Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Samples after One Cycle of MDIF
3.2. Texture Evolution of Specimens after One Cycle of MDIF
3.3. Microstructure of Specimens after Four Cycles of MDIF
3.4. Texture Evolution of Samples after Four Cycles of MDIF
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santhosh, R.; Geetha, M.; Rao, M.N. Recent developments in heat treatment of beta titanium alloys for aerospace applications. Trans. Indian Inst. Met. 2017, 70, 1681–1688. [Google Scholar] [CrossRef]
- Zhou, L.; Deng, H.; Chen, L.; Qiu, W.; Wei, Y.; Peng, H.; Hu, Z.; Lu, D.; Cui, X.; Tang, J. Morphological effects on the electrochemical dissolution behavior of forged and additive manufactured Ti-6Al-4V alloys in runway deicing fluid. Surf. Coat. Technol. 2021, 414, 127096. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, Q.; Wang, H.; Huang, S.; Qiu, J.; Feng, X.; Lei, J.; Yang, R. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure. Mater. Charact. 2017, 132, 338–347. [Google Scholar] [CrossRef]
- Bodkhe, M.; Sharma, S.; Mourad, A.H.I.; Sharma, P.B. A review on SPD processes used to produce ultrafine-grained and multilayer nanostructured tubes. Mater. Today: Proc. 2021, 46, 8602–8608. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Xu, Z.-C.; Zhu, C.; Guo, X.-F.; Yang, W.-P.; Cui, H.-B.; Wang, Y. Effect of Multi-Pass Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of a Directional Solidification Mg98.5Zn0.5Y1 Alloy. Mater. Trans. 2019, 60, 2361–2367. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Cao, G.H.; Russell, A.M.; Oertel, C.G.; Skrotzki, W. Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion. Acta Mater. 2015, 98, 103–112. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Qu, S.J.; Feng, A.H.; Hu, X.; Shen, J. Microstructural mechanisms during multidirectional isothermal forging of as-cast Ti-6Al-4V alloy with an initial lamellar microstructure. J. Alloys Compd. 2019, 773, 277–287. [Google Scholar] [CrossRef]
- Moradgholi, J.; Monshi, A.; Farmanesh, K. An investigation in to the mechanical properties of CP Ti/TiO2 nanocomposite manufactured by the accumulative roll bonding (ARB) process. Ceram. Int. 2017, 43, 201–207. [Google Scholar] [CrossRef]
- Miura, H.; Maruoka, T.; Jonas, J.J. Effect of ageing on microstructure and mechanical properties of a multi-directionally forged Mg–6Al–1Zn alloy. Mater. Sci. Eng. A 2013, 563, 53–59. [Google Scholar] [CrossRef]
- Zherebtsov, S.V.; Salishchev, G.A.; Galeyev, R.M.; Valiakhmetov, O.R.; Mironov, S.Y.; Semiatin, S.L. Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing. Scr. Mater. 2004, 51, 1147–1151. [Google Scholar] [CrossRef]
- Imayev, V.M.; Salishchev, G.A.; Shagiev, M.R.; Kuznetsov, A.V. Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging. Scr. Mater. 1998, 40, 183–190. [Google Scholar] [CrossRef]
- Sitdikov, O.; Avtokratova, E.; Markushev, M. Influence of strain rate on grain refinement in the Al-Mg-Sc-Zr alloy during high-temperature multidirectional isothermal forging. Mater. Charact. 2019, 157, 109885. [Google Scholar] [CrossRef]
- Soleymani, V.; Eghbali, B. Grain refinement in a low carbon steel through multidirectional forging. J. Iron Steel Res. Int. 2012, 19, 74–78. [Google Scholar] [CrossRef]
- Ansarian, I.; Shaeri, M.H.; Ebrahimi, M.; Minárik, P.; Bartha, K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. J. Alloys Compd. 2019, 776, 83–95. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Qu, S.J.; Feng, A.H.; Shen, J. Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Mater. Sci. Eng. A 2017, 692, 127–138. [Google Scholar] [CrossRef]
- Salishchev, G.A.; Valiakhmetov, O.R.; Galeyev, R.M. Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties. J. Mater. Sci. 1993, 28, 2898–2902. [Google Scholar] [CrossRef]
- Li, S.; Han, Y.; Zhou, H.; Huang, G.; Le, J.; Wang, X.; Lu, W. Optimizing the local microstructure and mechanical properties of variable section particulate reinforced titanium matrix composites component based on numerical simulation and isothermal forming. Mater. Sci. Eng. A 2021, 829, 142161. [Google Scholar] [CrossRef]
- Seshacharyulu, T.; Medeiros, S.C.; Morgan, J.T.; Malas, J.C.; Frazier, W.G.; Prasad, Y.V.R.K. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Mater. Sci. Eng. A 2000, 279, 289–299. [Google Scholar] [CrossRef]
- Li, G.A.; Zhen, L.; Lin, C.; Gao, R.S.; Tan, X.; Xu, C.Y. Deformation localization and recrystallization in TC4 alloy under impact condition. Mater. Sci. Eng. A 2005, 395, 98–101. [Google Scholar] [CrossRef]
- Li, M.; Luo, J.; Pan, H. Microstructure evolution in the high temperature compression of Ti-5.6Al-4.8Sn-2.0 Zr alloy. Rare Met. 2010, 29, 533–537. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D.; Wu, Z.; Yi, J.; Ni, S.; Du, Y.; Song, M. A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al–Mg alloy. Mater. Sci. Eng. A 2016, 658, 16–27. [Google Scholar] [CrossRef]
- Wei, S.; Kim, J.; Tasan, C.C. In-situ investigation of plasticity in a Ti-Al-V-Fe (α+ β) alloy: Slip mechanisms, strain localization, and partitioning. Int. J. Plast. 2021, 148, 103131. [Google Scholar] [CrossRef]
- Armstrong, R.W. The influence of polycrystal grain size on several mechanical properties of materials. Metall. Mater. Trans. A 1970, 1, 1169–1176. [Google Scholar] [CrossRef]
- Sabirov, I.; Murashkin, M.Y.; Valiev, R.Z. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A 2013, 560, 1–24. [Google Scholar] [CrossRef]
- Ma, Q.; Wei, K.; Xu, Y.; Zhao, L.; Zhang, X. Exploration of the static softening behavior and dislocation density evolution of TA15 titanium alloy during double-pass hot compression deformation. J. Mater. Res. Technol. 2022, 18, 872–881. [Google Scholar] [CrossRef]
Ti | Al | V | Fe | C | H | O | N | |
---|---|---|---|---|---|---|---|---|
wt.% | Bal. | 6.45 | 4.21 | 0.2 | 0.06 | 0.008 | 0.17 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Yang, W.; Fan, J.; Wu, T.; Gao, Z. Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy. Materials 2022, 15, 3156. https://doi.org/10.3390/ma15093156
Xu Z, Yang W, Fan J, Wu T, Gao Z. Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy. Materials. 2022; 15(9):3156. https://doi.org/10.3390/ma15093156
Chicago/Turabian StyleXu, Zhichao, Wenju Yang, Jianfeng Fan, Tao Wu, and Zeng Gao. 2022. "Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy" Materials 15, no. 9: 3156. https://doi.org/10.3390/ma15093156
APA StyleXu, Z., Yang, W., Fan, J., Wu, T., & Gao, Z. (2022). Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy. Materials, 15(9), 3156. https://doi.org/10.3390/ma15093156