Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Densification Behavior
3.2. Phase Behavior
3.3. Microstructure Evolution
3.4. Microhardness
3.5. Tensile Property
4. Conclusions
- (1)
- There are numerous factors affecting the LPBF processing, and the scanning speed is one of the key process parameters influencing the microstructure and properties of the LPBF-ed K418 superalloy. A satisfactory tensile strength of 1244.35 ± 99.12 MPa and elongation of 12.53 ± 1.79% were obtained through process optimization.
- (2)
- As the scanning speed increased from 800 mm/s to 1600 mm/s, the tensile strength and elongation of the material tended to first increase and then decrease, while the yield strength remained stable. The optimal comprehensive mechanical properties were obtained when the scanning speed was 1200 mm/s.
- (3)
- The microstructure of LPBF-ed K418 exhibits directional preferential growth of columnar crystals along the (001) direction, which is dominated by high-angle grain boundaries (HAGBs), and the volume fraction of HAGBs decreases with increasing scanning speed.
- (4)
- The optimized laser scanning speed can be used as a reference for the LPBF preparation of nickel-based superalloys, and it is expected that this study will promote the industrial application of nickel-based superalloys prepared via LPBF.
Author Contributions
Funding
Conflicts of Interest
References
- Pang, M.; Yu, G.; Wang, H.-H.; Zheng, C.-Y. Microstructure study of laser welding cast nickel-based superalloy K418. J. Mater. Process. Technol. 2008, 207, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Cao, Q.; Zhang, M.; Chang, Q.M.; Zhang, S.C. Laser Repair Cladding of K418 Ni-Base Superalloy by CoCrNiW Powder. Adv. Mater. Res. 2011, 291–294, 1417–1420. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, T.; Shao, W.; Zhang, G.; Zhang, B. Effects of heat treatment on microstructures and mechanical properties of GH4169/K418 functionally graded material fabricated by laser melting deposition. Mater. Sci. Eng. A 2021, 821, 141601. [Google Scholar] [CrossRef]
- Yang, F.; Wang, J.; Yu, J.; Zhou, Z.; Wang, B.; Tu, T.; Ren, X.; Deng, K.; Ren, Z. Microstructure and Mechanical Properties of Ni-based Superalloy K418 Produced by the Continuous Unidirectional Solidification Process. J. Mater. Eng. Perform. 2019, 28, 6483–6491. [Google Scholar] [CrossRef]
- Mignanelli, P.; Jones, N.; Perkins, K.; Hardy, M.; Stone, H. Microstructural evolution of a delta containing nickel-base superalloy during heat treatment and isothermal forging. Mater. Sci. Eng. A 2015, 621, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, X.; Li, D.; Chen, C.; Qu, X.; He, X.; Li, Z. A comparative investigation on MIM418 superalloy fabricated using gas- and water-atomized powders. Powder Technol. 2015, 286, 798–806. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- He, B.; Wu, W.; Zhang, L.; Lu, L.; Yang, Q.; Long, Q.; Chang, K. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 2018, 150, 79–83. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Zhang, G.; Qin, R.; Liu, W.; Xiong, H.; Shi, G.; Blackburn, J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2019, 35, 242–269. [Google Scholar] [CrossRef]
- Song, B.; Zhao, X.; Li, S.; Han, C.; Wei, Q.; Wen, S.; Liu, J.; Shi, Y. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review. Front. Mech. Eng. 2015, 10, 111–125. [Google Scholar] [CrossRef]
- Sun, D.; Gu, D.; Lin, K.; Ma, J.; Chen, W.; Huang, J.; Sun, X.; Chu, M. Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technol. 2019, 342, 371–379. [Google Scholar] [CrossRef]
- Liu, C.; Tong, J.; Jiang, M.; Chen, Z.; Xu, G.; Liao, H.; Wang, P.; Wang, X.; Xu, M.; Lao, C. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel. Mater. Sci. Eng. A 2019, 766, 138364. [Google Scholar] [CrossRef]
- Saedi, S.; Moghaddam, N.S.; Amerinatanzi, A.; Elahinia, M.; Karaca, H.E. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018, 144, 552–560. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhou, Y.; Li, S.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties. J. Alloy Compd. 2016, 688, 626–636. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, C.; Zhang, S.; Zhang, J.; Chen, J.; Chen, H. Additive manufacturing of novel ferritic stainless steel by selective laser melting: Role of laser scanning speed on the formability, microstructure and properties. Opt. Laser Technol. 2021, 140, 107055. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, P.; Zhang, S.; Lu, B.; Zhang, L.; Yang, X.; Huang, K.; Huang, Y.; Li, X.; Zhao, Q. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing. Mater. Sci. Eng. A 2020, 769, 138484. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Safyari, M. Effect of dwelling time in VIM furnace on chemical composition and mechanical properties of a Ni-Fe-Cr alloy. Vacuum 2019, 169, 108890. [Google Scholar] [CrossRef]
- Was, G.S. Grain-Boundary Chemistry and Intergranular Fracture in Austenitic Nickel-Base Alloys—A Review. Corrosion 1990, 46, 319–330. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wang, B.-B.; Wang, L.; Cui, R.; Luo, L.-S.; Su, Y.-Q. Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry 2021, 18, 170–179. [Google Scholar] [CrossRef]
- Amirjan, M.; Sakiani, H. Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2019, 103, 1769–1780. [Google Scholar] [CrossRef]
- Wang, X.; Carter, L.N.; Pang, B.; Attallah, M.M.; Loretto, M.H. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater. 2017, 128, 87–95. [Google Scholar] [CrossRef]
- Raghavan, S.; Zhang, B.; Wang, P.; Sun, C.-N.; Nai, M.L.S.; Li, T.; Wei, J. Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Mater. Manuf. Processes 2016, 32, 1588–1595. [Google Scholar] [CrossRef]
- Wang, R.; Chen, C.; Liu, M.; Zhao, R.; Xu, S.; Hu, T.; Shuai, S.; Liao, H.; Ke, L.; Vanmeensel, K.; et al. Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy. Mater. Today Commun. 2021, 30, 103095. [Google Scholar] [CrossRef]
- Chen, Z.; Xiang, Y.; Wei, Z.; Wei, P.; Lu, B.; Zhang, L.; Du, J. Thermal dynamic behavior during selective laser melting of K418 superalloy: Numerical simulation and experimental verification. Appl. Phys. A 2018, 124, 313. [Google Scholar] [CrossRef]
- Tan, G.H.; Wang, S.L.; Ming, W.U.; Sun, W.J.; Chen, Y.H.; Li-Ming, K.E. Effect of Cracks in Electron Beam Welding of K418 Superalloy and Its Microstructure and Properties. J. Netshape Form. Eng. 2019, 170, 107697. [Google Scholar] [CrossRef]
- Xiong, W.; Hao, L.; Li, Y.; Tang, D.; Cui, Q.; Feng, Z.; Yan, C. Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy. Mater. Des. 2019, 170, 107697. [Google Scholar] [CrossRef]
- Yang, H.; Meng, L.; Luo, S.; Wang, Z. Microstructural evolution and mechanical performances of selective laser melting Inconel 718 from low to high laser power. J. Alloy Compd. 2020, 828, 154473. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, S.; Wei, Z.; Zhang, L.; Wei, P.; Lu, B.; Zhang, S.; Xiang, Y. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Prog. Nat. Sci. 2018, 28, 496–504. [Google Scholar] [CrossRef]
- Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Selective laser melting of Invar 36: Microstructure and properties. Acta Mater. 2016, 103, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yang, Y.; Li, M.; Liu, J.; Cai, D.; Wei, Q.; Yan, C.; Shi, Y. Enhanced mechanical property with refined microstructure of a novel γ-TiAl/TiB2 metal matrix composite (MMC) processed via hot isostatic press. Mater. Des. 2018, 141, 57–66. [Google Scholar] [CrossRef]
- Ye, J.; Han, B.Q.; Lee, Z.; Ahn, B.; Nutt, S.R.; Schoenung, J. A tri-modal aluminum based composite with super-high strength. Scr. Mater. 2005, 53, 481–486. [Google Scholar] [CrossRef]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef] [Green Version]
Process Parameters | Laser Power (W) | Scanning Speed (mm/s) | Layer Thickness (mm) | Hatch Spacing (mm) |
---|---|---|---|---|
Value | 200 | 800, 1000, 1200, 1400, 1600 | 0.03 | 0.07 |
Scanning Speeds (mm/s) | 800 | 1000 | 1200 | 1400 | 1600 |
---|---|---|---|---|---|
FWHM | 0.1968 | 0.4330 | 0.4723 | 0.1181 | 0.1378 |
Scanning Speeds (mm/s) | HAGBs | Average Grain Size | Substructured | Deformed |
---|---|---|---|---|
800 | 40.4% | 0.99 μm | 16.67% | 75.29% |
1200 | 52.5% | 1.01 μm | 13.07% | 80.23% |
1600 | 57.2% | 1.29 μm | 13.22% | 75.97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Lu, Y.; Luo, F.; Zhang, S.; Wei, P.; Yao, S.; Wang, Y. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Materials 2022, 15, 3045. https://doi.org/10.3390/ma15093045
Chen Z, Lu Y, Luo F, Zhang S, Wei P, Yao S, Wang Y. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Materials. 2022; 15(9):3045. https://doi.org/10.3390/ma15093045
Chicago/Turabian StyleChen, Zhen, Yongxin Lu, Fan Luo, Shuzhe Zhang, Pei Wei, Sen Yao, and Yongxin Wang. 2022. "Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy" Materials 15, no. 9: 3045. https://doi.org/10.3390/ma15093045
APA StyleChen, Z., Lu, Y., Luo, F., Zhang, S., Wei, P., Yao, S., & Wang, Y. (2022). Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Materials, 15(9), 3045. https://doi.org/10.3390/ma15093045