Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete
Abstract
:1. Introduction
2. Methods
2.1. Data Retrieval and Analysis
- Recycled concrete aggregate (RCA) replacement ratio;
- Parent concrete strength, bulk density of natural aggregate;
- Bulk density of RCA;
- Bulk density of natural aggregate;
- Water absorption of natural aggregate;
- Water absorption of RCA;
- Aggregate–cement ratio (a/c);
- Effective water–cement ratio (weff/c);
- Nominal maximum natural aggregate size;
- Nominal maximum RCA size;
- Los Angeles abrasion index of natural aggregate;
- Los Angeles abrasion index of RCA.
2.2. Machine Learning Methods Employed
2.2.1. Gradient Boosting
2.2.2. Random Forest
3. Results and Analysis
3.1. Gradient Boosting Model
3.1.1. Compressive Strength
3.1.2. Flexural Strength
3.2. Random Forest Model
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.3. Models’ Validation
3.4. Sensitivity Analysis
- = highest estimated value on the result;
- = lowest estimated value on the result;
- = attained impact percentage for a certain variable.
4. Discussions
5. Conclusions
- The random forest model outperformed the gradient boosting model in estimating the compressive and flexural strength of RAC, with an R2 value of 0.91 for compressive strength and 0.86 for flexural strength prediction. However, the results of the gradient boosting model for the compressive strength estimation of RAC were also in the reasonable range, with an R2 of 0.87, but for the flexural strength estimation, the accuracy of the gradient boosting model was lower, with an R2 of 0.79. The lower R2 values for the flexural strength estimation in both models were because of the lower number of input data points. Hence, the random forest technique is suitable to be used for the strength prediction of RAC;
- The analysis of predicted results indicated a lower variance from the experimental results for the random forest model compared to the gradient boosting model, which also validated the higher precision of the random forest model in predicting the strength of RAC;
- K-fold and statistical evaluations further validated the model’s precision. These assessments also validated the higher precision of the random forest model due to the lower error values in comparison with the gradient boosting model;
- Sensitivity analysis revealed that the RCA replacement ratio was the most important constituent affecting the model’s outcome, accounting for 18.7% of the total, followed by parent concrete strength at 15.3% and the effective water–cement ratio at 14.8%. However, the other input parameters had less contribution to the forecast of RAC’s compressive strength, with the Los Angeles abrasion index of RCA, water absorption of RCA, a/c, nominal maximum RCA size, bulk density of RCA, Los Angeles abrasion index of natural aggregate, bulk density of natural aggregate, nominal maximum natural aggregate size, and water absorption of the natural aggregate accounting for 11.6%, 8.7%, 8.1%, 6.5%, 5.0%, 3.7%, 2.8%, 2.5%, and 2.3%, respectively;
- This sort of study will benefit the building sector by allowing for the advancement of rapid and cost-effective techniques for estimating the strength of materials. Furthermore, by encouraging computational techniques, the adoption and application of RAC in the building sector will be accelerated.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A scientometric analysis approach to analyze the present research on recycled aggregate concrete. J. Build. Eng. 2022, 46, 103679. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, P.; Goyal, P. Reviewing the behaviour of high volume fly ash based self compacting concrete. J. Build. Eng. 2019, 26, 100882. [Google Scholar] [CrossRef]
- Meisuh, B.K.; Kankam, C.K.; Buabin, T.K. Effect of quarry rock dust on the flexural strength of concrete. Case Stud. Constr. Mater. 2018, 8, 16–22. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate. Constr. Build. Mater. 2017, 148, 376–385. [Google Scholar] [CrossRef]
- Saha, S.; Rajasekaran, C. Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement. Adv. Concr. Constr. 2016, 4, 27. [Google Scholar] [CrossRef]
- Xiao, J.; Li, W.; Poon, C. Recent studies on mechanical properties of recycled aggregate concrete in China—A review. Sci. China Technol. Sci. 2012, 55, 1463–1480. [Google Scholar] [CrossRef]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- McNeil, K.; Kang, T.H.-K. Recycled concrete aggregates: A review. Int. J. Concr. Struct. Mater. 2013, 7, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.S.; Shui, Z.; Lam, L.; Fok, H.; Kou, S. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 2004, 34, 31–36. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S.; Chan, D. Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. J. Mater. Civ. Eng. 2007, 19, 709–717. [Google Scholar] [CrossRef]
- Xiao, J.; Li, W.; Fan, Y.; Huang, X. An overview of study on recycled aggregate concrete in China (1996–2011). Constr. Build. Mater. 2012, 31, 364–383. [Google Scholar] [CrossRef]
- Butler, L.; West, J.; Tighe, S. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 2011, 41, 1037–1049. [Google Scholar] [CrossRef]
- Deshpande, N.; Kulkarni, S.; Patil, N. Effectiveness of using coarse recycled concrete aggregate in concrete. Int. J. Earth Sci. Eng. Sci. Technol. Int. J. 2011, 4, 913–919. [Google Scholar]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Rahal, K. Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 2007, 42, 407–415. [Google Scholar] [CrossRef]
- Katz, A. Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 2003, 33, 703–711. [Google Scholar] [CrossRef]
- Bhat, J.A. Effect of strength of parent concrete on the mechanical properties of recycled aggregate concrete. Mater. Today Proc. 2021, 42, 1462–1469. [Google Scholar] [CrossRef]
- Awoyera, P.O. Nonlinear finite element analysis of steel fibre-reinforced concrete beam under static loading. J. Eng. Sci. Technol. 2016, 11, 1669–1677. [Google Scholar]
- Cao, M.; Mao, Y.; Khan, M.; Si, W.; Shen, S. Different testing methods for assessing the synthetic fiber distribution in cement-based composites. Constr. Build. Mater. 2018, 184, 128–142. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M.A. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Kirgiz, M.S.; Viloria, A.; Ovallos-Gazabon, D. Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. J. Mater. Res. Technol. 2020, 9, 9016–9028. [Google Scholar] [CrossRef]
- Nafees, A.; Amin, M.N.; Khan, K.; Nazir, K.; Ali, M.; Javed, M.F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers 2021, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Nafees, A.; Javed, M.F.; Khan, S.; Nazir, K.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials 2021, 14, 7531. [Google Scholar] [CrossRef]
- Aslam, F.; Elkotb, M.A.; Iqtidar, A.; Khan, M.A.; Javed, M.F.; Usanova, K.I.; Khan, M.I.; Alamri, S.; Musarat, M.A. Compressive strength prediction of rice husk ash using multiphysics genetic expression programming. Ain Shams Eng. J. 2022, 13, 101593. [Google Scholar] [CrossRef]
- Amin, M.N.; Khan, K.; Aslam, F.; Shah, M.I.; Javed, M.F.; Musarat, M.A.; Usanova, K. Multigene Expression Programming Based Forecasting the Hardened Properties of Sustainable Bagasse Ash Concrete. Materials 2021, 14, 5659. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Ani, O.J.; Talebsafa, M. Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates. Constr. Build. Mater. 2015, 85, 136–143. [Google Scholar] [CrossRef]
- Hodhod, O.A.; Ahmed, H.I. Modeling the corrosion initiation time of slag concrete using the artificial neural network. HBRC J. 2014, 10, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R.P. Relationships between Young’s Modulus, Compressive Strength, Poisson’s Ratio, and Time for Early Age Concrete; Swarthmore College: Swarthmore, PA, USA, 2009. [Google Scholar]
- Bal, L.; Buyle-Bodin, F. Artificial neural network for predicting drying shrinkage of concrete. Constr. Build. Mater. 2013, 38, 248–254. [Google Scholar] [CrossRef]
- Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. J. Clean. Prod. 2021, 292, 126032. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials 2021, 14, 794. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H. Machine learning in concrete strength simulations: Multi-nation data analytics. Constr. Build. Mater. 2014, 73, 771–780. [Google Scholar] [CrossRef]
- Sufian, M.; Ullah, S.; Ostrowski, K.A.; Ahmad, A.; Zia, A.; Śliwa-Wieczorek, K.; Siddiq, M.; Awan, A.A. An Experimental and Empirical Study on the Use of Waste Marble Powder in Construction Material. Materials 2021, 14, 3829. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.I.; Memon, S.A.; Khan Niazi, M.S.; Amin, M.N.; Aslam, F.; Javed, M.F. Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete. Adv. Civ. Eng. 2021, 2021, 6682283. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Niedostatkiewicz, M. Machine learning techniques in concrete mix design. Materials 2019, 12, 1256. [Google Scholar] [CrossRef] [Green Version]
- Olalusi, O.B.; Awoyera, P.O. Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning. Eng. Struct. 2021, 227, 111470. [Google Scholar] [CrossRef]
- Dutta, S.; Samui, P.; Kim, D. Comparison of machine learning techniques to predict compressive strength of concrete. Comput. Concr. 2018, 21, 463–470. [Google Scholar]
- Ilyas, I.; Zafar, A.; Javed, M.F.; Farooq, F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming. Materials 2021, 14, 7134. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Ying, L.U. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar]
- Hillebrand, E.; Medeiros, M.C. The benefits of bagging for forecast models of realized volatility. Econom. Rev. 2010, 29, 571–593. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, W.; Aslam, F.; Joyklad, P. Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Stud. Constr. Mater. 2022, 16, e00840. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Dahiya, N.; Saini, B.; Chalak, H.D. Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing. J. King Saud Univ.-Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Han, Q.; Gui, C.; Xu, J.; Lacidogna, G. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Constr. Build. Mater. 2019, 226, 734–742. [Google Scholar] [CrossRef]
- Grömping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Xu, Y.; Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Dudek, M.; Aslam, F.; Joyklad, P. Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. Materials 2021, 14, 7034. [Google Scholar] [CrossRef]
- Ahmad, A.; Chaiyasarn, K.; Farooq, F.; Ahmad, W.; Suparp, S.; Aslam, F. Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA. Buildings 2021, 11, 324. [Google Scholar] [CrossRef]
- Aslam, F.; Farooq, F.; Amin, M.N.; Khan, K.; Waheed, A.; Akbar, A.; Javed, M.F.; Alyousef, R.; Alabdulijabbar, H. Applications of gene expression programming for estimating compressive strength of high-strength concrete. Adv. Civ. Eng. 2020, 2020, 8850535. [Google Scholar] [CrossRef]
- Wang, Q.; Ahmad, W.; Ahmad, A.; Aslam, F.; Mohamed, A.; Vatin, N.I. Application of Soft Computing Techniques to Predict the Strength of Geopolymer Coposites. Polymers 2022, 14, 1074. [Google Scholar] [CrossRef]
- Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials 2021, 14, 4222. [Google Scholar] [CrossRef]
- Limbachiya, M.; Meddah, M.S.; Ouchagour, Y. Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 2012, 27, 439–449. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. Materials 2021, 14, 5762. [Google Scholar] [CrossRef] [PubMed]
- Farooq, F.; Nasir Amin, M.; Khan, K.; Rehan Sadiq, M.; Faisal Javed, M.; Aslam, F.; Alyousef, R. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Mai, H.-V.T.; Nguyen, T.-A.; Ly, H.-B.; Tran, V.Q. Prediction compressive strength of concrete containing GGBFS using random forest model. Adv. Civ. Eng. 2021, 2021, 6671448. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Wang, Y. Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model. J. Build. Eng. 2020, 30, 101282. [Google Scholar] [CrossRef]
- Schapire, R.E. The boosting approach to machine learning: An overview. Nonlinear Estim. Classif. 2003, 149–171. [Google Scholar] [CrossRef]
- Yoda, K.; Yoshikane, T.; Nakashima, Y.; Soshiroda, T. Recycled cement and recycled concrete in Japan. In Proceedings of the International Conference on Demolition and Reuse of Concrete and Masonry, Tokyo, Japan, 7–11 November 1988; pp. 527–536. [Google Scholar]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- Gómez-Soberón, J.M. Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 2002, 32, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, E.; Hendriks, C.F.; Janssen, G.M.T. Influence of recycled concrete aggregates on concrete durability. In International RILEM Conference on the Use of Recycled Materials in Building and Structures; RILEM Publications SARL: Paris, France, 2004; pp. 554–562. [Google Scholar]
- Lin, Y.-H.; Tyan, Y.-Y.; Chang, T.-P.; Chang, C.-Y. An assessment of optimal mixture for concrete made with recycled concrete aggregates. Cem. Concr. Res. 2004, 34, 1373–1380. [Google Scholar] [CrossRef]
- Xiao, J.-Z.; Li, J.; Zhang, C. On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater. Struct. 2006, 39, 655–664. [Google Scholar] [CrossRef]
- Wei, X.U. Experimental study on influence of recycled coarse aggregates contents on properties of recycled aggregate concrete. Concrete 2006, 45–47. [Google Scholar]
- Etxeberria, M.; Marí, A.R.; Vázquez, E. Recycled aggregate concrete as structural material. Mater. Struct. 2007, 40, 529–541. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L. Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 2006, 40, 981–988. [Google Scholar] [CrossRef]
- Ajdukiewicz, A.B.; Kliszczewicz, A.T. Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. J. Adv. Concr. Technol. 2007, 5, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Min-Ping, H.U. Mechanical properties of concrete prepared with different recycled coarse aggregates replacement rate. Concrete 2007, 2, 16. [Google Scholar]
- Wang, Z.W. Production and properties of high quality recycled aggregates. Concrete 2007, 3, 74–77. [Google Scholar]
- Casuccio, M.; Torrijos, M.; Giaccio, G.; Zerbino, R. Failure mechanism of recycled aggregate concrete. Constr. Build. Mater. 2008, 22, 1500–1506. [Google Scholar] [CrossRef]
- Min-Ping, H. Mechanical properties of recycled aggregate concrete at early ages. Concrete 2008, 223, 37–41. [Google Scholar]
- Kou, S.C.; Poon, C.S.; Chan, D. Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Mater. Struct. 2007, 41, 1191–1201. [Google Scholar] [CrossRef]
- Yang, K.-H.; Chung, H.-S.; Ashour, A.F. Influence of Type and Replacement Level of Recycled Aggregates on Concrete Properties. ACI Mater. J. 2008, 105, 289–296. [Google Scholar]
- Zhou, H.; Liu, B.K.; Lu, G. Experimental research on the basic mechanical properties of recycled aggregate concrete. J. Anhui Inst. Archit. Indust 2008, 16, 4–8. [Google Scholar]
- Domingo-Cabo, A.; Lázaro, C.; Gayarre, F.L.; Serrano-López, M.; Serna, P.; Castaño-Tabares, J. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2545–2553. [Google Scholar] [CrossRef]
- Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 829–836. [Google Scholar] [CrossRef]
- Yang, X.; Wu, J.; Liang, J.G. Experimental study on relationship between tensile strength and compressive strength of recycled aggregate concrete. Sichuan Build. Sci. 2009, 35, 190–192. [Google Scholar]
- Ye, H. Experimental study on mechanical properties of concrete made with high quality recycled aggregates. Sichuan Build. Sci. 2009, 35, 195–199. [Google Scholar]
- Corinaldesi, V. Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 2010, 24, 1616–1620. [Google Scholar] [CrossRef]
- Kumutha, R.; Vijai, K. Strength of concrete incorporating aggregates recycled from demolition waste. ARPN J. of Eng. Appl. Sci. 2010, 5, 64–71. [Google Scholar]
- Malešev, M.; Radonjanin, V.; Marinković, S. Recycled Concrete as Aggregate for Structural Concrete Production. Sustainability 2010, 2, 1204–1225. [Google Scholar] [CrossRef] [Green Version]
- Zega, C.J.; Di Maio, Á.A. Recycled Concretes Made with Waste Ready-Mix Concrete as Coarse Aggregate. J. Mater. Civ. Eng. 2011, 23, 281–286. [Google Scholar] [CrossRef]
- Belén, G.-F.; Fernando, M.-A.; Diego, C.L.; Sindy, S.-P. Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate. Constr. Build. Mater. 2011, 25, 2335–2342. [Google Scholar] [CrossRef]
- Fathifazl, G.; Razaqpur, A.G.; Isgor, O.B.; Abbas, A.; Fournier, B.; Foo, S. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 2011, 33, 1026–1037. [Google Scholar] [CrossRef]
- González-Fonteboa, B.; Martínez-Abella, F.; Eiras-López, J.; Paz, S.S. Effect of recycled coarse aggregate on damage of recycled concrete. Mater. Struct. 2011, 44, 1759–1771. [Google Scholar] [CrossRef]
- Rao, M.C.; Bhattacharyya, S.K.; Barai, S.V. Influence of field recycled coarse aggregate on properties of concrete. Mater. Struct. 2010, 44, 205–220. [Google Scholar] [CrossRef]
- Somna, R.; Jaturapitakkul, C.; Chalee, W.; Rattanachu, P. Effect of the Water to Binder Ratio and Ground Fly Ash on Properties of Recycled Aggregate Concrete. J. Mater. Civ. Eng. 2012, 24, 16–22. [Google Scholar] [CrossRef]
- Elhakam, A.A.; Mohamed, A.E.; Awad, E. Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr. Build. Mater. 2012, 35, 421–427. [Google Scholar] [CrossRef]
- Cui, Z.L.; Lu, S.S.; Wang, Z.S. Influence of recycled aggregate on strength and anti-carbonation properties of recycled aggregate concrete. J. Build. Mater 2012, 15, 264–267. [Google Scholar]
- Hoffmann, C.; Schubert, S.; Leemann, A.; Motavalli, M. Recycled concrete and mixed rubble as aggregates: Influence of variations in composition on the concrete properties and their use as structural material. Constr. Build. Mater. 2012, 35, 701–709. [Google Scholar] [CrossRef]
- Li, H.; Xiao, J.Z. On fatigue strength of recycled aggregate concrete based on its elastic modulus. J. Build. Mater 2012, 15, 260–263. [Google Scholar]
- Limbachiya, M.; Meddah, M.S.; Ouchagour, Y. Performance of Portland/Silica Fume Cement Concrete Produced with Recycled Concrete Aggregate. ACI Mater. J. 2012, 109, 91–100. [Google Scholar]
- Marinković, S.; Radonjanin, V.; Malešev, M.; Ignjatović, I. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 2010, 30, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Evangelista, L.; de Brito, J. The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2012, 34, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Barbudo, A.; De Brito, J.; Evangelista, L.; Bravo, M.; Agrela, F. Influence of water-reducing admixtures on the mechanical performance of recycled concrete. J. Clean. Prod. 2013, 59, 93–98. [Google Scholar] [CrossRef]
- Butler, L.; West, J.S.; Tighe, S.L. Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Constr. Build. Mater. 2013, 47, 1292–1301. [Google Scholar] [CrossRef]
- Chen, Z.P.; Xu, J.J.; Zheng, H.H.; Su, Y.S.; Xue, J.Y.; Li, J.T. Basic mechanical properties test and stress-strain constitutive relations of recycled coarse aggregate concrete. J. Build. Mater. 2013, 16, 24–32. [Google Scholar]
- Hou, Y.L.; Zheng, G. Mechanical properties of recycled aggregate concrete in different age. J. Build. Mater. 2013, 16, 683–687. [Google Scholar]
- Ismail, S.; Ramli, M. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Constr. Build. Mater. 2013, 44, 464–476. [Google Scholar] [CrossRef]
- Manzi, S.; Mazzotti, C.; Bignozzi, M.C. Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Compos. 2013, 37, 312–318. [Google Scholar] [CrossRef]
- Matias, D.; De Brito, J.; Rosa, A.; Pedro, D. Mechanical properties of concrete produced with recycled coarse aggregates—Influence of the use of superplasticizers. Constr. Build. Mater. 2013, 44, 101–109. [Google Scholar] [CrossRef]
- Sheen, Y.-N.; Wang, H.-Y.; Juang, Y.-P.; Le, D.-H. Assessment on the engineering properties of ready-mixed concrete using recycled aggregates. Constr. Build. Mater. 2013, 45, 298–305. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; De Juan, M.S. Durability of recycled aggregate concrete. Constr. Build. Mater. 2013, 40, 1054–1065. [Google Scholar] [CrossRef]
- Ulloa, V.A.; García-Taengua, E.; Pelufo, M.-J.; Domingo, A.; Serna, P. New views on effect of recycled aggregates on concrete compressive strength. ACI Mater. J. 2013, 110, 1–10. [Google Scholar]
- Xiao, J.; Li, H.; Yang, Z. Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. Constr. Build. Mater. 2013, 38, 681–688. [Google Scholar] [CrossRef]
- Younis, K.; Pilakoutas, K. Strength prediction model and methods for improving recycled aggregate concrete. Constr. Build. Mater. 2013, 49, 688–701. [Google Scholar] [CrossRef]
- Andreu, G.; Miren, E. Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 227–235. [Google Scholar] [CrossRef]
- Beltrán, M.G.; Agrela, F.; Barbudo, A.; Ayuso, J.; Ramírez, A. Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Constr. Build. Mater. 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Beltrán, M.G.; Barbudo, A.; Agrela, F.; Galvín, A.P.; Jiménez, J.R. Effect of cement addition on the properties of recycled concretes to reach control concretes strengths. J. Clean. Prod. 2014, 79, 124–133. [Google Scholar] [CrossRef]
- Çakır, Ö.; Sofyanlı, Ö.Ö. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC J. 2015, 11, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, J.A.; Lima, P.R.L.; Leite, M.B.; Toledo Filho, R.D. Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem. Concr. Compos. 2014, 46, 65–72. [Google Scholar] [CrossRef]
- Dilbas, H.; Şimşek, M.; Çakır, Ö. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr. Build. Mater. 2014, 61, 50–59. [Google Scholar] [CrossRef]
- Duan, Z.; Poon, C.S. Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 2014, 58, 19–29. [Google Scholar] [CrossRef]
- Folino, P.; Xargay, H. Recycled aggregate concrete—Mechanical behavior under uniaxial and triaxial compression. Constr. Build. Mater. 2014, 56, 21–31. [Google Scholar] [CrossRef]
- Gayarre, F.L.; Pérez, C.L.-C.; López, M.A.S.; Cabo, A.D. The effect of curing conditions on the compressive strength of recycled aggregate concrete. Constr. Build. Mater. 2014, 53, 260–266. [Google Scholar] [CrossRef]
- Kang, T.H.-K.; Kim, W.; Kwak, Y.-K.; Hong, S.-G. Flexural Testing of Reinforced Concrete Beams with Recycled Concrete Aggregates. ACI Struct. J. 2014, 111, 607–616. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Performance of concrete made with aggregates recycled from precasting industry waste: Influence of the crushing process. Mater. Struct. 2014, 48, 3965–3978. [Google Scholar] [CrossRef]
- Pepe, M.; Toledo Filho, R.D.; Koenders, E.A.B.; Martinelli, E. Alternative processing procedures for recycled aggregates in structural concrete. Constr. Build. Mater. 2014, 69, 124–132. [Google Scholar] [CrossRef]
- Thomas, C.; Sosa, I.; Setién, J.; Polanco, J.A.; Cimentada, A.I. Evaluation of the fatigue behavior of recycled aggregate concrete. J. Clean. Prod. 2014, 65, 397–405. [Google Scholar] [CrossRef]
Parameter | RCA Replacement Ratio (%) | Parent Concrete Strength (MPa) | Bulk Density of NA (kg/m3) | Bulk Density of RCA (kg/m3) | Water Absorption of NA (%) | Water Absorption of RCA (%) | Aggregate–Cement Ratio (a/c) | Effective Water–Cement Ratio (weff/c) | Nominal Maximum NA Size (mm) | Nominal Maximum RCA Size (mm) | Los Angeles Abrasion Index of NA | Los Angeles Abrasion Index of RCA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 53.03 | 5.00 | 1538.47 | 1666.16 | 0.61 | 3.49 | 2.99 | 0.49 | 22.14 | 21.51 | 4.61 | 6.75 |
Range | 100.00 | 100.00 | 2970.00 | 2880.00 | 3.00 | 11.90 | 6.50 | 0.87 | 38.00 | 32.00 | 32.00 | 42.00 |
Mode | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.10 | 0.50 | 20.00 | 20.00 | 0.00 | 0.00 |
Maximum | 100.00 | 100.00 | 2970.00 | 2880.00 | 3.00 | 11.90 | 6.50 | 0.87 | 38.00 | 32.00 | 32.00 | 42.00 |
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Median | 50.00 | 0.00 | 2570.00 | 2330.00 | 0.40 | 3.90 | 2.90 | 0.49 | 20.00 | 20.00 | 0.00 | 0.00 |
Standard Deviation | 40.01 | 15.38 | 1315.12 | 1115.04 | 0.73 | 2.94 | 0.83 | 0.11 | 5.48 | 5.71 | 10.04 | 13.89 |
Sum | 33,884 | 3193 | 983,081 | 1,064,677 | 391 | 2231 | 1913 | 312 | 14,149 | 13,747 | 2943 | 4312 |
Parameter | RCA Replacement Ratio (%) | Parent Concrete Strength (MPa) | Bulk Density of NA (kg/m3) | Bulk Density of RCA (kg/m3) | Water Absorption of NA (%) | Water Absorption of RCA (%) | Aggregate–Cement Ratio (a/c) | Effective Water–Cement Ratio (weff/c) | Nominal Maximum NA Size (mm) | Nominal Maximum RCA Size (mm) | Los Angeles Abrasion of NA | Los Angeles Abrasion of RCA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 50.74 | 4.32 | 1704.24 | 1823.81 | 0.70 | 4.15 | 3.05 | 0.52 | 19.40 | 19.23 | 9.32 | 12.82 |
Range | 100.00 | 100.00 | 2820.00 | 2578.00 | 2.10 | 11.90 | 6.00 | 0.87 | 30.00 | 32.00 | 32.00 | 41.40 |
Mode | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.80 | 0.50 | 20.00 | 20.00 | 0.00 | 0.00 |
Maximum | 100.00 | 100.00 | 2820.00 | 2578.00 | 2.10 | 11.90 | 6.00 | 0.87 | 30.00 | 32.00 | 32.00 | 41.40 |
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Median | 50.00 | 0.00 | 2590.00 | 2336.00 | 0.50 | 4.70 | 2.90 | 0.50 | 20.00 | 20.00 | 0.00 | 0.00 |
Standard Error | 3.42 | 1.50 | 108.88 | 85.16 | 0.06 | 0.24 | 0.07 | 0.01 | 0.34 | 0.38 | 1.05 | 1.36 |
Standard Deviation | 40.30 | 17.65 | 1283.62 | 1004.03 | 0.70 | 2.81 | 0.81 | 0.14 | 4.00 | 4.49 | 12.33 | 15.99 |
Sum | 7053.00 | 600.00 | 236,890.00 | 253,509.00 | 96.90 | 577.28 | 423.40 | 71.75 | 2696.00 | 2673.00 | 1294.90 | 1781.30 |
Model | Compressive Strength (MPa) | Flexural Strength (MPa) | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
Gradient Boosting | 4.776 | 6.976 | 0.642 | 1.199 |
Random Forest | 4.194 | 5.642 | 0.560 | 0.859 |
K-Fold | Compressive Strength | Flexural Strength | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gradient Boosting | Random Forest | Gradient Boosting | Random Forest | |||||||||
MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
1 | 14.60 | 10.23 | 0.74 | 10.92 | 8.44 | 0.90 | 0.64 | 1.37 | 0.75 | 0.63 | 0.97 | 0.74 |
2 | 7.33 | 9.28 | 0.53 | 7.13 | 9.45 | 0.67 | 0.67 | 1.20 | 0.92 | 0.66 | 0.97 | 0.44 |
3 | 11.04 | 7.98 | 0.87 | 8.16 | 7.56 | 0.73 | 0.75 | 1.52 | 0.60 | 1.33 | 1.51 | 0.35 |
4 | 8.57 | 13.86 | 0.84 | 4.19 | 11.87 | 0.84 | 0.85 | 1.81 | 0.45 | 0.71 | 0.93 | 0.63 |
5 | 11.16 | 12.42 | 0.87 | 7.25 | 9.83 | 0.91 | 0.74 | 1.21 | 0.79 | 0.91 | 0.86 | 0.43 |
6 | 13.10 | 7.10 | 0.86 | 9.87 | 5.64 | 0.66 | 2.00 | 2.02 | 0.20 | 0.56 | 0.86 | 0.41 |
7 | 8.01 | 15.95 | 0.37 | 7.78 | 12.06 | 0.79 | 0.96 | 1.23 | 0.21 | 0.97 | 0.90 | 0.75 |
8 | 13.14 | 8.76 | 0.74 | 9.98 | 15.00 | 0.47 | 1.56 | 1.28 | 0.44 | 1.30 | 1.47 | 0.56 |
9 | 4.78 | 6.98 | 0.61 | 10.09 | 8.18 | 0.74 | 0.79 | 1.22 | 0.24 | 0.87 | 1.28 | 0.74 |
10 | 10.94 | 17.97 | 0.27 | 7.98 | 6.10 | 0.49 | 0.69 | 1.29 | 0.50 | 0.90 | 1.34 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Tian, Y.; Ahmad, W.; Ahmad, A.; Usanova, K.I.; Mohamed, A.M.; Khallaf, R. Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete. Materials 2022, 15, 2823. https://doi.org/10.3390/ma15082823
Yuan X, Tian Y, Ahmad W, Ahmad A, Usanova KI, Mohamed AM, Khallaf R. Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete. Materials. 2022; 15(8):2823. https://doi.org/10.3390/ma15082823
Chicago/Turabian StyleYuan, Xiongzhou, Yuze Tian, Waqas Ahmad, Ayaz Ahmad, Kseniia Iurevna Usanova, Abdeliazim Mustafa Mohamed, and Rana Khallaf. 2022. "Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete" Materials 15, no. 8: 2823. https://doi.org/10.3390/ma15082823
APA StyleYuan, X., Tian, Y., Ahmad, W., Ahmad, A., Usanova, K. I., Mohamed, A. M., & Khallaf, R. (2022). Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete. Materials, 15(8), 2823. https://doi.org/10.3390/ma15082823