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Abstract: This work presents a wideband, all-side square-cut square patch multiple-input, multiple-
output circularly-polarized (MIMO-CP) high-isolation antenna. The MIMO-CP antenna contains a
two-port square cut on all corners of the square patch, and parasitic elements of 9 × 5 periodic square
metallic plates are designed and operated. The outer dimensions of the antenna are 40 × 70 mm2,
and the FR4 substrate height is 1.6 mm. The proposed antenna with the parasitic elements improves
impedance matching and enhances S-parameters and axial ratio (AR). In the suggested MIMO-CP
antenna, a parasitic element is designed and placed around the antenna periodically to reduce
mutual coupling (MC) and improve CP. Simulated results show that the suggested antenna has
a wide bandwidth (BW) from 4.89 to 6.85 GHz for S11 and was < −10 dB with AR ≤ 3 dB from
5.42 to 6.58 GHz, with a peak gain of 6.6 dB. The suggested antennas have more than 30 dB isolation
and a low profile, are affordable, easily made, and are CP. To make a comparison with the measured
and simulated results, a MIMO-CP antenna structure was fabricated and tested. The suggested
antenna is better in terms of efficiency, envelope correlation coefficient (ECC), diversity gain (DG),
channel capacity loss (CCL), and total active reflection coefficient (TARC). The proposed antenna is
adequate for WLAN applications.

Keywords: circular polarization; MIMO; mutual coupling; axial ratio; ECC; WLAN

1. Introduction

Nowadays, wireless local area networks (WLAN) are an essential technology for
low power consumption, high transmission rates, high signal-to-noise ratios, and high
security [1]. Modern wireless communication systems are heavily reliant on multiple-input,
multiple-output (MIMO) technology in order to increase channel capacity and meet the
growing demand for high-speed, wideband communications [2]. This system is becoming
increasingly popular in modern research movements due to its potential benefits, such as
high system throughput, enhanced communication reliability, and wideband coverage [3].
The transmitted signal in a wireless communication environment experiences small-scale
or large-scale multipath fading, caused by mountains or large structures [4]. However, to
reduce the fading effect, MIMO technology revolutionizes this situation by increasing the
data rate while maintaining high quality [5,6]. Due to the mutual coupling (MC) effect
among the two radiators, it is extremely hard to maintain multiple antennas in a small
and dense space when using a MIMO antenna at the user end [7]. MC is caused by the
communication of radiation from widely spaced antennas with surface currents flowing
on the ground plane. Therefore, it is vital to decrease the MC of the MIMO antenna [8].
This degrades the MIMO antenna diversity performance and increases MC among nearby
antennas by causing field correlation and a rise in MC [9].
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Several effective ways and methods for MC and increasing the compactness of an-
tenna elements in MIMO antenna systems have been investigated. Several decoupling
technologies, such as an F-shaped stub [10], neutralization line (NL) [11], complementary
split ring resonator (SPR) [12], defected ground structure (DGS) [13,14], slot [15–17], and
electromagnetic bandgap structures (EBG) [18,19] have been presented. Recently, metama-
terials and metasurfaces [20–22] have also been applied to enhanced isolation. In several
studies, a dual-band or multi-band MIMO antenna with low MC, a smaller size, and a low
ECC has been designed. For WLAN applications, a new MTM-based superstrate design
for low MC and better MIMO systems is being studied [23]. The inter-port MC among the
antenna elements is improved in [24] via the DGS structure, which offers low MC from
−12 to −25 dB at 5.65 GHz. To attain high gain, a smaller size, and better isolation, an
artificial magnetic conductor (AMC) is used beneath the V-shaped antenna [25]. In [26], an
isolation enhancement of 26 dB was attained by suppressing the MC between two antennas
by a unique mushroom-shaped EBG structure. Unluckily, the 0.6λ center-to-center spacing
resulted in a large lateral size. Reference [27] designed a compact four-port MIMO an-
tenna for high-isolation and ultra-wideband and introduced T-shaped metamaterial, which
enhanced bandwidth and isolation. In [28], a small, closely coplanar waveguide (CPW)
MIMO antenna with a comb-shaped MC design also showed a high port isolation of >20 dB.
To introduce the decoupling method, a neutralization line is suggested to reduce the MC of
the ultra-wideband (UWB) MIMO antenna [29]. To enhance isolation among the patches
of MIMO antennas, a mushroom EBG and a fractal-shaped EBG have been studied [30].
However, the entire above-cited antenna’s MC has only presented linear polarization (LP).

Currently, antenna designers are gradually developing and focusing on CP radiators
in MIMO systems. The CP antenna demand is growing due to various factors, such as
multipath effects, polarization mismatch, and phasing issues. For the ability to maintain a
stable connection among the receiving systems and transmitting regardless of the location,
CP antennas are frequently preferred in wireless communication over LP antennas [31].
A number of printed antenna shapes using various techniques have been proposed in
recent years in response to the rising demand for small antennas with wide BW and ARBW.
Because of their simple design, compact size, low profile, uncomplicated design and
fabrication, and low cost, as well as their ability to produce CP waves while maintaining
a compact antenna size and bidirectional radiation patterns (RHCP and LHCP), printed
antennas are gaining popularity for use in indoor environments [32].

Using a MIMO configuration with polarization diversity, the issue of mutual coupling
can be resolved more successfully. Nevertheless, the literature has suggested many methods
for a MIMO antenna with circular polarization features. In [33–44], the authors suggested
a MIMO-CP antenna with a high-isolation of more than 10 dB. For WLAN applications
of MIMO systems in tiny wearable devices, ground radiation with CP performance has
been proposed using a tunable metal strip [33]. MC and CP are attained by modifying the
microstrip stubs and annular ring patches of the antennas [34]. In [35], a novel mu-negative
metamaterial (MTM) filter-constructed MC technique was used for MIMO CP antennas.
Decent isolation among the antennas can be attained with the obtainable decoupling net-
work MTM structure by maintaining compactness, but this has a narrow bandwidth and
axial ratio. Moreover, various DGS, slots, and stubs have been used to increase antenna
isolation and axial ratio for WLAN application in Endfire and T-shaped slot CP antenna [36]
using mirrored F-shaped DGS, three grounded stubs [37], and two optimized 90◦ apart
rectangular slots [38]. The presented antennas in [35] provide low isolation, narrow band-
width, axial ratio, and low peak gain, and those in [37,38] give narrow bandwidth and
low isolation but have disadvantages because of the antenna fabrication complexity and
large size. Apart from microstrip patch antenna, numerous types of dielectric resonator
(DR) MIMO CP antenna have been referenced in the literature, in which the CP radiation
is realized by using a modified circular designed aperture [39], L-shaped DR [40], two
rectangular DRs, a single square DR [41], and an F-shaped slot [42]. In conclusion, most
of the unidirectional beam MIMO-CP antennas mentioned in the literature have limited
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operating BW and axial ratio, while those in [42] have wide BW but large sizes. In [43],
the MC of a MIMO-CP antenna is considered using parasitic components by placing a
parasitic line patch and circular ring parasites in a hybrid decoupling structure [44] for MC
reduction and AR.

This article presents a corner square cut of all sides on a square radiator wideband
MIMO-CP antenna, which is studied for the WLAN band. The main novelty of the proposed
work is that the MIMO-CP antenna is composed of two radiated square corner cut patches
and square parasitic elements. The antenna is compact, has a larger 3 dB AR, and has
a wider bandwidth. The structure achieved CP by optimizing square-cut corners at the
square patch antenna. The square parasitic elements are periodically placed around the
two patches for reduced MC among the two MIMO elements and are given a wide AR.
The MIMO-CP antenna has a wide bandwidth and axial ratio, and good isolation over the
whole frequency range from 4.89 to 6.85 GHz. The proposed antenna is designed for wide
bandwidth, low MC, enhanced gain, and necessary impedance bandwidth. Within the
frequency range, the results of measurement on the fabricated prototype are near to the
simulated result.

2. Single Antenna Configuration and Analysis

In this section, first, a single-CP antenna is designed for WLAN application. The
geometry of the single-CP antenna is shown in Figure 1a. The antenna is made up
of all corners square cut at the square patch, a ground plane, and an FR-4 substrate;
εr = 4.3 and tanδ = 0.025. The thickness of the substrate is 1.6 mm, with outer dimensions
of 20 × 25 mm2. The antenna is designed with full ground, having dimensions the same as
the FR-4 substrate. The antenna ground is attached to the back side of the FR-4 substrate.
Initially, the antennas have LP radiation; one of the easy conventional techniques is to apply
squares to the cuts at all corners of the square patch to obtain CP.
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A wideband antenna has been designed in this paper after different stages for WALN
application. Initially, a simple square patch was designed for the WLAN band, which has
a narrow band and linear polarization. In the next stage, a two-square cut was inserted
into the square patch antenna, with a length and width, Wi, to obtain wide bandwidth
and circular polarization. The antenna after the second stage, resonated at 5.8 GHz and
still had no circular polarization. In the third stage, two more square cuts were added to
the square patch antenna, which improved the return loss and bandwidth and attained
circular polarization. The square-cut corners of the square patch were tuned by G and
Lg to realize CP performance. The proposed antenna is fed by a 50 Ω coaxial cable via
an SMA connector. The outer conductor of the coaxial connector is extended up to the
ground, while the inner conductor passes through the dielectric and is soldered to the
radiating patch. Figure 1a depicts the initial placement of the feed in the patch’s center and
the subsequent adjustment of the x-axis and y-axis by 5 mm and 1.5 mm, respectively, to
maximize impedance matching. Figure 1b shows that the single-patch antenna simulated
|S11| reflection coefficient is below −10 dB impedance BW from 5.45 to 6.3 GHz. Figure 1c
shows that the single antenna has been given a 3-dB AR BW from 5.9 to 6.1 GHz. It can be
seen that the single-patch antenna has a narrow axial ratio.

3. Proposed MIMO-CP Antenna Configuration and Analysis

The suggested wideband MIMO-CP antenna geometry, design process, and character-
ization are shown in Figure 2. The dielectric substrate of the antenna has a ground plane
along the lower edge and microstrip square patches along the upper edge. By adjusting the
design parameters, an optimized single-patch antenna is first modeled, and after that, its
characteristics are examined using a MIMO-CP antenna. The radiating elements are two
square elements with a corner square cut on all sides of the square patches.
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Figure 2. MIMO antenna without parasitic elements: (a) top-view; (b) bottom-view; (c) MIMO
antenna with parasitic elements.

The progress of the two radiating patches of the MIMO-CP antenna without parasitic
elements is shown in Figure 2. Depending on the antenna design and how the square
cuts are arranged on the square patches, either left-hand CP (LHCP) or right-hand CP
(RHCP) will be produced. The MIMO antenna with parasitic elements is shown in Figure 2c.
Figure 2b shows the back view of the proposed parasitic elements antenna with the full
ground and the same dimensions as the substrate. The antenna dimensions of the proposed
antenna are increased due to parasitic elements, which are LF ×WF = 40 × 70 mm2. The
antenna is fed at Ports 1 and 2 using two 50 Ω SMA connectors. The antenna consists of
two square patches in which the corners have square cuts in different dimensions to have
CP and square parasitic elements periodically arranged around the radiating patch. The
area of the square patch is (p × p). The square cut length and width at the square patches
are (l × l) and (I × i). The square parasitic elements have periodicity, wg, and the distance
between the nearby parasitic elements is g and is placed periodically around the patches
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for improvement. The final dimension of the suggested geometry is shown in Table 1. The
suggested antenna dimensions are determined by optimizing the design with microwave
CST studio.

Table 1. Dimensions of the suggested antenna.

Parameters Size
(mm) Parameters Size

(mm) Parameters Size
(mm)

WF 70 LF 40 s 13.5
l
h

5.1
1.6

Wi
wg

7.6
6.4

i
g

2.7
1

In [44], a unique circular ring and parasitic element are suggested to reduce the MC
of the antenna investigated. In this paper, the square parasitic elements are used around
two-port antennas for the whole performance enhancement of the antenna. This part
mostly focuses on improving isolation between the antenna elements and AR. The analyses
of the suggested antenna without and with parasitic element results are given in Figure 3. It
should be noted that our best results have been obtained by the insertion of square parasitic
elements periodically around two radiators to achieve the optimum performance of the
MIMO-CP antenna.
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The parasitic elements produce a wide bandwidth and additional resonance, resulting
in the antenna’s overall impedance BW of−10 dB. The simulated |S11| of the suggested an-
tenna without and with parasitic elements is shown in Figure 3a. The antenna without par-
asitic elements has simulated reflection coefficients of |S11| > −10 dB BW (5.4–6.57 GHz).
However, the suggested parasitic antenna significantly enhances the antenna’s BW. The
design with parasitic elements given a wide bandwidth from 4.89 to 6.85 GHz (33.39%)
for |S11| was <−10 dB. The effect of the parasitic elements on the MC of the antenna is
shown in Figure 3b. The antenna without parasitic elements has poor isolation over the
entire bandwidth because |S21| is above −20 dB, while after the insertion of the parasitic
elements, the mutual coupling has been reduced to −20 dB overall bandwidth, as shown
in Figure 3b. The simulations result without parasitic shows that narrow impedance BW,
quite narrow axial ratio BW, and poor isolation are always undesirable, and this is what the
results of the simulations showed. Mutual coupling (MC) was not significantly reduced by
this configuration. As a result, the primary goal of this article was to reduce MC, which is
improved by parasitic elements.

The suggested MIMO-CP antenna current distribution verifies the impact of the
parasitic elements on reducing MC. The surface current at 5.4 GHz with and without
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parasitic elements is shown in Figure 4. A high MC is obtained between the patches when
Port 1 is excited, and Port 2 is terminated with a 50-ohm impedance because the current
is strongly coupled to another radiator without parasitic elements, as shown in Figure 4a.
Figure 4b shows that with the proposed position of parasitic elements, the current density
is reduced, unusually between the two radiating elements. As a result, these analyses assist
us in determining the optimal position of the parasitic elements for the lowest MC between
the patches. The introduction of the parasitic elements around the patches jammed the
current from another side, which enhanced isolation among the two radiators.
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Figure 4. Proposed antenna surface current distribution when Port 1 is excited, and Port 2 is
terminated: (a) without parasitic elements; (b) with parasitic elements.

Figure 5 shows a far-field radiation pattern at the minimum AR at 5.4 GHz in theϕ = 0◦

and ∅ = 90◦ planes. When Port 1 is excited, the LHCP field becomes stronger. Figure 5
clearly shows that the LHCP field is stronger in the broadside direction than the RHCP
field. The antenna deals with the LHCP sense of polarization because the RHCP is very
insignificant compared to the LHCP displaying high polarization isolation. The MIMO-CP
antenna gain without and with parasitic elements is shown in Figure 6a. The antenna
gain without parasitic elements is seen to be 5.50 dBi; however, the gain with parasitic
is enhanced up to 6.45 dBi due to the good efficiency of the antenna acknowledgments
to the parasitic elements. The simulated AR of the antenna without and with parasitic
elements is shown in Figure 6b. The proposed antenna without a parasitic element has a
narrow AR of 5.9 to 6.3 GHz. A wide 3-dB AR BW was achieved by the suggested antenna
with a parasitic of 18.25% (5.41–6.58 GHz). Figure 6c shows the directivity of the proposed
MIMO-CP antenna with and without parasitic elements. As expected from the parasitic
elements, the proposed antenna with parasitic elements offers a slightly higher value of
directivity compared to the MIMO antenna without parasitic elements.
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4. Proposed Antenna Parametric Study

The parametric studies of the suggested antenna were approved on the CST simulator
for the various design parameters, as these parameters show a critical character in con-
trolling the antenna performances. The outcome of square cut at square patch length and
width increases or decreases has been studied to attain the best results.

The suggested antenna parametric is presented using increased and decreased length
and width of square cut from the design, and the finest numbers for enhanced performance
were selected, as shown in Figure 7. The dimension of cut l varied from 4.3 mm to 5.5 mm.
As the dimension decreased, it is clear from Figure 7a that the best performance for |S11|
is attained when l = 4.3 mm, but the |S21| value for the corresponding circumstance
increases and has a poor axial ratio. When the value of l increases, the |S11| remains almost
unaffected and |S21| decreases but still has a poor axial ratio. It should be noted that our
best results have been simulated numerically to achieve optimum performance for different
dimensions of the square cut chosen (5.1 mm), and they have wide bandwidth, wide axial
ratio, and reduced mutual coupling within the operating bandwidth.
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The suggested antenna is similarly simulated for the opposite corner square cut
dimension i at the square patches, as shown in Figure 8. Dimension i of the square cut
varies from 2.2 mm to 3.7 mm. When the dimension of i decreases from 2.7 mm, poor
|S11| return loss is achieved along with poor isolation, and the AR at 2.2 mm. When the
dimension increased from 2.7 mm, the |S11| and the axial ratio became narrow, but the
isolation was not affected further. It is notable from Figure 8 that there was a good wide
bandwidth and better isolation, and the axial ratio obtained for gap I = 2.7 mm.
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5. Experimental Results and Discussion

The suggested MIMO antenna, with a parasitic fabricated photograph, is shown in
Figure 9. It was measured by a Keysight-made N9916A PNA network analyzer. The
S-parameter measurement and simulation results for the suggested antenna were reliable,
as shown in Figure 10.
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Figure 10. Simulated and measured S-Parameters: (a) |S11|; (b) |S21|.

According to the reflection response, the antenna offers an impedance BW (|S11|≥
−10 dB) between 4.89 GHz and 6.85 GHz. It can also be noted that the |S21| among
the two ports was below 20 dB for both the measured and simulated results, as shown
in Figure 10b. The outcomes of simulation and measurement are usually similar. The
slight discrepancy among the results from measurements and simulation may be caused by
fabrication mistakes and the poorly welded or soldered joint of the SMA connector.
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Figure 11 shows the variation of the AR versus frequency. The simulation results were
generally consistent with the measured values, with only a minor difference in bandwidth.
Figure 11a presents the measured and simulated gain, AR, and efficiency BW. The simulated
3-dB ARBW is approximately 18.2% (5.40–6.51 GHz), while the measured axial ratio is
nearly identical to the simulated one, as shown in Figure 11a. Figure 11b shows that the
suggested MIMO CP antenna has a measured peak gain of almost 6.46 dBic and a simulated
peak gain of 6.53 dBic. Figure 11c shows that the radiation efficiency is more than 80%
across the entire frequency band.
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6. Diversity Performance of Suggested Antenna

The performance of the MIMO CP antenna is computed using vital parameters that
are well-defined to describe MIMO antenna systems, such as the Envelope Correlation
Coefficient (ECC), Diversity Gain (DG), CCL, and Total Active Reflection Coefficient (TARC).
The diversity presentation of the suggested antenna has been estimated by CST Microwave
Studio. The following section provides a detailed illustration of these parameters.

6.1. Envelope Correlation Coefficient

The key parameter used to assess the effectiveness of MIMO are the ECC. The sug-
gested antenna diversity is observed in terms of ECC to certify virtuous MIMO performance.
ECC characterizes the correlation between signals received by the antenna. Embedded
3D far-field radiation patterns or scattering characteristics can be used to calculate ECC.
Studying any lossy antenna, it is important to remember that estimating ECC values for
S-parameters is ineffective and drastically underestimates its standards. The radiation
efficiency and S-parameters can be used to analyze it for a two-port MIMO antenna, as
presented in Equation (1) [45].

ECC =
|S11 × S12 + S21 × S22|

(1−|S11|2−|S12|2(1−|S21|2−|S22|2)
(1)

The suggested two-element antenna ECC for measured and simulated radiation fields
is presented in Figure 12. The ECC value must be less than 0.5 for better MIMO systems [46].
The measured and simulated ECC are shown in Figure 12. As presented in the figure,
the measured and simulated ECC values are below 0.002 and 0.001, respectively, in the
frequency band. The values of the simulated and measured ECC are well below the suitable
limit of 0.5. Therefore, a good MIMO performance of the proposed antenna is guaranteed.
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6.2. Diversity Gain

Diversity gain is the second major parameter of the MIMO system. The characteristics
of diversity are frequently attained when transmitters receive different transmission stream
formats via different channel pathways. It was observed that the DG value was close to
10, signifying better diversity performance. The DG value can be calculated by ECC in
Equation (2) [47].

DG = 10×
√

1− (ECC)2 (2)

Figure 13 depicts the simulated and measured DG of the suggested antennas, which is
close to 10 dB.
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6.3. Channel Capacity Loss

CCL is the next key factor used to calculate diversity presentation. The term CCL
stands for the highest permitted message broadcast rate at which signals can be sent contin-
uously over the communication system. The CCL should not go over 0.4 bits/s/Hz for reli-
able communication. The suggested antenna CCL is calculated by using S-parameters [48].
Figure 14 shows the CCL calculated from the S-Parameters. The CCL values of the designed
antenna attain less than 0.4 bits/s/Hz.

CLoss = −log2det(ΨR) (3)

where ψR is the correlated matrix of the receiver and is defined by

ψR =

[
ψii ψij
ψji ψjj

]
(4)
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ψii = 1− (|sii|2 − |sij|2) (5)

ψjj = 1− (|sij|2 − |sjj|2) (6)

ψij = −(s∗iisij + s∗jisjj) (7)

ψji = −(s∗jjsji + s∗ijsii) (8)
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6.4. Total Active Reflection Coefficient

Calculating the scattering matrix remains insufficient for estimating the radiation
presentation of an MIMO system. For the MIMO systems, the TARC is well-defined as the
ratio of reflected incident power [49]. TARC is represented by scattering parameters in a
two-element MIMO antenna, as shown below:

Γt
a =

√
∑m

j

∣∣∣bj
∣∣∣2√

∑m
j

∣∣∣aj
∣∣∣2 (9)

where bj represents the reflected wave and aj denotes the incident wave; TARC dependence
on S-parameter is defined as [50].

TARC =
√
(|s11 + s12ejφ|2 + (|s21 + s22ejφ|2

2
(10)

where φ is the range of the random phase of the return signal between 0 and π; it has a
Gaussian distribution owing to the multipath propagation channel. The TARC ranges from
0 to 1, where TARC = 0 refers to the situation when all power coming in is radiated and
none is reflected, and TARC = 1 refers to the situation where total the power coming in
is reflected and nothing is radiated. Figure 15 depicts the TARC curves for various input
phase values, ranging from 0 to π, with periods of 30◦. These curves indicate that the design
samples maintain less than −10 dB TARC over the whole proposed bandwidth for various
input phases.
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7. Comparison Performance with Previous Work

To explain the novelty of the proposed MIMO-CP antenna, Table 2 is presented. Table 2
compares the presentation of the designed MIMO antenna to recent related work published
in the literature. The comparison is based on the antenna dimensions, operating bandwidth,
peak isolation, and peak gain. The suggested antenna also offers high-isolation between the
antenna radiators as well as wide bandwidth, high gain, and circular polarization. Table 3
compares the suggested MIMO-CP antenna with other current works in the literature that
feature comparable MIMO-CP designs with significant isolation. Due to some performance
metrics, the comparison is made with overall antenna size, operating bandwidth, peak
isolation, and mutual coupling reduction techniques. The gain of the proposed antenna
was higher or comparable with that of other recent works on antennas. The CP bandwidth
was also comparatively wider in the case of a two-port MIMO antenna.

Table 2. Performance of proposed MIMO work compared with previously published work.

References Size (mm) Isolation (dB) Bandwidth
(GHz) Gain (dBi) MC Techniques

[12] 139.3 × 44 40 5.50−5.68 Not given Complementary of the split ring
resonator

[21] 110 × 110 35 5.65−6.10 6.2 Metasurface
[22] 32 × 60 24 5.68−6.05 7.98 Metamaterial
[23] 70 × 60 41 5.70−6.20 9.4 DNG Metameterial Superstrate
[24] 100 × 50 25 5.10−6.0 Not given DGS
[26] 68 × 40 45 5.71−6.10 Not given EBG
[27] 57 × 32 25 5.50−5.80 6.4 Parallel couples Resonator
[28] 47 × 32 45 3.0−7.70 3 Comb Shaped
[29] 35 × 33 30 3.10−5.0 3.2 Neutralization Line
[30] 95.9 × 38.2 24 2.43−2.50 4.68 Fractal EBG

Proposed work 70 × 40 64 4.89−6.85 6.45 Square Parasitic Elements

The antenna of [34,39] is small compared to our proposed antenna and has maximum
isolation, but these designs suffer from low gain, narrow bandwidth, and axial ratio.
Furthermore, the antenna in [17] gives better peak gains, while its size is large and suffers
from narrow bandwidth and AR. Our proposed design uses a novel technique for better
bandwidth, a wide axial ratio, and high peak gain with better isolation capability. Our
proposed antenna’s main aim is to reduce MC. The suggested MIMO antenna provides
better isolation with a compact size, making it a potential candidate for MIMO system
applications.
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Table 3. Comparison with another MIMO antenna based on CP.

References Size (mm) Bandwidth
(GHz) ARBW CP Isolation (dB) Gain (dB) Isolation

Techniques

[17] 96 × 96 2.36–2.53 2.30–2.50 25 8.0 slot

[34] 60 × 33 3.9–4.2 3.97–4.30 37.5 3.4 Annular ring patch
with stubs

[36] 65 × 45 5.1–5.35 4.90–5.40 25 4 T-shaped slot and
Endfire antenna

[37] 100 × 150 2.47–2.55 2.55–2.60 20 6.1 Hybrid Techniques
[38] 27.69 × 97 5.49–6.02 5.77–5.86 33 5.34 Slot Techniques
[39] 40 × 50 5.50–5.80 5.55–5.60 25 4.70 DGS
[40] 40 × 65 5.20–6.08 5.20–5.58 20 4.01 Dielectric Resonator
[41] 80 × 80 5.71–8.20 5.77–8.08 15 3.8 Dielectric Resonator
[43] 66 × 66 1.8–2.6 5.2–5.58 25 4.0 Parasitic Line Patch

Proposed
Work 70 × 40 4.89–6.85 5.41–6.57 64 6.45 Square Parasitic

Elements

8. Conclusions

In this article, a wide-band MIMO CP antenna is designed for WLAN application. The
proposed antenna has a simple configuration with a width and length of 40 × 70 mm2. The
square patch is cut at all corners to attain CP by using the concept of circular polarization.
The design Improved impedance matching, gain, mutual coupling, and AR, which can
all be attained by placing parasitic elements periodically around the two antennas. The
antenna impedance BW ranges from 4.89 GHz to 6.85 GHz and AR ≤ 3dB from 5.41 to
6.58 GHz; peak isolation |S21| ≤ −60 dB within the |S11| frequency band. At the resonant
frequency, the radiation efficiency and peak gain are 6.5 dB and 84%, respectively. The
envelope correlation coefficient is 0.001 and the diversity gain is almost 10 dB. The measured
and simulated results from the proposed antenna are appropriate for WLAN applications.
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