 | 25.75 |
10 | 45.11 | 27.78 | 14.77 | 12.34 |
11 | 25.21 | 1.16 | 0.02 | 73.61 |
12 | 6.33 | 25.42 | 0.90 | 67.36 |
13 | 5.02 | 26.64 | 0.47 | 67.87 |
14 | 11.52 | 11.70 | 0.27 | 76.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, W.; Liang, Y.; Qin, J.; Wang, Y.; Lin, J. Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C. Materials 2022, 15, 2767. https://doi.org/10.3390/ma15082767
Gui W, Liang Y, Qin J, Wang Y, Lin J. Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C. Materials. 2022; 15(8):2767. https://doi.org/10.3390/ma15082767
Chicago/Turabian StyleGui, Wanyuan, Yongfeng Liang, Jingyan Qin, Yongsheng Wang, and Junpin Lin. 2022. "Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C" Materials 15, no. 8: 2767. https://doi.org/10.3390/ma15082767
APA StyleGui, W., Liang, Y., Qin, J., Wang, Y., & Lin, J. (2022). Fluorine Effect for Improving Oxidation Resistance of Ti-45Al-8.5Nb Alloy at 1000 °C. Materials, 15(8), 2767. https://doi.org/10.3390/ma15082767