Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Settlement Layer
2.2. Air Samples and Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinmuth-Selzle, K.; Kampf, C.J.; Lucas, K.; Lang-Yona, N.; Fröhlich-Nowoisky, J.; Shiraiwa, M.; Lakey, P.S.J.; Lai, S.; Liu, F.; Kunert, A.T.; et al. Air Pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environ. Sci. Technol. 2017, 51, 4119–4141. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry, and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef] [Green Version]
- Emissions Database for Global Atmospheric Research (EDGAR) 2020 v5.0 Global Air Pollutant Emissions. Available online: https://edgar.jrc.ec.europa.eu/overview.php?v=50_AP (accessed on 3 October 2021).
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil. Trans R Soc. B 2013, 368, 20130166. [Google Scholar] [CrossRef]
- Lovarelli, D.; Conti, C.; Finzi, A.; Bacenetti, J.; Guarino, M. Describing the trend of ammonia, particulate matter and nitrogen oxides: The role of livestock activities in northern Italy during COVID-19 quarantine. Environ. Res. 2020, 191, 110048. [Google Scholar] [CrossRef]
- Viatte, C.; Petit, J.-E.; Yamanouchi, S.; Van Damme, M.; Doucerain, C.; Germain-Piaulenne, E.; Gros, V.; Favez, O.; Clarisse, L.; Coheur, P.-F.; et al. Ammonia and PM2.5 air pollution in paris during the 2020 COVID lockdown. Atmosphere 2021, 12, 160. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Mendoza-Villafuerte, P.; Riccobono, F.; Vojtisek, M.; Pechout, M.; Perujo, A.; Astorga, C. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real-world driving conditions. Atmos. Environ. 2017, 166, 488–497. [Google Scholar] [CrossRef]
- Osada, K.; Saito, S.; Tsurumaru, H.; Hoshi, J. Vehicular exhaust contributions to high NH3 and PM2.5 concentrations during winter in Tokyo, Japan. Atmos. Environ. 2019, 206, 218–224. [Google Scholar] [CrossRef]
- Hu, J.; Liao, T.; Lü, Y.; Wang, Y.; He, Y.; Shen, W.; Yang, X.; Ji, D.; Pan, Y. Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere 2022, 13, 170. [Google Scholar] [CrossRef]
- Fehsenfeld, F.C.; Huey, L.G.; Leibrock, E.; Dissly, R.; Williams, E.; Ryerson, T.B.; Norton, R.; Super, D.T.; Hartsell, B. Results from an informal intercomparison of ammonia measurement techniques. J. Geophys. Res. 2002, 107, 4812. [Google Scholar] [CrossRef]
- Dong, F.; Li, H.; Liu, B.; Liu, R.; Hou, K. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia. J. Environ. Sci. 2022, 114, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Pollack, I.B.; Lindaas, J.; Roscioli, J.R.; Agnese, M.; Permar, W.; Hu, L.; Fischer, E.V. Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-TILDAS operated with active continuous passivation. Atmos. Meas. Tech. 2019, 12, 3717–3742. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.A.; Murphy, J.G.; Pattey, E.; van Haarlem, R.; O’Brien, J.M.; Herndon, S.C. Characterizing a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS) for measurements of atmospheric ammonia. Atmos. Meas. Tech. 2010, 3, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Zhang, Z.; Smith, P. Real-time measurements of landfill atmospheric ammonia using mobile white cell differential optical absorption spectroscopy system and engineering applications. J. Air Waste Manag. Assoc. 2021, 71, 34–45. [Google Scholar] [CrossRef]
- Xing, X.; Liu, H.; Shang, W.; Chen, Z. An ammonia gas detection system using liquid quantum dot LEDs based differential optical absorption spectroscopy. Opt. Commun. 2019, 451, 28–34. [Google Scholar] [CrossRef]
- Sintermann, J.; Dietrich, K.; Häni, C.; Bell, M.; Jocher, M.; Neftel, A. A miniDOAS instrument optimised for ammonia field measurements. Atmos. Meas. Tech. 2016, 9, 2721–2734. [Google Scholar] [CrossRef] [Green Version]
- Volten, H.; Bergwerff, J.B.; Haaima, M.; Lolkema, D.E.; Berkhout, A.J.C.; van der Hoff, G.R.; Potma, C.J.M.; Kruit, R.J.W.; van Pul, W.A.J.; Swart, D.P.J. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere. Atmos. Meas. Tech. 2012, 5, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Huszár, H.; Pogány, A.; Bozóki, Z.; Mohácsi, Á. Ammonia monitoring at ppb level using photoacoustic spectroscopy for environmental application. Sens. Actuators B Chem. 2008, 134, 1027–1033. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Z.; Yu, Q. Photoacoustic spectroscopy for fast and sensitive ammonia detection. Chin. Opt. Lett. 2007, 5, 677–679. [Google Scholar]
- Wang, J.; Wang, H. Ammonia, carbon dioxide and water vapor detection based on tunable fiber laser photoacoustic spectroscopy. Optik 2016, 127, 942–945. [Google Scholar] [CrossRef]
- Pushkarsky, M.; Webber, M.; Patel, C. Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy. Appl. Phys. B 2003, 77, 381–385. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, H.; Bu, X.; Wu, Q.; Wang, X.; Han, C.; Li, X.; Wang, X.; Liu, W. Improving ammonia detecting performance of polyaniline decorated rGO composite membrane with GO doping. Materials 2021, 14, 2829. [Google Scholar] [CrossRef] [PubMed]
- Pakolpakçıl, A.; Draczyński, Z. A facile design of colourimetric polyurethane nanofibrous sensor containing natural indicator dye for detecting ammonia vapour. Materials 2021, 14, 6949. [Google Scholar] [CrossRef] [PubMed]
- Someya, Y.; Imasu, R.; Shiomi, K.; Saitoh, N. Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder. Atmos. Meas. Tech. 2020, 13, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Lovarelli, D.; Fugazza, D.; Costantini, M.; Conti, C.; Diolaiuti, G.; Guarino, M. Comparison of ammonia air concentration before and during the spread of COVID-19 in Lombardy (Italy) using ground-based and satellite data. Atmos. Environ. 2021, 259, 118534. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Zhang, Q.-Q.; Zhang, X.-Y. Satellite-based analysis of spatial–temporal distributions of NH3 and factors of influence in North China. Front. Environ. Sci. 2021, 9, 476. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, M.; Guo, Z.; Xu, W.; Du, X.; Li, Y. Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions. Environ. Pollut. 2020, 263 Pt B, 114421. [Google Scholar] [CrossRef]
- Shephard, M.W.; Dammers, E.; Cady-Pereira, K.E.; Kharol, S.K.; Thompson, J.; Gainariu-Matz, Y.; Zhang, J.; McLinden, C.A.; Kovachik, A.; Moran, M.; et al. Ammonia measurements from space with the Cross-track Infrared Sounder: Characteristics and applications. Atmos. Chem. Phys. 2020, 20, 2277–2302. [Google Scholar] [CrossRef] [Green Version]
- Mohebbifar, M.R. The laser power effect on the performance of gas leak detector based on laser photo-acoustic spectroscopy. Sens. Actuators A Phys. 2020, 305, 111914. [Google Scholar] [CrossRef]
- Wojtas, J.; Gluszek, A.; Hudzikowski, A.; Tittel, F.K. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy. Sensors 2017, 17, 513. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Manrique, O.E.; Posada-Roman, J.E.; Garcia-Souto, J.A.; Ruiz-Llata, M. Sub-ppm-Level ammonia detection using photoacoustic spectroscopy with an optical microphone based on a phase interferometer. Sensors 2019, 19, 2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, S.; Qu, Y.; Ma, Y.; He, Y.; Wang, Y.; Hu, Y.; Yu, X.; Zhang, Z.; Tittel, F.K. A sensitive carbon dioxide sensor based on photoacoustic spectroscopy with a fixed wavelength quantum cascade laser. Sensors 2019, 19, 4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karhu, J.; Hieta, T. Enhancement of photoacoustic spectroscopy with sorption enrichment for ppt-level benzene detection. Appl. Opt. 2022, 61, 1892–1897. [Google Scholar] [CrossRef]
- Rück, T.; Bierl, R.; Matysik, F.-M. NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise. Sens. Actuators B Chem. 2018, 255 Pt 3, 2462–2471. [Google Scholar] [CrossRef]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryanto, B.H.R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A.N.; MacFarlane, D. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Huang, R.-J.; Zhang, R.; Tie, X.; Lia, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Nandor, K.; Pereș, A.C. The level of air pollution with ammonia in the city of Satu Mare in 2014-2016. Nat. Resour. Sustain. Dev. 2017, 9, 57–60. [Google Scholar]
- Anderl, M. Air emissions from agriculture in Austria and Romania. ProEnvironment 2009, 2, 19–27. [Google Scholar]
- Dandocsi, A.; Nemuc, A.; Marin, C.; Andrei, S. Measurements of aerosols and trace gases in Southern Romania. Rev. De Chim.-Buchar.-Orig. Ed. 2017, 68, 873–878. [Google Scholar] [CrossRef]
- Dumitrescu, G.-C.; Poladian, S.M.; Aluculesei, A.-C. Repositioning of Romanian seaside tourism as an effect of climate change. Information 2021, 12, 108. [Google Scholar] [CrossRef]
- Country Profiles. Available online: https://climate-adapt.eea.europa.eu/countries-regions/countries/romania (accessed on 17 November 2021).
- Ministry of Environment and Climate Change Romania’s Sixth National Communication on Climate Change and First Biennial Report. Available online: https://unfccc.int/sites/default/files/6th_nccc_and_1st_br_of_romania%5B1%5D.pdf (accessed on 12 December 2021).
- Dumitras, D.C.; Dutu, D.C.; Matei, C.; Magureanu, A.; Petrus, M.; Popa, C. Laser photoacoustic spectroscopy: Principles, instrumentation, and characterization. J. Optoelectron. Adv. Mater. 2007, 9, 3655. [Google Scholar]
- Dumitras, D.C.; Dutu, D.C.A.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A.M.; Petrus, M.; Popa, C. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath. Laser Phys. 2011, 21, 1–5. [Google Scholar] [CrossRef]
- Bratu, A.M.; Popa, C.; Matei, C.; Banita, S.; Dutu, D.C.A.; Dumitras, D.C. Removal of interfering gases in breath biomarker measurements. J. Optoel. Adv. Mater. 2011, 13, 1045–1050. [Google Scholar]
- Chang, Y.; Zou, Z.; Deng, C.; Huang, K.; JCollett, J.L.; Lin, J.; Zhuang, G. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmos. Chem. Phys. 2016, 16, 3577–3594. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhou, H.; Holsen, T.M.; Hopke, P.K.; Edgerton, E.S.; Schwab, J.J. Ambient ammonia concentrations across New York State. J. Geophys. Res. Atmos. 2019, 124, 8287–8302. [Google Scholar] [CrossRef] [Green Version]
- Bray, C.D.; Battye, W.; Aneja, V.P.; Tong, D.; Lee, P.; Tang, Y.; Nowak, J.B. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign. Atmos. Environ. 2017, 163, 65–76. [Google Scholar] [CrossRef]
- Gong, L.; Lewicki, R.; Griffin, R.J.; Flynn, J.H.; Lefer, B.L.; Tittel, F.K. Atmospheric ammonia measurements in Houston, TX using an external-cavity quantum cascade laser-based sensor. Atmos. Chem. Phys. Discuss. 2011, 11, 16335–16368. [Google Scholar] [CrossRef] [Green Version]
- Lariosa, A.D.; Chebana, F.; Godbout, S.; Brar, S.K.; Valerad, F.; Palacios, J.H.; Avalos Ramireza, A.; Sandoval-Salas, F.; Larouche, J.P.; Medina-Hernández, D.; et al. Analysis of atmospheric ammonia concentration from four sites in Quebec City region over 2010–2013. Atmos. Pollut. Res. 2018, 9, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Zbieranowski, A.L.; Aherne, J. Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid across a rural-urban–agricultural transect in southern Ontario, Canada. Atmos. Environ. 2012, 62, 481–491. [Google Scholar] [CrossRef]
- Nan, S.W.J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842. [Google Scholar] [CrossRef] [Green Version]
- Ehrnsperger, L.; Klemm, O. Source apportionment of urban ammonia and its contribution to secondary particle formation in a Mid-size European City. Aerosol Air Qual. Res. 2020, 21, 200404. [Google Scholar] [CrossRef]
- Pinder, R.W.; Walker, J.T.; Bash, J.O.; Cady-Pereira, K.E.; Henze, D.K.; Luo, M.; Osterman, G.B.; Shephard, M.W. Quantifying spatial and seasonal variability in atmospheric ammonia with in situ and space-based observations. Geophys. Res. Lett. 2011, 38, L04802. [Google Scholar] [CrossRef] [Green Version]
- Lan, Z.; Lin, W.; Pu, W.; Ma, Z. Measurement report: Exploring the NH3 behaviors at urban and suburban Beijing: Comparison and implications. Atmos. Chem. Phys. 2020, 21, 4561–4573. [Google Scholar] [CrossRef]
- IARC: Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 12 November 2021).
- EEA. Air Quality in Europe−2018 Report; EEA Report No 12/2018, EEA Reports; European Environment Agency: Copenhagen, Denmark, 2018.
- EEA. Exceedance of Air Quality Standards in Urban Areas (CSI 004), 2018th ed.; European Environmental Agency: Copenhagen, Denmark, 2018.
- Grigorieva, E.; Lukyanets, A. Combined effect of hot weather and outdoor air pollution on respiratory health: Literature review. Atmosphere 2021, 12, 790. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pandey, M.; Mishra, A.; Tiwary, S.M.; Tripathi, B.D. Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban For. Urban Green. 2015, 14, 866–871. [Google Scholar] [CrossRef]
- Han, D.; Shen, H.; Duan, W.; Chen, L. A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban Green. 2020, 48, 126565. [Google Scholar] [CrossRef]
- Nair, A.A.; Yu, F. Quantification of atmospheric ammonia concentrations: A review of its measurement and modeling. Atmosphere 2020, 11, 1092. [Google Scholar] [CrossRef]
- Wang, R.; Guo, X.; Pan, D.; Kelly, J.T.; Bash, J.O.; Sun, K.; Paulot, F.; Clarisse, L.; Van Damme, M.; Whitburn, S.; et al. Monthly patterns of ammonia over the contiguous United States at 2-km resolution. Geophys. Res. Lett. 2021, 48, e2020GL090579. [Google Scholar] [CrossRef]
- Osada, K. Measurement report: Short-term variation in ammonia concentrations in an urban area increased by mist evaporation and emissions from a forest canopy with bird droppings. Atmos. Chem. Phys. 2020, 20, 11941–11954. [Google Scholar] [CrossRef]
- Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R.P.; Blom, M.J.; Querol, X. Summer ammonia measurements in a densely populated Mediterranean city. Atmos. Chem. Phys. 2012, 12, 7557–7575. [Google Scholar] [CrossRef] [Green Version]
- Marmureanu, L.; Deaconu, L.; Vasilescu, J.; Ajtai, N.; Talianu, C. Combined optoelectronic methods used in the monitoring of SO2 emissions and imissions. Environ. Eng. Manag. J. 2013, 12, 277–282. [Google Scholar]
- Romanian Ministry of Environment. Authorization No. 104/13.02.2013 on Green Gases Emissions. 2019. Available online: http://mmediu.ro/new/wp-content/uploads/2014/10/2014-10-20_Autorizatie_GES_2013-LCEN_CTE_SUD_rev_iulie_2013.pdf (accessed on 23 November 2021).
- Tang, Y.S.; Braban, C.F.; Dragosits, U.; Dore, A.J.; Simmons, I.; van Dijk, N.; Poskitt, J.; Dos Santos Pereira, G.; Keenan, P.O.; Conolly, C.; et al. Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK. Atmos. Chem. Phys. 2018, 18, 705–733. [Google Scholar] [CrossRef] [Green Version]
- Van Zanten, M.; Kruit, R.W.; Hoogerbrugge, R.; Van der Swaluw, E.; Van Pul, W. Trends in ammonia measurements in the Netherlands over the period 1993–2014. Atmos. Environ. 2017, 148, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Tao, L.; Miller, D.J.; Pan, D.; Golston, L.M.; Zondlo, M.A.; Griffin, R.J.; Wallace, H.W.; Leong, Y.J.; Yang, M.M.; et al. Vehicle emissions as an important urban ammonia source in the United States and China. Environ. Sci. Technol. 2017, 51, 2472–2481. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated ammonia emissions from road vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Characterisation of ammonia emissions from gasoline and gasoline hybrid passenger cars. Atmos. Environ. X 2021, 11, 100117. [Google Scholar] [CrossRef]
- Banzhaf, S.; Schaap, M.; Wichink Kruit, R.J.; Denier van der Gon, H.A.C.; Stern, R.; Builtjes, P.J.H. Impact of emission changes on secondary inorganic aerosol episodes across Germany. Atmos. Chem. Phys. 2013, 13, 11675–11693. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xing, J.; Jang, C.; Zhu, Y.; Fu, J.S.; Hao, J. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 2011, 45, 9293–9300. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Q.; Liu, X.; Tang, A.; Dore, A.J.; Heal, M.R. Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain. Environ. Sci. Pollut. Res. Int. 2016, 23, 1158–1172. [Google Scholar] [CrossRef] [Green Version]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
Location | Period | Methodology | Concentration | Reference |
---|---|---|---|---|
Magurele, Romania | March–August 2021 | CO2LPAS detector | 0.161–134 ppb | Present research |
Shanghai, China | April 2014–April 2015 | MARGA—online monitor | 7.86 ± 5.57 ppb | [48] |
New York, USA | April 2016–October 2017 | Dual-channel nitric oxide-ozone (NO-O3) chemiluminescence detector system | 3.22 ± 2.23 ppb 2.84 ± 1.91 ppb 1.29 ± 1.12 ppb 0.82 ± 0.64 ppb | [48] |
Atlanta, USA | July–August 2002 | chemical ionization mass spectrometry | 0.4–13 ppb | [49] |
California, USA | May–June 2010 | TES—satellite remote sensing | 21 ± 17 ppb | [50] |
Huston, USA | 12 February 2010–1 March 2010 | External cavity quantum cascade laser (EC-QCL)-based sensor employing | 2.4 ± 1.2 ppb | [51] |
5 August 2010–25 September 2010 | conventional photoacoustic spectroscopy | 3.1 ± 2.9 ppb | ||
Quebec, Canada | 2010–2013 | Fluorophore membrane filters (PTFE) | 0.5–25.01 ppb | [52] |
Ontario, Canada | April 2010–March 2011 | Willems badge diffusive passive sampler | urban site ~2.86 ppb agricultural site > 4.29 ppb | [53] |
Shanghai, China | 7 July 2013–30 September 2014 | MARGA instrument—online monitor | Industrial: 19.6 ± 8.2 ppb, Rural: 10.4 ± 5.0 ppb), Urban: 5.4 ± 3.3 ppb | [54] |
Münster, Germany | 30 August 2018–31 October 2018 | Chemiluminescence | 17 ppb | [55] |
North Carolina, USA | 18 June–22 August 2002 | Tropospheric Emission Spectrometer (TES) | 1–6 ppb | [56] |
Beijing, China | 13 January 2018–13 January 2019 | cavity output spectroscopy (OA-ICOS) | urban: 21 ± 14 ppb suburban: 22 ± 15 ppb | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrus, M.; Popa, C.; Bratu, A.-M. Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector. Materials 2022, 15, 3182. https://doi.org/10.3390/ma15093182
Petrus M, Popa C, Bratu A-M. Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector. Materials. 2022; 15(9):3182. https://doi.org/10.3390/ma15093182
Chicago/Turabian StylePetrus, Mioara, Cristina Popa, and Ana-Maria Bratu. 2022. "Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector" Materials 15, no. 9: 3182. https://doi.org/10.3390/ma15093182
APA StylePetrus, M., Popa, C., & Bratu, A. -M. (2022). Ammonia Concentration in Ambient Air in a Peri-Urban Area Using a Laser Photoacoustic Spectroscopy Detector. Materials, 15(9), 3182. https://doi.org/10.3390/ma15093182