Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions
2.3. Sample Preparation
2.4. Testing Method
3. Results
3.1. Unconfined Compression Strength
3.2. Linear Expansion
3.3. Derivative Thermo-Gravimetric (DTG) Analysis
4. Discussion
4.1. Unconfined Compression Strength
4.2. Linear Expansion
5. Conclusions
- The use of silica fume as a lime substitution at low (4 wt%) and intermediate (6 wt%) binder levels induces a gradual compromise on the UCS as its content increases, while its usage in high (10 wt%) binder level yields a slight UCS improvement, relative to the control (K9G–10L0S). The decreasing phenomenon at binder levels of 4 and 6% can be credited to the faster consumption of lime, as it restricts ettringite formation; thus, the strength gain associated with the growth of ettringite is cancelled. As for the strength gain at 10% binder, this can be assigned to the higher binder amount, as it yields a higher degree of fabric modification and forms much more hydrated products.
- The expansivity of sulfate kaolinite specimens stabilised with binary blends of L–S is directly proportional to the lime content and adversely proportional to silica fume content, of which, a blending ratio of 30% L–70% S is the optimum for suppressing the sulfate-induced expansion. The decreasing phenomenon, in response to the silica fume increases, is due to the higher pozzolanic activity of silica fume, as it restricts the formation of ettringite, which has been substantiated by a gradual reduction in the broadness of the ettringite peak, coupled with a concomitant increase of the gypsum peak in the DTG curves.
- Silica fume has the potential to reduce the ettringite formation, but it cannot lead to a complete restriction, probably due to the faster reaction of ettringite.
- The limitations to this study, which could impact the authenticity of the outcomes, are the utilisation of an artificially sulfate-dosed soil (kaolinite–gypsum) and single silica fume type as the received state (un-densified silica fume without treatment). Therefore, a research study considering the use of different natural soils and pre-treatment of silica fume is recommended to overcome this deficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seco, A.; Miqueleiz, L.; Prieto, E.; Marcelino, S.; García, B.; Urmeneta, P. Sulfate Soils Stabilization with Magnesium-Based Binders. Appl. Clay Sci. 2017, 135, 457–464. [Google Scholar] [CrossRef]
- Rajasekaran, G. Sulphate Attack and Ettringite Formation in the Lime and Cement Stabilized Marine Clays. Ocean Eng. 2005, 32, 1133–1159. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S. Fundamentals of Soil Stabilization. Int. J. Geo-Eng. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Kinuthia, J.; Wild, S. Effects of Some Metal Sulfates on the Strength and Swelling Properties of Lime-Stabilised Kaolinite. Int. J. Pavement Eng. 2001, 2, 103–120. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Compressive Strength and Microstructural Analysis of Unfired Clay Masonry Bricks. Eng. Geol. 2009, 109, 230–240. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Engineering Properties of Unfired Clay Masonry Bricks. Eng. Geol. 2009, 107, 130–139. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Free Swell Potential of Lime-Treated Gypseous Soil. Appl. Clay Sci. 2014, 102, 93–103. [Google Scholar] [CrossRef]
- Yi, Y.; Liska, M.; Al-Tabbaa, A. Properties of Two Model Soils Stabilized with Different Blends and Contents of GGBS, MgO, Lime, and PC. J. Mater. Civ. Eng. 2014, 26, 267–274. [Google Scholar] [CrossRef]
- Yi, Y.; Gu, L.; Liu, S. Microstructural and Mechanical Properties of Marine Soft Clay Stabilized by Lime-Activated Ground Granulated Blastfurnace Slag. Appl. Clay Sci. 2015, 103, 71–76. [Google Scholar] [CrossRef]
- Yi, Y.; Zheng, X.; Liu, S.; Al-Tabbaa, A. Comparison of Reactive Magnesia- and Carbide Slag-Activated Ground Granulated Blastfurnace Slag and Portland Cement for Stabilisation of a Natural Soil. Appl. Clay Sci. 2015, 111, 21–26. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y.; Puppala, A.J. Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag. J. Geotech. Geoenviron. Eng. 2020, 146, 06020008. [Google Scholar] [CrossRef]
- Adeleke, B.O.; Kinuthia, J.M.; Oti, J.E. Impacts of MgO Waste:GGBS Formulations on the Performance of a Stabilised Natural High Sulphate Bearing Soil. Constr. Build. Mater. 2022, 315, 125745. [Google Scholar] [CrossRef]
- Ehwailat, K.I.A.; Ismail, M.A.M.; Ezreig, A.M.A. Novel Approach for Suppression of Ettringite Formation in Sulfate-Bearing Soil Using Blends of Nano-Magnesium Oxide, Ground Granulated Blast-Furnace Slag and Rice Husk Ash. Appl. Sci. 2021, 11, 6618. [Google Scholar] [CrossRef]
- YI, Y.; LI, C.; LIU, S.; AL-TABBAA, A. Resistance of MgO–GGBS and CS–GGBS Stabilised Marine Soft Clays to Sodium Sulfate Attack. Géotechnique 2014, 64, 673–679. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. Impact of Hydrated Magnesium Carbonate Additives on the Carbonation of Reactive MgO Cements. Cem. Concr. Res. 2013, 54, 87–97. [Google Scholar] [CrossRef]
- Jin, F.; Al-Tabbaa, A. Evaluation of Novel Reactive MgO Activated Slag Binder for the Immobilisation of Lead and Zinc. Chemosphere 2014, 117, 285–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, F.; Wang, F.; Al-Tabbaa, A. Three-Year Performance of in-Situ Solidified/Stabilised Soil Using Novel MgO-Bearing Binders. Chemosphere 2016, 144, 681–688. [Google Scholar] [CrossRef] [Green Version]
- García, M.A.; Chimenos, J.M.; Fernández, A.I.; Miralles, L.; Segarra, M.; Espiell, F. Low-Grade MgO Used to Stabilize Heavy Metals in Highly Contaminated Soils. Chemosphere 2004, 56, 481–491. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Jin, F.; Al-Tabbaa, A. The Performance of Blended Conventional and Novel Binders in the In-Situ Stabilisation/Solidification of a Contaminated Site Soil. J. Hazard. Mater. 2015, 285, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Provis, J.L. Alkali-Activated Materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Wang, L.; Roy, A.; Seals, R.K.; Metcalf, J.B. Stabilization of Sulfate-Containing Soil by Cementitious Mixtures Mechanical Properties. Transp. Res. Rec. 2003, 1837, 12–19. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hasanzadehshooiili, H.; Karimi, M.; Daghigh, Y.; Medzvieckas, J. Stabilization of Problematic Silty Sands Using Microsilica and Lime. Balt. J. Road Bridge Eng. 2015, 10, 61–70. [Google Scholar] [CrossRef]
- Goodarzi, A.R.; Akbari, H.R.; Salimi, M. Enhanced Stabilization of Highly Expansive Clays by Mixing Cement and Silica Fume. Appl. Clay Sci. 2016, 132–133, 675–684. [Google Scholar] [CrossRef]
- Mousavi, S.E. Utilization of Silica Fume to Maximize the Filler and Pozzolanic Effects of Stabilized Soil with Cement. Geotech. Geol. Eng. 2018, 36, 77–87. [Google Scholar] [CrossRef]
- Singh, P.; Dash, H.K.; Samantaray, S. Effect of Silica Fume on Engineering Properties of Expansive Soil. In Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 33, pp. 5035–5040. [Google Scholar]
- Tiwari, N.; Satyam, N.; Singh, K. Effect of Curing on Micro-Physical Performance of Polypropylene Fiber Reinforced and Silica Fume Stabilized Expansive Soil Under Freezing Thawing Cycles. Sci. Rep. 2020, 10, 7624. [Google Scholar] [CrossRef] [PubMed]
- Türköz, M.; Umu, S.U.; Öztürk, O. Effect of Silica Fume as a Waste Material for Sustainable Environment on the Stabilization and Dynamic Behavior of Dispersive Soil. Sustain. 2021, 13, 4321. [Google Scholar] [CrossRef]
- Murthi, P.; Saravanan, R.; Poongodi, K. Studies on the Impact of Polypropylene and Silica Fume Blended Combination on the Material Behaviour of Black Cotton Soil. In Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 39, pp. 621–626. [Google Scholar] [CrossRef]
- Ghavami, S.; Naseri, H.; Jahanbakhsh, H.; Moghadas Nejad, F. The Impacts of Nano-SiO2 and Silica Fume on Cement Kiln Dust Treated Soil as a Sustainable Cement-Free Stabilizer. Constr. Build. Mater. 2021, 285, 122918. [Google Scholar] [CrossRef]
- Saygili, A.; Dayan, M. Freeze-Thaw Behavior of Lime Stabilized Clay Reinforced with Silica Fume and Synthetic Fibers. Cold Reg. Sci. Technol. 2019, 161, 107–114. [Google Scholar] [CrossRef]
- Billong, N.; Oti, J.; Kinuthia, J. Using Silica Fume Based Activator in Sustainable Geopolymer Binder for Building Application. Constr. Build. Mater. 2021, 275, 122177. [Google Scholar] [CrossRef]
- Suraneni, P.; Weiss, J. Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis. Cem. Concr. Compos. 2017, 83, 273–278. [Google Scholar] [CrossRef]
- GhavamShirazi, S.; Bilsel, H. Characterization of Volume Change and Strength Behavior of Micro-Silica and Lime-Stabilized Cyprus Clay. Acta Geotech. 2021, 16, 827–840. [Google Scholar] [CrossRef]
- Beetham, P.; Dijkstra, T.; Dixon, N.; Fleming, P.; Hutchison, R.; Bateman, J. Lime Stabilisation for Earthworks: A UK Perspective. Proc. Inst. Civ. Eng. Ground Improv. 2015, 168, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Oti, J.E.; Kinuthia, J.M.; Bai, J. Using Slag for Unfired-Clay Masonry-Bricks. Proc. Inst. Civ. Eng. Constr. Mater. 2008, 161, 147–155. [Google Scholar] [CrossRef]
- Kinuthia, J.M.; Oti, J.E. Designed Non-Fired Clay Mixes for Sustainable and Low Carbon Use. Appl. Clay Sci. 2012, 59–60, 131–139. [Google Scholar] [CrossRef]
- BS EN 13286-2 Unbound and Hydraulically Bound Mixtures—Part 2: Test Methods for Laboratory Reference Density and Water Content-Proctor Compaction; BSI Standard Limited: London, UK, 2012; ISBN 132862:2010.
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Utilisation of Lime Activated GGBS to Reduce the Deleterious Effect of Flooding on Stabilised Road Structural Materials: A Laboratory Simulation. Eng. Geol. 2011, 122, 334–338. [Google Scholar] [CrossRef]
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Enhancing the Durability of Flooded Low-Capacity Soils by Utilizing Lime-Activated Ground Granulated Blastfurnace Slag (GGBS). Eng. Geol. 2011, 123, 179–186. [Google Scholar] [CrossRef]
- Obuzor, G.N.; Kinuthia, J.M.; Robinson, R.B. Soil Stabilisation with Lime-Activated-GGBS-A Mitigation to Flooding Effects on Road Structural Layers/Embankments Constructed on Floodplains. Eng. Geol. 2012, 151, 112–119. [Google Scholar] [CrossRef]
- BS EN 13286-50 Unbound and Hydraulically Bound Mixtures—Part 50: Method for the Manufacture of Test Specimens of Hydraulically Bound Mixtures Using Proctor Equipment or Vibrating Table Compaction; BSI Standard Limited: London, UK, 2004; ISBN 0580453022.
- BS EN 13286-49 Unbound and Hydraulically Bound Mixtures—Part 49: Accelerated Swelling Test for Soil Treated by Lime and/or Hydraulic Binder; BSI Standard Limited: London, UK, 2004; ISBN 0580435644.
- Oti, J.E.; Kinuthia, J.M.; Robinson, R.B. The Development of Unfired Clay Building Material Using Brick Dust Waste and Mercia Mudstone Clay. Appl. Clay Sci. 2014, 102, 148–154. [Google Scholar] [CrossRef]
- Kinuthia, J.M.; Nidzam, R.M. Towards Zero Industrial Waste: Utilisation of Brick Dust Waste in Sustainable Construction. Waste Manag. 2011, 31, 1867–1878. [Google Scholar] [CrossRef]
- John, U.E.; Jefferson, I.; Boardman, D.I.; Ghataora, G.S.; Hills, C.D. Leaching Evaluation of Cement Stabilisation/Solidification Treated Kaolin Clay. Eng. Geol. 2011, 123, 315–323. [Google Scholar] [CrossRef]
- Rahmat, M.N.; Ismail, N. Sustainable Stabilisation of the Lower Oxford Clay by Non-Traditional Binder. Appl. Clay Sci. 2011, 52, 199–208. [Google Scholar] [CrossRef]
- BS 1924 2 Hydraulically Bound and Stabilized Materials for Civil Engineering Purposes—Part 2: Sample Preparation and Testing of Materials during and after Treatment; BSI Standard Limited: London, UK, 2018; ISBN 9780580974199.
- BS EN ISO 17892-7 Geotechnical Investigation and Testing-Laboratory Testing of Soil—Part 7: Unconfined Compression Test (ISO 17892-7:2017); BSI Standard Limited: London, UK, 2018; ISBN 178927:2017.
- Vitale, E.; Deneele, D.; Russo, G.; Ouvrard, G. Short-Term Effects on Physical Properties of Lime Treated Kaolin. Appl. Clay Sci. 2016, 132–133, 223–231. [Google Scholar] [CrossRef]
- Behnood, A. Soil and Clay Stabilization with Calcium- and Non-Calcium-Based Additives: A State-of-the-Art Review of Challenges, Approaches and Techniques. Transp. Geotech. 2018, 17, 14–32. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Behaviour and Mineralogy Changes in Lime-Treated Expansive Soil at 50 °C. Appl. Clay Sci. 2010, 50, 199–203. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Behaviour and Mineralogy Changes in Lime-Treated Expansive Soil at 20 °C. Appl. Clay Sci. 2010, 50, 191–198. [Google Scholar] [CrossRef]
- Al-Mukhtar, M.; Lasledj, A.; Alcover, J.F. Lime Consumption of Different Clayey Soils. Appl. Clay Sci. 2014, 95, 133–145. [Google Scholar] [CrossRef]
- Nidzam, R.M.; Kinuthia, J.M. Sustainable Soil Stabilisation with Blastfurnace Slag—A Review. Proc. Inst. Civ. Eng. Constr. Mater. 2010, 163, 157–165. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Jones, G.I.; Higgins, D.D. Suppression of Swelling Associated with Ettringite Formation in Lime Stabilized Sulphate Bearing Clay Soils by Partial Substitution of Lime with Ground Granulated Blastfurnace Slag. Eng. Geol. 1999, 51, 257–277. [Google Scholar] [CrossRef]
- Yong, R.N.; Ouhadi, V.R. Experimental Study on Instability of Bases on Natural and Lime/Cement-Stabilized Clayey Soils. Appl. Clay Sci. 2007, 35, 238–249. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Mechanism of Improvement in the Strength and Volume Change Behavior of Lime Stabilized Soil. Eng. Geol. 2015, 198, 53–64. [Google Scholar] [CrossRef]
- Jha, A.K.; Sivapullaiah, P.V. Volume Change Behavior of Lime Treated Gypseous Soil - Influence of Mineralogy and Microstructure. Appl. Clay Sci. 2016, 119, 202–212. [Google Scholar] [CrossRef]
- Garzón, E.; Cano, M.; ÒKelly, B.C.; Sánchez-Soto, P.J. Effect of Lime on Stabilization of Phyllite Clays. Appl. Clay Sci. 2016, 123, 329–334. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Jones, G.I.; Higgins, D.D. Effects of Partial Substitution of Lime with Ground Granulated Blast Furnace Slag (GGBS) on the Strength Properties of Lime-Stabilised Sulphate-Bearing Clay Soils. Eng. Geol 1998, 51, 37–53. [Google Scholar] [CrossRef]
- Bell, F. Lime Stabilization of Clay Minerals and Soils. Eng. Geol. 1996, 42, 223–237. [Google Scholar] [CrossRef]
- Dash, S.K.; Hussain, M. Lime Stabilization of Soils: Reappraisal. J. Mater. Civ. Eng. 2012, 24, 707–714. [Google Scholar] [CrossRef]
- Chemeda, Y.C.; Deneele, D.; Ouvrard, G. Short-Term Lime Solution-Kaolinite Interfacial Chemistry and Its Effect on Long-Term Pozzolanic Activity. Appl. Clay Sci. 2018, 161, 419–426. [Google Scholar] [CrossRef]
- Konan, K.L.; Peyratout, C.; Smith, A.; Bonnet, J.P.; Rossignol, S.; Oyetola, S. Comparison of Surface Properties between Kaolin and Metakaolin in Concentrated Lime Solutions. J. Colloid Interface Sci. 2009, 339, 103–109. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Kutanaei, S.S. Microstructure Characteristics of Cement-Stabilized Sandy Soil Using Nanosilica. J. Rock Mech. Geotech. Eng. 2017, 9, 981–988. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, Z.; Du, P.; Cheng, X. Effects of Nano-Silica on Hydration Properties of Tricalcium Silicate. Constr. Build. Mater. 2016, 125, 1169–1177. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M. Stabilised Unfired Clay Bricks for Environmental and Sustainable Use. Appl. Clay Sci. 2012, 58, 52–59. [Google Scholar] [CrossRef]
- Wild, S.; Kinuthia, J.M.; Robinson, R.B.; Humphreys, I. Effects of Ground Granulated Blast Furnace Slag (GGBS) on the Strength and Swelling Properties of Lime-Stabilized Kaolinite in the Presence of Sulphates. Clay. Min. 1996, 31, 423–433. [Google Scholar] [CrossRef]
- Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a Nanotechnology-Based Product in Cementitious Binders for Sustainable Mitigation of Sulphate-Induced Heaving of Stabilised Soils. Eng. Sci. Technol. Int. J. 2021, 24, 436–448. [Google Scholar] [CrossRef]
Oxides | Compositions (%) | ||
---|---|---|---|
Kaolinite | Lime | Silica Fume | |
<0.01 | 71.56 | 0.2 | |
0.21 | 0.58 | 0.1 | |
47.32 | 0.67 | 98.4 | |
35.96 | 0.07 | 0.2 | |
0.07 | <0.02 | ||
0.12 | 0.03 | 0.03 | |
0.69 | 0.05 | 0.01 | |
0.02 | 0.02 | ||
1.8 | <0.01 | 0.2 | |
0.02 | <0.01 | ||
<0.01 | 0.02 | ||
0.07 | <0.01 | ||
0.01 | 0.19 | 0.1 | |
0.1 | 27.4 | 0.5 |
Physical Properties | Kaolinite | Lime | Silica Fume |
---|---|---|---|
480 | 300 | ||
2.14 | 2.82 | 3.15 | |
pH Value | 5.37 | 12.62 | 7 |
Colour | White | White | Grey |
Swelling pressure (kPa) | 1.3 | ||
Linear expansion (%) | 6.2 | ||
Physical form | Fine powder | Powder | Powder |
Groups | Mix Code | Lime Substitution Level (%) | Mix Compositions (%) | ||||
---|---|---|---|---|---|---|---|
Target Soil Material (%) | Water (%) | Binder (%) | |||||
Kaolinite | Gypsum | Lime | Silica Fume | ||||
4(LS) | K0G–4L0S | 0 | 100 | 30 | 4 | ||
K9G–4L0S | 0 | 91 | 9 | 4 | |||
K9G–3.6L0.4S | 10 | 91 | 9 | 3.6 | 0.4 | ||
K9G–2.8L1.2S | 30 | 91 | 9 | 2.8 | 1.2 | ||
K9G–2L2S | 50 | 91 | 9 | 2 | 2 | ||
6(LS) | K0G–6L0S | 0 | 100 | 30 | 6 | ||
K9G–6L0S | 0 | 91 | 9 | 6 | |||
K9G–5.4L0.6S | 10 | 91 | 9 | 5.4 | 0.6 | ||
K9G–4.2L1.8S | 30 | 91 | 9 | 4.2 | 1.8 | ||
K9G–3L3S | 50 | 91 | 9 | 3 | 3 | ||
K9G–1.8L4.2S | 70 | 91 | 9 | 1.8 | 4.2 | ||
10(LS) | K0G–10L0S | 0 | 100 | 31 | 10 | ||
K9G–10L0S | 0 | 91 | 9 | 10 | |||
K9G–9L1S | 10 | 91 | 9 | 9 | 1 | ||
K9G–7L3S | 30 | 91 | 9 | 7 | 3 | ||
K9G–5L5S | 50 | 91 | 9 | 5 | 5 | ||
K9G–3L7S | 70 | 91 | 9 | 3 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebailila, M.; Kinuthia, J.; Oti, J. Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials 2022, 15, 2821. https://doi.org/10.3390/ma15082821
Ebailila M, Kinuthia J, Oti J. Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials. 2022; 15(8):2821. https://doi.org/10.3390/ma15082821
Chicago/Turabian StyleEbailila, Mansour, John Kinuthia, and Jonathan Oti. 2022. "Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends" Materials 15, no. 8: 2821. https://doi.org/10.3390/ma15082821
APA StyleEbailila, M., Kinuthia, J., & Oti, J. (2022). Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends. Materials, 15(8), 2821. https://doi.org/10.3390/ma15082821