Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Photocatalyst
2.3. Photodegradation Study of Methylene Blue Dye
2.4. DFT Simulation Details
2.5. Photoelectrode Fabrication and Photoelectrochemical Measurements
2.6. Morphological, Structural, and Optical Characterizations
3. Results and Discussions
3.1. Morphological, Elemental, and Mapping Analysis
3.2. Structural Analysis of Uncalcined and Calcined Rust NPs
3.3. Photodegradation of Methylene Blue
S.No | Photocatalysts (Synthesis) | %Degradation and Reaction Conditions | Ref |
---|---|---|---|
1. | Fe2O3 (hematite) NPs (combustion) | 65.67% in 180 min under UV | [61] |
2. | α-Fe2O3 nanospindles (hydrothermal) | 78% in 360 min under UV | [62] |
3. | α-Fe2O3 NPs (solvothermal) | 46% in 60 min under xenon | [63] |
4. | Fe2O3 NPs (green synthesis) | 94% in 110 min under sunlight | [64] |
5. | Fe2O3 NPs (combustion) | 63.64 % in 120 min under UV | [65] |
6. | Calcined rust NPs containing Fe2O3 NPs predominantly (calcination of rust) | 94% in 11 min under UV-light | This work |
3.4. Photoelectrochemical Water Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Khan, I.; Lee, J.H.; Park, J.; Wooh, S. Nano/micro-structural engineering of Nafion membranes for advanced electrochemical applications. J. Saudi Chem. Soc. 2022, 26, 101511. [Google Scholar] [CrossRef]
- Khan, I. Strategies for Improved Electrochemical CO2Reduction to Value-added Products by Highly Anticipated Copper-based Nanoarchitectures. Chem. Rec. 2021, 21, 1–23. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, D.; Qin, Y.; Xie, Y.; Ling, Y.; Ye, H.; Zhang, Y. Facile construction of BiOBr/CoAl-LDH heterojunctions with suppressed Z-axis growth for efficient photoreduction of CO2. Sep. Purif. Technol. 2022, 302, 122090. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, Y.; Gao, C.; Liu, L.; Zhang, Y.; Chen, Y.; Shao, Y. Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduction of CO2to CO under visible light. Sep. Purif. Technol. 2022, 303, 122288. [Google Scholar] [CrossRef]
- Mansha, M.; Ahmad, T.; Ullah, N.; Akram Khan, S.; Ashraf, M.; Ali, S.; Tan, B.; Khan, I. Photocatalytic Water-Splitting by Organic Conjugated Polymers: Opportunities and Challenges. Chem. Rec. 2022, 22, 202100336. [Google Scholar] [CrossRef]
- Arachchige, S.M.; Brewer, K.J. Supramolecular Complexes as Photoinitiated Electron Collectors: Applications in Solar Hydrogen Production. In Solar Hydrogen and Nanotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 589–620. [Google Scholar] [CrossRef]
- Sun, Q.; Li, K.; Wu, S.; Han, B.; Sui, L.; Dong, L. Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment. New J. Chem. 2020, 44, 1942–1952. [Google Scholar] [CrossRef]
- Pino, E.; Calderón, C.; Herrera, F.; Cifuentes, G.; Arteaga, G. Photocatalytic Degradation of Aqueous Rhodamine 6G Using Supported TiO2 Catalysts. A Model for the Removal of Organic Contaminants From Aqueous Samples. Front. Chem. 2020, 8, 365. [Google Scholar] [CrossRef]
- Bashir, N.; Zulfiqar, S.; Munir, S.; Ibrahim, M.M.; Abou Taleb, M.F.; El-Bahy, S.M.; Suleman, M.; Shahid, M. Sodium doped-V2O5 nanorods for visible light irradiated photocatalytic performance for the degradation of Rh-dye. Ceram. Int. 2022, 48, 10932–10940. [Google Scholar] [CrossRef]
- Imran, M.; Abutaleb, A.; Ashraf Ali, M.; Ahamad, T.; Rahman Ansari, A.; Shariq, M.; Lolla, D.; Khan, A. UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation. Mater. Lett. 2020, 258, 126748. [Google Scholar] [CrossRef]
- Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 2010, 132, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Qurashi, A. Shape Controlled Synthesis of Copper Vanadate Platelet Nanostructures, Their Optical Band Edges, and Solar-Driven Water Splitting Properties. Sci. Rep. 2017, 7, 14370. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Khan, I.; Baig, N.; Hendi, A.H.; Ehsan, M.F.; Sarfraz, N. A Bifunctional 2D Interlayered β-Cu2V2O7/Zn2V2O6 (CZVO) Heterojunction for Solar-Driven Nonsacrificial Dye Degradation and Water Oxidation. Energy Technol. 2021, 9, 2100034. [Google Scholar] [CrossRef]
- Le, T.K.; Nguyen, T.M.T.; Nguyen, H.T.P.; Nguyen, T.K.L.; Lund, T.; Nguyen, H.K.H.; Huynh, T.K.X. Enhanced photocatalytic activity of ZnO nanoparticles by surface modification with KF using thermal shock method. Arab. J. Chem. 2020, 13, 1032–1039. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Suganthy, N.; Shanmugam, S.; Brindhadevi, K.; Sabour, A.; Alshiekheid, M.; Lan Chi, N.T.; Pugazhendhi, A.; Shanmuganathan, R. Biosynthesis of zirconium nanoparticles (ZrO2 NPs) by Phyllanthus niruri extract: Characterization and its photocatalytic dye degradation activity. Food Chem. Toxicol. 2022, 168, 113340. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated photocatalytic activity enhancement of copper oxide nanoparticles for enhanced methyl orange photodegradation. J. Mater. Sci. Mater. Electron. 2020, 31, 8971–8985. [Google Scholar] [CrossRef]
- Alsamhary, K.; Al-Enazi, N.M.; Alhomaidi, E.; Alwakeel, S. Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. Environ. Res. 2022, 207, 112172. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Bajwa, S.Z.; Rahmat, R.; Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Wang, L.; Hu, H.; Xu, J.; Zhu, S.; Ding, A.; Deng, C. WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. J. Mater. Res. 2019, 34, 2955–2963. [Google Scholar] [CrossRef]
- Din, M.I.; Tariq, M.; Hussain, Z.; Khalid, R. Single step green synthesis of nickel and nickel oxide nanoparticles from Hordeum vulgare for photocatalytic degradation of methylene blue dye. Inorg. Nano-Metal Chem. 2020, 50, 292–297. [Google Scholar] [CrossRef]
- Eshaq, G.; M, A.; Khan, M.A.; Alothman, Z.A.; Sillanpää, M. A novel Sm doped Cr2O3 sesquioxide-decorated MWCNTs heterostructured Fenton-like with sonophotocatalytic activities under visible light irradiation. J. Hazard. Mater. 2022, 426, 1–812. [Google Scholar] [CrossRef]
- Cui, Y.; Peng, L.; Lei, L.; Gao, Y.; Thathsarani, J.A.N.; Podlaha, E.J.; Liang, L.; Shi, X. Synthesis and Photocatalytic Performance of Superparamagnetic Fe-Ag@AgCl Nanowire with 1-D Core–Shell Structure under Visible Light. J. Photochem. Photobiol. A Chem. 2020, 397, 112586. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Wang, Y.; Tang, X. Construction of a rod-like Bi2O4 modified porous g-C3N4 nanosheets heterojunction photocatalyst for the degradation of tetracycline. New J. Chem. 2020, 44, 9725–9735. [Google Scholar] [CrossRef]
- Simon, Y.D.T.; Hadis, B.; Estella, T.N.; Arabamiri, M.; Serges, D.; Arnaud, K.T.; Samuel, L.; Minoo, T.; Michael, S.; Reinhard, S. Urea and green tea like precursors for the preparation of g-C3N4 based carbon nanomaterials (CNMs) composites as photocatalysts for photodegradation of pollutants under UV light irradiation. J. Photochem. Photobiol. A Chem. 2020, 398, 112596. [Google Scholar] [CrossRef]
- Costantino, F.; Armirotti, A.; Carzino, R.; Gavioli, L.; Athanassiou, A.; Fragouli, D. In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes. J. Photochem. Photobiol. A Chem. 2020, 398, 112599. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Salgado, B.C.B.; Valentini, A. Evaluation of the photocatalytic activity of SiO2@TiO2 hybrid spheres in the degradation of methylene blue and hydroxylation of benzene: Kinetic and mechanistic study. Braz. J. Chem. Eng. 2019, 36, 1501–1518. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Du, C.; Yan, B.; Yang, G. Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5582–5592. [Google Scholar] [CrossRef]
- Ashraf, M.; Khan, I.; Usman, M.; Khan, A.A.Z.A.A.Z.; Shah, S.S.; Khan, A.A.Z.A.A.Z.; Saeed, K.; Yaseen, M.; Ehsan, M.F.; Nawaz Tahir, M.; et al. Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review. Chem. Res. Toxicol. 2020, 33, 1292–1311. [Google Scholar] [CrossRef]
- Dehmani, Y.; Alrashdi, A.A.; Lgaz, H.; Lamhasni, T.; Abouarnadasse, S.; Chung, I.M. Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): Mechanism exploration from both experimental and theoretical studies. Arab. J. Chem. 2020, 13, 5474–5486. [Google Scholar] [CrossRef]
- Da Trindade, L.G.; Hata, G.Y.; Souza, J.C.; Soares, M.R.S.; Leite, E.R.; Pereira, E.C.; Longo, E.; Mazzo, T.M. Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications. J. Mater. Sci. 2020, 55, 2923–2936. [Google Scholar] [CrossRef]
- Bouhjar, F.; Derbali, L.; Marí, B.; Bessaïs, B. Electrodeposited chromium-doped α-Fe2O3 under various applied potential configurations for solar water splitting. Results Phys. 2020, 17, 102996. [Google Scholar] [CrossRef]
- Khan, I.; Qurashi, A. Sonochemical-Assisted In Situ Electrochemical Synthesis of Ag/α-Fe2O3 /TiO2 Nanoarrays to Harness Energy from Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 11235–11245. [Google Scholar] [CrossRef]
- Makimizu, Y.; Nguyen, N.T.; Tucek, J.; Ahn, H.; Yoo, J.; Poornajar, M.; Hwang, I.; Kment, S.; Schmuki, P. Activation of α-Fe2O3 for Photoelectrochemical Water Splitting Strongly Enhanced by Low Temperature Annealing in Low Oxygen Containing Ambient. Chem. A Eur. J. 2020, 26, 2685–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv. 2019, 9, 8557–8568. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.K.; Ghaffari, Y.; Bae, J.; Kim, K.S. Synthesis of coral-like α-Fe2O3 nanoparticles for dye degradation at neutral pH. J. Mol. Liq. 2020, 301, 112473. [Google Scholar] [CrossRef]
- Rincón Joya, M.; Barba Ortega, J.; Malafatti, J.O.D.; Paris, E.C. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles. ACS Omega 2019, 4, 17477–17486. [Google Scholar] [CrossRef] [Green Version]
- Karade, V.C.; Parit, S.B.; Dawkar, V.V.; Devan, R.S.; Choudhary, R.J.; Kedge, V.V.; Pawar, N.V.; Kim, J.H.; Chougale, A.D. A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s In vitro hyperthermia application. Heliyon 2019, 5, e02044. [Google Scholar] [CrossRef] [Green Version]
- Babar, S.; Gavade, N.; Shinde, H.; Mahajan, P.; Lee, K.H.; Mane, N.; Deshmukh, A.; Garadkar, K.; Bhuse, V. Evolution of Waste Iron Rust into Magnetically Separable g-C3N4-Fe2O3 Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Appl. Nano Mater. 2018, 1, 4682–4694. [Google Scholar] [CrossRef]
- Deganello, F.; Joshi, M.; Liotta, L.F.; La Parola, V.; Marci, G.; Pantaleo, G. Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type Catalysts. ACS Omega 2019, 4, 6997–7004. [Google Scholar] [CrossRef]
- Gurav, R.; Surve, S.K.; Babar, S.; Choudhari, P.; Patil, D.; More, V.; Sankpal, S.; Hangirgekar, S. Rust-derived Fe2O3 nanoparticles as a green catalyst for the one-pot synthesis of hydrazinyl thiazole derivatives. Org. Biomol. Chem. 2020, 18, 4575–4582. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Veneranda, M.; Aramendia, J.; Bellot-Gurlet, L.; Colomban, P.; Castro, K.; Madariaga, J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018, 133, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Nasrazadani, S.; Raman, A. The application of infrared spectroscopy to the study of rust systems-II. Study of cation deficiency in magnetite(Fe3O4) produced during its transformation to maghemite(γ-Fe2O3) and hematite(α-Fe2O3). Corros. Sci. 1993, 34, 1355–1365. [Google Scholar]
- Wang, Z.; Wang, M.; Jiang, J.; Lan, X.; Wang, F.; Geng, Z.; Tian, Q. Atmospheric Corrosion Analysis and Rust Evolution Research of Q235 Carbon Steel at Different Exposure Stages in Chengdu Atmospheric Environment of China. Scanning 2020, 2020, 9591516. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.A.; Kassim, M.J.; Rocca, E.; Steinmetz, J. Mangrove (Rhizophora apiculata) tannins: An eco-friendly rust converter. Corros. Eng. Sci. Technol. 2011, 46, 425–431. [Google Scholar] [CrossRef]
- Khan, I.; Ali, S.; Mansha, M.; Qurashi, A. Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrason. Sonochem. 2017, 36, 386–392. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Davar, F.; Mir, N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 2008, 27, 3514–3518. [Google Scholar] [CrossRef]
- Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems–A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Sarif, M.; Hilgert, J.; Khan, I.; Harris, R.A.; Plana-Ruiz, S.; Ashraf, M.; Pütz, E.; Schemberg, J.; Panthöfer, M.; Kolb, U.; et al. Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation. Langmuir 2020, 36, 13804–13816. [Google Scholar] [CrossRef]
- Saikumari, N.; Dev, S.M.; Dev, S.A. Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Sci. Rep. 2021, 11, 1734. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.A.; Fakeeha, A.H. Effects of calcination and activation temperature on dry reforming catalysts. J. Saudi Chem. Soc. 2012, 16, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Aziztyana, A.P.; Wardhani., S.; Prananto, Y.P.; Darjito, V.P. Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 042047. [Google Scholar] [CrossRef]
- Khan, I.; Sadiq, M.; Khan, I.; Saeed, K. Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. Environ. Sci. Pollut. Res. 2019, 26, 5140–5154. [Google Scholar] [CrossRef]
- Lin, C.; Liu, H.; Guo, M.; Zhao, Y.; Su, X.; Zhang, P.; Zhang, Y. Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 646, 128962. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.M.; Kotp, Y.H.; Alharbi, A. Facile synthesis of Fe2O3 nanoparticles from Egyptian insecticide cans for efficient photocatalytic degradation of methylene blue and crystal violet dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117195. [Google Scholar] [CrossRef]
- Vu, X.H.; Phuoc, L.H.; Dien, N.D.; Pham, T.T.H.; Thanh, L.D. Photocatalytic Degradation of Methylene Blue (MB) over α-Fe2O3 Nanospindles Prepared by a Hydrothermal Route. J. Electron. Mater. 2019, 48, 2978–2985. [Google Scholar] [CrossRef]
- Tahir, M.N. Synthesis of hierarchically organized α-Fe2O3 nanostructures for the photocatalytic degradation of methylene blue. Emergent Mater. 2020, 3, 605–612. [Google Scholar] [CrossRef]
- Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater. Res. Bull. 2018, 97, 121–127. [Google Scholar] [CrossRef]
- Subaihi, A.; Naglah, A.M. Facile synthesis and characterization of Fe2O3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye. Arab. J. Chem. 2022, 15, 103613. [Google Scholar] [CrossRef]
- Nguyen Thi Thu, T.; Nguyen Thi, N.; Tran Quang, V.; Nguyen Hong, K.; Nguyen Minh, T.; Le Thi Hoai, N. Synthesis, characterisation, and effect of pH on degradation of dyes of copper-doped TiO2. J. Exp. Nanosci. 2016, 11, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Reza, K.M.; Kurny, A.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Sivula, K.; Le Formal, F.; Grätzel, M.; Le Formal, F.; Grätzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4, 432–449. [Google Scholar] [CrossRef]
- Yamada, T.; Suzuki, N.; Nakata, K.; Terashima, C.; Matsushita, N.; Okada, K.; Fujishima, A.; Katsumata, K. Hydrogen Production System by Light-Induced α-FeOOH Coupled with Photoreduction. Chem.–A Eur. J. 2020, 26, 2380–2385. [Google Scholar] [CrossRef]
- Chen, B.; Humayun, M.; Li, Y.; Zhang, H.; Sun, H.; Wu, Y.; Wang, C. Constructing Hierarchical Fluffy CoO-Co4N@NiFe-LDH Nanorod Arrays for Highly Effective Overall Water Splitting and Urea Electrolysis. ACS Sustain. Chem. Eng. 2021, 9, 14180–14192. [Google Scholar] [CrossRef]
- Khan, I.; Baig, N.; Ali, S.; Usman, M.; Khan, S.A.; Saeed, K. Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Mater. 2021, 35, 443–469. [Google Scholar] [CrossRef]
- Wei, Y.; Liao, A.; Wang, L.; Wang, X.; Wang, D.; Zhou, Y.; Zou, Z. Room temperature surface modification of ultrathin FeOOH cocatalysts on Fe2O3 photoanodes for high photoelectrochemical water splitting. J. Nanomater. 2020, 2020, 7148714. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, D.; Byun, W.J.; Wang, X.; Shin, T.J.; Jeong, H.Y.; Han, H.; Li, C.; Lee, J.S. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Han, L.; Hegner, F.S.; Paciok, P.; Biset-Peiró, M.; Du, H.; Wei, X.; Jin, L.; Xie, H.; Shi, Q.; et al. Boosting Photoelectrochemical Water Oxidation of Hematite in Acidic Electrolytes by Surface State Modification. Adv. Energy Mater. 2019, 9, 1901836. [Google Scholar] [CrossRef]
S/No | Materials | Photocurrent [email protected] vs. RHE | Photostability [email protected] vs. RHE | Ref. |
---|---|---|---|---|
1 | α-Fe2O3/TiO2 | 1.05 mA/cm2 | 2500 s | [34] |
Ag/α-Fe2O3/TiO2 | 2.59 mA/cm2 | 3600 s | ||
2 | Fe2O3 | 1.55 mA/cm2 | --- | [72] |
FeOOH/Fe2O | 2.40 mA/cm2 | 5 h | ||
3 | Ta:Fe2O3@Fe2O3 | 2.45 mA/cm2 | 5 h | [73] |
NiFe(OH)x/Ta:Fe2O3@Fe2O3 | 3.22 mA/cm2 | 5 h | ||
4 | Fe2O3 | 0.12 mA/cm2 | 2 h | [74] |
Fe2O3/Fe2TiO5 | 0.90 mA/cm2 | 2 h | ||
Fe2O3/Fe2TiO5/CoFe-PBA | 1.25 mA/cm2 | 2 h | ||
5 | Uncalcined rust NPs | 0.34 mA cm−2 | 20 min | This work This work |
Calcined rust NPs | 0.42 mA cm−2 | 70 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Gul, T.; Khan, I.; Alabbad, E.A.; Ali, S.; Saeed, K.; Khan, I. Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations. Materials 2023, 16, 142. https://doi.org/10.3390/ma16010142
Khan N, Gul T, Khan I, Alabbad EA, Ali S, Saeed K, Khan I. Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations. Materials. 2023; 16(1):142. https://doi.org/10.3390/ma16010142
Chicago/Turabian StyleKhan, Nisar, Tamanna Gul, Idrees Khan, Eman A. Alabbad, Shahid Ali, Khalid Saeed, and Ibrahim Khan. 2023. "Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations" Materials 16, no. 1: 142. https://doi.org/10.3390/ma16010142
APA StyleKhan, N., Gul, T., Khan, I., Alabbad, E. A., Ali, S., Saeed, K., & Khan, I. (2023). Scavenging of Organic Pollutant and Fuel Generation through Cost-Effective and Abundantly Accessible Rust: A Theoretical Support with DFT Simulations. Materials, 16(1), 142. https://doi.org/10.3390/ma16010142