Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Samples
2.3. Research Procedures
3. Results and Discussion
3.1. Description of the Raw Powders
3.2. Description of NiAl + 30 wt.% Al2O3 Composite Powder
3.3. Characterization of the Samples Obtained by Slip Casting
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeomans, J.A. Ductile particle ceramic matrix composites-scientific curiosities or engineering materials? J. Eur. Ceram. Soc. 2008, 28, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- Moya, J.S.; Esteban, S.L.; Pecharroman, C. The challenge of ceramic/metal microcomposities and nanocomposities. Prog. Mater. Sci. 2007, 52, 1017–1090. [Google Scholar] [CrossRef]
- Sun, X.; Yeomans, Y. Optimization of a ductile particle-toughened ceramic. J. Am. Ceram. Soc. 1996, 79, 2705–2717. [Google Scholar] [CrossRef]
- Ashby, M.F.; Brecht, Y.J.M. Designing hybrid materials. Acta. Mater. 2003, 51, 5801–5809. [Google Scholar] [CrossRef]
- Rodrigues-Suarez, T.; Bartolome, J.F.; Moya, J.S. Mechanical and tribological properties of ceramic/metal composites: A revive of phenomena spanning from the nanometer to the micrometer length scale. J. Eur. Ceram. Soc. 2012, 32, 3887–3898. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, F.; Zhu, J.; Wang, X. Mechanical properties and microstructure of Al2O3/TiAl in situ composites doped with Cr2O3. Mater. Sci. Eng. A 2011, 528, 3337–3341. [Google Scholar] [CrossRef]
- Tuan, W.H.; Pai, Y.P. Mechanical properties of Al2O3-NiAl composites. J. Am. Ceram. Soc. 1999, 82, 1624–1626. [Google Scholar] [CrossRef]
- Miracle, D.B. Overview No. 104 The Physical and Mechanical Properties of NiAl. Acta Metall. Mater. 1993, 41, 649–684. [Google Scholar] [CrossRef]
- Yan, S.-R.; Mehrizi, M.Z.; Foong, L.K. Synthesis of NiAl-WC Composite by the Thermal Explosion of Elemental Powders. Ceram. Int. 2020, 46, 15146–15151. [Google Scholar] [CrossRef]
- Zarezadeh Mehrizi, M.; Sedigh Mofrad, S. Synthesis of NiAl/TiC–Al2O3 Composite by Mechanically Activated Combustion Synthesis. Ceram. Int. 2021, 47, 9258–9263. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Kulik, T. NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidation. Adv. Powder Technol. 2019, 30, 2742–2750. [Google Scholar] [CrossRef]
- Kaliński, D.; Chmielewski, M.; Pietrzak, K.; Choręgiewicz, K. An Influence of Mechanical Mixing and Hot-Pressing on Properties of NiAl/Al2O3 Composite. Arch. Metall. Mater. 2012, 57, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Beyhaghi, M.; Kiani-Rashid, A.; Khaki, J.V.; Kashefi, M.; Jonsson, S. Influences of Mechanical Activation and Heating Rate on Reaction Processes in Combustion Synthesis of NiAl-Al2O3 Composites. Powder Technol. 2019, 346, 237–247. [Google Scholar] [CrossRef]
- Tuan, W.H.; Lin, I.C.; Pai, Y.P.; Chang, S.T. Toughening Al2O3 with NiAl and NiAl(Fe) Particles. Br. Ceram. Trans. 2000, 99, 88–91. [Google Scholar] [CrossRef]
- Tuan, W.H.; Chang, S.T.; Chou, W.B.; Pai, Y.P. Effect of Milling Time on Mechanical Properties of Al2O3–NiAl Composites. Br. Ceram. Trans. 2001, 100, 35–37. [Google Scholar] [CrossRef]
- Davies, I.J.; Pezzotti, G.; Bellosi, A.; Sciti, D.; Guicciardi, S. Mechanical Behaviour of Nickel Aluminide Reinforced Alumina (Al2O3-NiAl) Composites. Adv. Compos. Lett. 2002, 11, 096369350201100601. [Google Scholar] [CrossRef] [Green Version]
- Konopka, K.; Zygmuntowicz, J.; Krasnowski, M.; Cymerman, K.; Wachowski, M.; Piotrkiewicz, P. Pulse Plasma Sintering of NiAl- Al2O3 Composite Powder Produced by Mechanical Alloying with Contribution of Nanometric Al2O3 Powder. Materials 2022, 15, 407. [Google Scholar] [CrossRef]
- Michalski, A.; Jaroszewicz, J.; Rosinski, M.; Siemaszko, D. NiAl-Al2O3 composites produced y puls plasma sintering with the participation of the SHS reaction. Intermetallics 2006, 14, 603–606. [Google Scholar] [CrossRef]
- Wachowski, M.; Zygmuntowicz, J.; Kosturek, R.; Konopka, K.; Kaszuwara, W. Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phases. Materials 2021, 14, 3510. [Google Scholar] [CrossRef]
- Gadow, R.; Kern, F. 2.06—Advanced Manufacturing of Hard Ceramics. In Comprehensive Hard Materials; Sarin, V.K., Ed.; Elsevier: Oxford, UK, 2014; pp. 207–230. [Google Scholar] [CrossRef]
- Yüzbasi, N.S.; Graule, T. Colloid Casting Processes: Slip Casting, Centrifugal Casting, and Gel Casting. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Oxford, UK, 2021; pp. 146–153. [Google Scholar] [CrossRef]
- ASTM D3766-08; Standard Terminology Relating to Catalysts and Catalysis. ASTM International: West Conshohocken, PA, USA; Philadelphia, PA, USA, 2018.
- EN 623–2; Advanced Technical Ceramics–Determination of Density and Porosity. Dansk Standardiseringsrad (DS): Nordhavn, Denmark, 1993.
- Suryanarajana, C.; Grant Norton, M. X-ray Diffraction. A Practical Approach; Springer Science+Business Media: New York, NY, USA, 1998. [Google Scholar]
- Michalski, J.; Wejrzanowski, T.; Pielaszek, R.; Konopka, K.; Łojkowski, W.; Kurzydłowski, K.J. Application of image analysis for characterization of powders. Mater. Sci. Pol. 2005, 23, 79–86. [Google Scholar]
- Wejrzanowski, T.; Spychalski, W.; Rożniatowski, K.; Kurzydłowski, K. Image Based Analysis of Complex Microstructures of Engineering Materials. Int. J. Appl. Math. Comput. Sci. 2008, 18, 33–39. [Google Scholar] [CrossRef]
- Anstis, G.; Chantikul, P.; Lawn, B.; Marshall, D. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Piotrkiewicz, P.; Gizowska, M.; Tomaszewska, J.; Suchecki, P.; Wachowski, M.; Torzewski, J.; Żurowski, R. The Potential of Al2O3–ZrO2-Based Composites, Formed via CSC Method, in Linear Infrastructure Applications Based on Their Mechanical, Thermal and Environmental Performance. Metall. Mater Trans. A 2022, 53, 663–678. [Google Scholar] [CrossRef]
- Krasnowski, M.; Gierlotka, S.; Ciołek, S.; Kulik, T. Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidation. Adv. Powder Technol. 2019, 30, 1312–1318. [Google Scholar] [CrossRef]
- Konopka, K.; Krasnowski, M.; Zygmuntowicz, J.; Cymerman, K.; Wachowski, M.; Piotrkiewicz, P. Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sintering. Materials 2021, 14, 3398. [Google Scholar] [CrossRef]
- Krasnowski, M. Phase Transformations during Mechanical Alloying and Subsequent Heating of FeAlB Powders. J. Alloys Compd. 2017, 706, 110–115. [Google Scholar] [CrossRef]
- Lieberthal, M.; Kaplan, W.D. Processing and Properties of Al2O3 Nanocomposites Reinforced with Sub-Micron Ni and NiAl2O4. Mater. Sci. Eng. A 2001, 302, 83–91. [Google Scholar] [CrossRef]
- Tuan, W.H.; Lin, M.C. Reaction Sintering of Al2O3/NiAl2O4 Composites. J. Mater Sci. Lett. 1996, 15, 735–737. [Google Scholar] [CrossRef]
- Zygmuntowicz, J.; Wiecińska, P.; Miazga, A.; Konopka, K. Characterization of Composites Containing NiAl2O4 Spinel Phase from Al2O3/NiO and Al2O3/Ni Systems. J. Therm. Anal. Calorim. 2016, 125, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Loginova, E.; Cosandey, F.; Madey, T.E. Nanoscopic Nickel Aluminate Spinel (NiAl2O4) Formation during NiAl(111) Oxidation. Surf. Sci. 2007, 601, L11–L14. [Google Scholar] [CrossRef]
- Žmak, I.; Ćorić, D.; Mandić, V.; Ćurković, L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics. Materials 2020, 13, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Yang, S.; Zhu, Y.; Fan, L.; Zhang, M. Flash Sintering of Dense Alumina Ceramic Discs with High Hardness. J. Eur. Ceram. Soc. 2022, 42, 202–206. [Google Scholar] [CrossRef]
- Tuan, W.H.; Chou, W.B.; You, H.C.; Chang, S.T. The Effects of Microstructure on the Mechanical Properties of Al2O3-NiAl Composites. Mater. Chem. Phys. 1998, 56, 157–162. [Google Scholar] [CrossRef]
Component | Series I | Series II | Series III | |
---|---|---|---|---|
Alumina oxide (Al2O3) | Vol.% | 50 | 47.5 | 45 |
NiAl + 30 wt.% Al2O3 | Vol.% with respect to the amount of ceramic | - | 2.5 | 5 |
Diammonium hydrocitrate (DAC) | Wt.% with respect to the amount of ceramic or ceramic and metal powders | 0.3 | ||
Citric acid (CA) | Wt.% with respect to the amount of ceramic or ceramic and metal powders | 0.1 | ||
Water (H2O) | Vol.% | 50 |
Samples | Relative Density | Open Porosity | Soaking | Linear Shrinkage | Volume Shrinkage |
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | |
Series I—100 vol.% of Al2O3 | 99.66 ± 0.04 | 0.03 ± 0.01 | <0.01 | 14.23 ± 0.04 | 35.97 ± 0.87 |
Series II—Al2O3 + 2.5 vol.% of NiAl + 30 wt.% A2O3 | 99.47 ± 0.34 | 0.05 ± 0.02 | <0.01 | 14.77 ± 0.57 | 35.23 ± 0.61 |
Series III—Al2O3 + 5 vol.% of NiAl + 30 wt.% A2O3 | 99.05 ± 0.52 | 0.08 ± 0.02 | <0.01 | 15.42 ± 0.75 | 34.91 ± 1.07 |
Series I—100 vol.% of Al2O3 (Figure 11a) | |||
Weight (%) | |||
Ni | Al | O | |
Point 1 | - | 54.85 ± 0.05 | 45.15 ± 0.07 |
Series II—Al2O3 + 2.5 vol.% of NiAl + 30 wt.% A2O3 (Figure 11b) | |||
Weight (%) | |||
Ni | Al | O | |
Point 1 | 32.14 ± 0.27 | 34.18 ± 0.17 | 33.68 ±0.19 |
Point 2 | - | 54.07 ± 0.14 | 45.93 ± 0.14 |
Point 3 | 92.92 ± 0.12 | 3.19 ± 0.07 | 3.89 ± 0.09 |
Series III—Al2O3 + 5 vol.% of NiAl + 30 wt.% A2O3 (Figure 11c) | |||
Weight (%) | |||
Ni | Al | O | |
Point 1 | 28.92 ± 0.26 | 34.76 ± 0.17 | 36.32 ± 0.18 |
Point 2 | - | 60.54 ± 0.16 | 39.46 ± 0.16 |
Point 3 | 96.19 ± 0.11 | 1.57 ± 0.07 | 2.24 ± 0.08 |
Parameters Describing Shape Factors of Al2O3 Grains | |||
---|---|---|---|
Type of Series | Elongation α = dmax/d2 | Convexity W = p/pc | Curvature of the Grain Boundary R = p/(π d2) |
Series I—100 vol.% of Al2O3 | 1.38 ± 0.02 | 1.08 ± 0.01 | 1.25 ± 0.01 |
Series II—Al2O3 + 2.5 vol.% of NiAl + 30 wt.% A2O3 | 1.42 ± 0.03 | 1.07 ± 0.01 | 1.25 ± 0.01 |
Series III—Al2O3 + 5 vol.% of NiAl + 30 wt.% A2O3 | 1.42 ± 0.02 | 1.08 ± 0.01 | 1.27 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygmuntowicz, J.; Konopka, K.; Krasnowski, M.; Piotrkiewicz, P.; Bolek, J.; Wachowski, M.; Żurowski, R.; Szafran, M. Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder. Materials 2022, 15, 2920. https://doi.org/10.3390/ma15082920
Zygmuntowicz J, Konopka K, Krasnowski M, Piotrkiewicz P, Bolek J, Wachowski M, Żurowski R, Szafran M. Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder. Materials. 2022; 15(8):2920. https://doi.org/10.3390/ma15082920
Chicago/Turabian StyleZygmuntowicz, Justyna, Katarzyna Konopka, Marek Krasnowski, Paulina Piotrkiewicz, Jan Bolek, Marcin Wachowski, Radosław Żurowski, and Mikołaj Szafran. 2022. "Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder" Materials 15, no. 8: 2920. https://doi.org/10.3390/ma15082920
APA StyleZygmuntowicz, J., Konopka, K., Krasnowski, M., Piotrkiewicz, P., Bolek, J., Wachowski, M., Żurowski, R., & Szafran, M. (2022). Characterization of Al2O3 Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al2O3 Composite Powder. Materials, 15(8), 2920. https://doi.org/10.3390/ma15082920