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Abstract: Fiber aggregation in nanocomposites has an important effect on macroscopic electrical
performance. To quantitatively evaluate its effect, an index to characterize the degree of aggregation
is imperative and, ideally, it should have three features simultaneously, i.e., (1) single-parametric,
dimensionless, and physically meaningful, (2) applicable to different aggregation topologies, and (3)
one-to-one, corresponding to material electrical properties. However, these features remain largely
unexplored. Here, we propose a new aggregation degree that is defined as the average increment
of the fiber number connecting with each one when fibers aggregate from a uniform distribution
state. This index is applicable to different aggregation topologies, from lump-like to network-like
aggregating clusters. By geometric probability analysis and numerical validations, we demonstrate
the index can be concisely expressed by the characteristic parameters of the aggregating cluster
since it only depends on the local features. Interestingly, a one-to-one linear relation between the
aggregation degree and the percolation threshold is found, which is independent of the distribution
law of the fibers. This work may provide a guide to the property characterization, performance
prediction, and material design of nanocomposites, and give physical insight into the understanding
of systems with similar non-uniform distributions.

Keywords: nanocomposites; degree of aggregation; analytical modelling; percolation threshold

1. Introduction

Nanofiber-reinforced composites have extensive applications in many fields, e.g.,
antennas and solar sails for spacecraft [1], flexible wearable electronics [2], high-efficiency
solar cells [3], highly sensitive sensors [4], and conductive coatings for lightning strike
protection and electromagnetic interference shielding [5] due to excellent physical, chemical
and mechanical properties [6], such as being light-weight, having a high specific stiffness
and specific strength, a high electrical/thermal conductivity, and transparency.

The spatial dispersion state of the fibers in the matrix is a core feature of composites
in addition to the intrinsic properties of fibers, such as aspect ratio [7,8] and curliness [9],
and plays an important role in tuning the macro properties [10,11]. Generally, increasing
the uniformity of the dispersion of fibers would improve the material properties related to
the connectivity of the fiber network [7,12,13]. For example, fibers with higher uniformity
of dispersion are easier to construct a connecting pathway spanning through the whole
materials for conducting electricity, transferring heat, and carrying a load, leading to a lower
percolation threshold [14]. However, even when the dispersion state can be improved by
using mechanical methods [15] (e.g., sonication, ball milling, and shear mixing) or chemical
methods [16] (e.g., surfactants and functionalization methods), re-aggregation of fillers in
the subsequent processing (e.g., curing processing) may occur due to the entanglement and
interaction between the fillers [7,11,17,18]. Although aggregation could slightly facilitate
local electron transfer by enhancing fiber-to-fiber contact [19–21], it can reduce the global
connectivity of fiber networks and thus increase the percolation threshold, significantly
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degrading the electrical property of composites [7,12,22–25]. Therefore, the effect of fiber
aggregation on composite properties is crucial and should be carefully treated in the process
of material design and manufacturing.

Before investigating the effect of fiber aggregation on composite properties, it is
imperative to quantitatively evaluate the degree of aggregation. The microstructure of
nanofibers in composites usually can be characterized by microscopies and image analysis.
It is observed that the nanofibers can aggregate into lump-like clusters [19,26,27] or network-
like structures with the boundaries of clusters overlapped [28], with different fabrication
techniques. When the degree of aggregation is relatively high, the aggregating clusters
can be distinguished clearly in the microscopic images, and thus the degree of aggregation
usually can be evaluated by the features of aggregating clusters. One of the widely used
characterizing methods for the degree of aggregation is based on two indices [17,26], e.g.,
the variations of location and the size of aggregating clusters. A typical example is the
quadrat method based on image processing. With a preliminary grid division of the
microscopic image of the composite sample, the standard deviation of the clusters’ area
per grid, as well as the characteristic parameter of distribution law for the size of clusters,
can be abstracted to describe the degree of aggregation [26]. Most of these methods need
a division of the sample image in advance. The most noticeable inconvenience of these
quadrat methods is that the precision and reliability of the calculation largely depend on
the grid size and number of aggregating clusters [17,26]. Although some work has been
performed to remove the effect of the grid size and the number of aggregating clusters
to obtain reliable results [17], these methods should be used “with caution” [17,29,30].
Additionally, it is inconvenient to evaluate the overall dispersion quality of samples when
using a multi-parameter model, which would lead to a decision with subjectivity [29].
Therefore, some efforts have been made by using measures with a single index [31–33],
which are based on statistical parameters, such as entropy [31,32] and energy [33]. These
indices can quantitatively evaluate the degree of aggregation, but are not easy to obtain
due to their complex definitions or mathematics [17]. When the degree of aggregation is
relatively small, the nanofibers in the composites present network-like structures, where
the boundaries of the aggregating clusters are hard to distinguish due to partial overlap.
Therefore, the local features at the level of fibers should be considered to evaluate the
degree of aggregation. To this end, some studies have employed multi-level models with
the local features of fibers to investigate the electrical property of nanofiber composites,
where the aggregating clusters are assumed to have the same size and distribute randomly
or regularly in the matrix [7,11,22,23,34,35]. Based on the multi-level model, a typical
evaluation for the degree of aggregation is using three indices, i.e., the nominal radius of
aggregating clusters, the volume fraction of nanofibers in each aggregating cluster, and the
ratio of aggregated nanofibers to the total nanofibers [7,34]. From all the above, it can be
found that an evaluation of the degree of aggregation that uses fewer indices and applies
to different aggregation topologies remains insufficiently explored.

Therefore, this paper aims to establish a simple and universal index to quantify
the aggregating state of fibers in nanocomposites and further establish the relationship
between this index and the percolation threshold. The results of this work may provide
a guide to the property characterization, performance prediction, and material design of
nanocomposites, and give physical insight into the understanding of systems with similar
non-uniform distributions.

2. Model and Methods
2.1. Aggregation Degree

An index for characterizing the aggregation degree of nanofiber-reinforced com-
posites should be simple, universal, and easy to characterize the material properties.
To achieve this purpose, an ideal aggregation degree should have the following three
features, simultaneously.

1. The aggregation degree should be a single dimensionless index with physical meaning.
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2. The aggregation degree should be applicable to different aggregation topologies, from
lump-like aggregating clusters to network-like aggregating clusters.

3. The aggregation degree should have a one-to-one corresponding relation with the
electrical property of the composites regardless of the distribution law of fibers.

To obtain an index that can have the above features and facilitate the evaluation of
the effect of fiber aggregation on the electrical properties of composites (the percolation
threshold is focused on in this work), the key point is to find a parameter closely related to
the dispersion state of fibers. Meanwhile, this parameter should be able to reflect the feature
at the level of fiber, and thus can apply to different aggregation topologies. It is well-known
that the distribution state of the fibers can be reflected by the average number of fibers
that have interacted with each fiber [36,37], also known as the average intersection number
(softcore fiber) or average bond number (hardcore fiber). This number can be derived
from the probability of two arbitrary fibers intersecting (softcore fiber) or making contact
(hardcore fiber) with each other. Meanwhile, for composites with uniformly distributed
fibers, i.e., the center points of fibers distribute evenly in the space and the orientation
angles of fibers follow uniform distributions in the ranges of [0, π), the average interaction
number of each fiber is a well-accepted and powerful parameter to theoretically predict the
percolation threshold [38,39]. Obviously, when the fibers cannot disperse uniformly in the
matrix, the probability for two arbitrary fibers to intersect or contact with each other would
change, and the average interaction number on each fiber would also change accordingly.
Therefore, it is reasonable to assume that the aggregation degree is related to the variation
quantity of the average interaction number, and is defined as:

ξ = Nint − NR
int (1)

where Nint is the average interaction number of fibers with aggregation and NR
int is the

average interaction number of the same fibers with an assumed uniformly distributed state
(i.e., without aggregation). In other words, ξ is a shifted average interaction number of
fibers. It can be seen from the definition that the aggregation degree has the first feature.

According to the definition in Equation (1), the aggregation degree of fibers is an
index that represents a deviation from an assumed state when the same fibers are uni-
formly distributed. For fibers with uniform distribution, it equals 0. For simplicity, the
softcore fiber model [4,36,37,40] is employed here, where the penetration between fibers is
permitted. Therefore, the fibers can intersect with each other, and the average interaction
number is the average intersection number. The average intersection number of fibers
with uniform distribution in a 2-dimensional (2D) space can be obtained by geometric
probability analysis [38] and can be expressed as:

NR
int = pR · Nf =

2
π

l2
f

L2 Nf (2)

where pR is the probability of two arbitrary fibers intersecting with each other in this case,
lf is the length of the fiber, L is the length of squared representative area element (RAE),
and the Nf is the number of fibers in this RAE. A detailed derivation of Equation (2) can
be found in the previous work [38]. For the model with fiber aggregation, due to the non-
single-level feature induced by aggregation, it is hard to obtain the average intersection
number Nint by conventional geometric probability analysis and, thus, a two-level analysis
to calculate the average intersection number will be introduced in Section 2.2.

2.2. Analysis of the Average Intersection Number

To analyze the average intersection number of fibers with aggregation, a two-level
model based on the softcore fiber network is set up first. The two-level model has been
used to predict electrical properties [7,23,34], as well as mechanical properties, such as
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Young’s modulus [41]. Then, the average intersecting probability between the two fibers is
derived based on the model.

2.2.1. Two-Level Aggregation Model

As a widely used methodology, the aggregation model can be established based on
the topological feature extracted from microscopy images of nanofiber composites with
aggregation [7,16,17]. According to the previous experimental and theoretical studies [26,28,42],
the fibers in the composites usually aggregate into many aggregating clusters, and thus a two-
level model [7,43] is built as follows. In the micro level of the aggregating cluster, the center
points of the fibers follow a normal distribution in two perpendicular directions [23,43] and
the orientation angles of fibers follow uniform distributions in the ranges of [0, π), as shown
in Figure 1a. Here, σ is the standard deviation of a normal distribution which characterizes
the degree of looseness. The characteristic radius of the aggregating cluster is considered
to be 3σ, which includes 99.7% of the fibers. In the macro level of the composites, there
are multiple aggregating clusters distributing in the RAE with the size of L × L, as shown
in Figure 1b.
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Figure 1. Schematic diagrams of (a) an aggregating cluster, (b) an RAE with multiple aggregating 

clusters, and (c) RAEs with different fiber dispersion states. 
Figure 1. Schematic diagrams of (a) an aggregating cluster, (b) an RAE with multiple aggregating
clusters, and (c) RAEs with different fiber dispersion states.

For simplicity, we assumed that all aggregating clusters in an RAE have the same
degree of looseness σ and fiber number Nagg

f (other distribution laws will be discussed in
Section 3.3). Thus, the number of aggregating clusters in an RAE is:

Nagg =
Nf

Nagg
f

. (3)
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In addition, when the fiber number in each aggregating cluster Nagg
f is 1, the aggregation

model can degrade to the uniform distribution model. Additionally, to evaluate the
concentration of the fibers, the relative density is defined as the area fraction of the fibers in
an RAE [38], as follows:

ρ =
Nflfdf

L2 =
nfl2

f
λf

, (4)

where df is the diameter of the fiber, λf = lf/df is the aspect ratio of the fiber, and
nf = Nf/L2 is the number of fibers per unit area. For 2D networks, the diameter effect can be
ignored because the aspect ratio of nanofibers is usually sufficiently large (e.g., for carbon
nanotubes, the aspect ratio is generally larger than 100 [44,45]), and thus the combined
dimensionless parameter nfl2

f , which is the average fiber number in the area of lf × lf, also
can be used to describe the density of fiber network.

As shown in Figure 1c, RAEs with various dispersion states of fibers are exhibited.
The aggregation degree ξ of each RAE is calculated by Equation (1), as presented in the
labels in Figure 1c. It can be seen intuitively that the fibers with stronger aggregation have a
larger value of ξ. Meanwhile, it also can be found that the aggregation degree has a second
feature, i.e., it applies to both lump-like clusters to network-like clusters.

2.2.2. Intersecting Probability in an Aggregating Cluster

First, to calculate the intersecting probability of two arbitrary fibers in an individual
aggregating cluster, a Cartesian coordinate system is introduced whose origin is located
at the center of a characteristic circle, as shown in Figure 2a. The intersecting probability
of the the two fibers depends on the distance R between the midpoints of the two fibers
and the angle θij between them. As the distance R decreases, or the angle θij approaches
π/2, the intersecting probability increases. Based on geometric probability analysis, the
intersecting probability of the two fibers in an aggregating cluster is expressed as:

pagg =
x

G(R, θij) · f (R) · f (θij)dRdθij, (5)

where f (R) and f (θij) are the probability density functions of the distance R and angle θij,
respectively, and G(R, θij) is the intersecting probability of the two fibers with given R and
θij. The details can be found in Appendix A.
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Figure 2. (a) A schematic diagram of two arbitrary fibers in an aggregating cluster and (b) the
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The intersecting probability of the two fibers in an aggregating cluster pagg can be
obtained by the Newton–Cotes numerical integration based on Equation (5). By fitting the
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numerical results of Equation (5), an approximate formulation of the intersecting probability
in an aggregating cluster can be expressed as:

pagg ≈ 2
π

[
1− exp

(
−0.08(lf/σ)2

)]
. (6)

To validate the theoretical result of Equation (5) and the approximate solution of
Equation (6), Monte Carlo simulations [38] are used to obtain the intersecting probability
of the two fibers in an aggregating cluster. As shown in Figure 2b, the numerical results
from cases with different degrees of looseness σ and the fiber length lf fit well with the
theoretical result of Equation (5) and the approximate formulation in Equation (6).

2.2.3. Intersecting Probability in an RAE

In this section, the intersecting probability of the two fibers in an RAE is estimated.
Obviously, the intersecting probability of two arbitrary fibers in an RAE p is a function
of that in an aggregating cluster pagg. To derive the relation between p and pagg, an RAE
with two aggregating clusters is taken as an introductory example first. The intersecting
probability of the two fibers in this RAE can be written as:

p =
2Nint

N2
f

=
2pagg

(
Nagg

f

)2
+ 2Nadd

int(
2Nagg

f

)2 , (7)

where Nint is the total number of intersections and Nadd
int is the number of intersections

caused by intersecting fibers from two different aggregating clusters. Because the size
of an aggregating cluster is typically much smaller than the RAE, the fibers from two
different aggregating clusters can hardly intersect with each other. Therefore, the additional
intersection number Nadd

int can be ignored compared to a much larger total intersection
number Nint, and then the probability in Equation (7) can be simplified as p ≈ pagg/2.

Therefore, it is intuitive that the intersecting probability must satisfy three special
conditions, which are: (1) when Nagg→∞, p→pR; (2) when Nagg→1, p→pagg/Nagg; and (3)
when Nagg = 1, p = pagg. Then, the relation between p and pagg is proposed as:

p =
pagg − pR

Nagg + pR. (8)

To validate the function in Equation (8), Monte Carlo simulations are conducted by
using RAEs with various parameters to numerically obtain the intersecting probability p.
There are three parameters that affect the average intersecting probability, i.e., the degree of
looseness σ and the fiber length lf, and the number of fibers in an aggregating cluster Nagg

f .
Therefore, a comprehensive validation is summarized as shown in Figure 3, which shows a
good agreement between the Monte Carlo simulation results and Equation (8).
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The average intersection number of each fiber in an RAE finally can be obtained as:

Nint = p · Nf. (9)

2.3. Monte Carlo Simulations on the Percolation Threshold

The percolation threshold can also be obtained by Monte Carlo simulations [8,46–48].
In this study, a 2D softcore fiber network model was used to predict the percolation thresh-
old [22], which has been proven to be in good agreement with experimental results [49].
The two-level aggregation model proposed in Section 2.2.1 was used. Percolation occurs
when a connecting path that spans through the RAE is formed. Geometric (structural)
percolation and electrical percolation are considered to occur simultaneously [36,37,50].
Therefore, in the simulation, RAE samples of fiber networks were generated, and then
whether connecting paths are formed in each sample was checked. For a given set of
parameters, the simulation can be repeated sufficiently large times (500 times in this work)
to obtain a converged value of connection probability. With the increase in network density,
an S-shaped sharp change from 0 to 100% can be captured for the connection probability,
and the tendency can be well described by the Boltzmann function. It has been proven that
the network density when the connection probability is 50% it can be used to estimate the
percolation threshold. Additionally, an RAE size of L/lf ≥ 12 is used to achieve numerical
convergence [23]. More details of the Monte Carlo simulation on the percolation threshold
can be found in Appendix B.

3. Results and Discussion
3.1. Results of the Aggregation Degree

Based on the analysis of the intersecting probability and the average intersection
number in Section 2.2, the aggregation degree of an RAE will be calculated in the following.
According to Equations (1)–(4) and (9), the aggregation degree can be expressed as:

ξ =
(

pagg − pR
)

Nagg
f . (10)

In general, the intersecting probability in aggregating cluster pagg is much larger than
that in composites with uniform distribution pR, i.e., pagg>>pR, thus Equation (10) can be
rewritten as:

ξ = paggNagg
f =

2
π

[
1− exp

(
−0.08(lf/σ)2

)]
Nagg

f . (11)

It can be seen in Equation (11) that the aggregation degree is only dependent on
the local features of the aggregating cluster (σ and Nagg

f ). Additionally, the aggregation
degree is almost independent of the density of nanofibers in the composites, as shown
in Appendix C.

A comprehensive comparison between the theoretical results obtained by Equation (11)
and numerical results obtained by Equation (1) using Monte Carlo simulations is shown
in Figure 4. The theoretical results exhibit good consistency with the results of Monte
Carlo simulations. Moreover, it should be noted that different fiber lengths lf and degrees of
looseness σ may also have the same aggregation degree. (e.g., the cases when pagg = 0.1259 in
Figure 4). The index provides a quantitative description of the degree of fiber aggregation
and can be used to qualify the performance of composites by combining quantitative
evaluations of specific properties.

3.2. Linear Relation between the Aggregation Degree and the Percolation Threshold

The aggregation degree has been proven to have the first and second features above.
Then, does the aggregation degree have the third feature? I.e., is there a one-to-one
corresponding relation between the aggregation degree and the percolation threshold
regardless of the distribution law of fibers? In this section, the influence of the aggregation
degree on the percolation threshold is investigated accordingly.
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Here, the critical area fraction of fibers ρth to trigger the network connectivity, i.e.,
connection probability is 50%, is used to characterize the percolation threshold. For sim-
plicity, a nominalized threshold ρ̂th is defined as the ratio of the percolation threshold of
the aggregation model to that of the uniformly distributed model ρR

th, as:

ρ̂th =
ρth

ρR
th

, (12)

where ρR
th is proven to be dependent on the aspect ratio of the fibers λf. For the 2D model,

it can be expressed as [36,38]:

ρR
th =

5.8
λf

= 5.8
df
lf

. (13)

Figure 5a shows the relationship between the aggregation degree and the percolation
threshold. The normalized percolation threshold increases monotonically with the increase
in the aggregation degree, which can be well linearly fitted as:

ρ̂th = 0.12ξ + 1. (14)
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For fiber systems with uniform distribution, i.e., the aggregation degree is 0, the
corresponding normalized percolation threshold is 1. For fiber systems with aggregation,
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the aggregation degree is greater than 0, and the aggregation degree increases with the
degree of looseness σ and the number of fibers in an aggregating cluster Nagg

f . It is noted
that although models with different parameters may have the same aggregation degree,
the aggregation degree has a one-to-one corresponding relation with the threshold.

3.3. Aggregation with Different Distributions

The relationship between the aggregation degree and the percolation threshold dis-
cussed above is based on the two-level model, where the randomly distributed aggregating
clusters have the same size. However, in reality, the fibers with aggregation may have
different distributions, which rises another question: is the linear corresponding relation
still applicable to other fiber distributions? To answer this question, a distribution that is
extracted from actual cases is built and discussed. In practice, the sizes of the aggregating
clusters are diverse, and many studies have found that the frequency of aggregating clusters
with a different number of fibers follows a power law [26,28,51]. This indicates that most
aggregating clusters include a small number of fibers and aggregating clusters with a larger
number of fibers are much fewer. According to the previous studies [26,28], the probability
density of Nagg

f can be expressed as:

f = C
(

Nagg
f

)−t
, (15)

where C is a constant and t is the exponent of the power law. It is assumed that the
number of fibers in an aggregating cluster Nagg

f is proportional to the degree of looseness
σ. The rejection sampling method [52] was then used to generate the fiber system with
the power-law aggregation distribution. Here, Nagg

f and σ are in the range of [10, 50] and
[0.02, 0.05], respectively. Figure 5b shows the relationship between the aggregation degree
and the normalized percolation threshold of the models with the power law slope t = −1
and −10. The aggregation degree is calculated by Equation (1). The results show that the
linear relation of Equation (14) is still applicable for the fiber system with the power law
aggregation distribution. Therefore, it can be concluded that the proposed method in this
work is practical and robust, and the aggregation degree has a third feature.

For composites with aggregation degree ξ, the percolation threshold can be obtained
from Equations (12)–(14), and expressed as:

ρth(ξ) = (0.696ξ + 5.8)
df
lf

. (16)

By virtue of this relation, the aggregation degree can be used to directly evaluate the
properties in regard to percolation.

3.4. Comparison with Experimental Results

The theoretical prediction for the percolation threshold (Equation (14) is compared
with the experimental results from the literature [34,53,54]. Two aggregation samples
with different parameters are used. Sample 1: the diameter of the aggregating cluster is
~3 µm, the number of fibers in an aggregating cluster is ~30, and the sample has a size of
30 × 30 µm2. Sample 2: the diameter of the aggregating cluster is ~30 µm, the number of
fibers in an aggregating cluster is ~1000, and the sample has a size of 300 × 300 µm2. The
length of fibers in both samples is ~1.5 µm. The aggregation degrees of the two samples are
obtained by Equation (1). The percolation threshold can be obtained by fitting the electrical
conductivity of composites at different fiber concentrations with the widely used scaling
relation σele = σ0(ρ − ρth)n, where σ0 is a constant and n is the exponent [55]. As shown in
Figure 5a, it is clear that the experimental results agree with the linear relation of theoretical
prediction, which validates our model.
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4. Conclusions

In this work, a simple and universal single index is proposed to characterize the
aggregating state of fibers in nanocomposites, and the effect of fiber aggregation on the
percolation threshold is studied based on the proposed index.

The aggregation degree is defined as a dimensionless single index with a straightfor-
ward physical meaning. It is the increment of the average intersection numbers of fibers in
composites when fibers aggregate from a uniform distribution state. Based on a two-level
model with randomly distributed aggregating clusters, we have demonstrated that the
aggregation degree applies to different aggregation topologies, from lump-like aggregating
clusters to network-like aggregating clusters, and only depends on the local features of the
aggregating clusters by both theoretical geometric probability analysis and Monte Carlo
simulations. The index can be concisely expressed as a combination of the intersecting
probability and fiber numbers in an aggregating cluster.

A one-to-one relationship between the aggregation degree and the percolation thresh-
old is found. By using Monte Carlo simulations, the percolation threshold of composites
with fiber aggregation is obtained. It is found that the percolation threshold increases
monotonously with the increase in the aggregation degree, which can be described by a
linear relation. Furthermore, it is proven that this one-to-one linear relation is universally
applicable to systems with different distribution laws.

The new index for the degree of aggregation and its linear relation with the percolation
threshold can not only provide a guide to the property characterization, performance
prediction, and material design of nanocomposites, but also give a new physical insight
into the understanding of a system with complex randomness.
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Appendix A. Intersecting Probability of Fibers
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Figure A1. A schematic diagram for the intersecting probability of two arbitrary fibers. (a) Four arcs
cut by the rhombus edges, (b) eight arcs cut by the rhombus edges, (c) range partition of four cases of
the intersecting probability, and Cartesian coordinate systems of the cases of (d) the four arcs and (e)
the eight arcs.

There are three basic unknown functions in Equation (5). f (θij) is the probability density
function of the angle between two arbitrary fibers. For a fiber system with isotropically
distributed angles, it satisfies the following:

f (θij) =
2
π

. (A1)

f (R) is the probability density function of the center-to-center distance between two
arbitrary fibers. To solve f (R), assuming the coordinates of the midpoints of the two fibers
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as A(x1, y1) and B(x2, y2), as shown in Figure A1a. Then, the distribution function of the
center-to-center distance is:

F(R) = P
(√

(x2 − x1)
2 + (y2 − y1)

2 ≤ R
)
= 1− exp

(
− R2

4σ2

)
R > 0. (A2)

By derivation, the probability density function of center-to-center distance can be expressed as:

f (R) = exp
(
− R2

4σ2

)
· R

2σ2 R > 0. (A3)

G(R, θij) is the intersecting probability of the two fibers with a given angle θij and a
center-to-center distance R. To obtain this probability, the excluded area method is used [36].
The excluded area is the area around an object where the center of another similarly shaped
object cannot enter if penetration is not permitted. Therefore, a necessary and sufficient
condition for the two fibers to intersect is that the midpoint of fiber i enters the excluded
area of fiber j, and vice versa. As shown in Figure A1, the gray area is the excluded area of
fibers i and j. When the center of fiber i moves along a circle with a radius R and enters into
the excluded area, these two fibers must intersect each other. Therefore, the intersecting
probability G(R, θij) is the ratio of the arc length inside the excluded area (the blue arcs in
Figure A1a,b) to the entire cycle circumference with a radius R.

When the angle between the two fibers is fixed, with the radius R increasing, the
analysis of intersecting probability can be divided into four cases, as shown in Figure A1c.

Case 1: when 0 < R ≤ R3, the center of fiber i must locate in the excluded area, which
means that the two fibers must intersect.

Case 2: when R3 < R ≤ R2, the circle is cut into eight arcs by the rhombus edges, and
four arcs are in the rhombus, as shown in Figure A1b.

Case 3: when R2 < R ≤ R1, the circle is cut into four arcs by the rhombus edges, and
two arcs are in the rhombus, as shown in Figure A1a.

Case 4: when R > R1, the two fibers cannot intersect.
Based on geometric analysis, R1 is half of the long diagonal of the rhombus, R2 is the

half of the short diagonal of the rhombus, and R3 is the radius of the inscribed circle of the
rhombus. Therefore, R1, R2, and R3 can be written as:

R1 =
√

2
2 lf
√

1 + cos θij

R2 =
√

2
2 lf
√

1− cos θij

R3 =
√

2
2 lf
√

1 + cos θij sin
θij
2

. (A4)

As mentioned above, the intersecting probability G(R, θij) is the ratio of the length of
blue arcs to the entire cycle circumference. To measure the length of these blue arcs for case
3 and case 4, a Cartesian coordinate system is introduced with the origin located at a vertex
of the acute angle of the rhombus, as shown in Figure A1d,e. Obviously, the ratios of the
arc lengths can be equivalent to the ratios of angles. Therefore, the piecewise intersecting
probability is:

G(R, θij) =


1 0 ≤ R ≤ R3

α+β
π R3 < R ≤ R2

α
π R2 < R < R1

0 R ≥ R1

, (A5)

where α and β are the corresponding angles of blue arcs, and can be expressed as:

α = arccos
(

1− 2y2
2

R2

)
β = 2arccos

( y1
R
) , (A6)
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where

y1 =
R2

(
R2

1+
√

R2R2
1+R2R2

2−R2
1R2

2

)
R2

1+R2
2

y2 =
R2

(
R2

1−
√

R2R2
1+R2R2

2−R2
1R2

2

)
R2

1+R2
2

. (A7)

Finally, according to Equations (5), (A1), (A3) and (A5), the intersecting probability of
arbitrary fibers in an aggregating cluster can be rewritten as:

pagg =
∫ π/2

0

∫ R3
0

1
π · exp

(
− R2

4σ2

)
· R

σ2 dRdθij

+
∫ π/2

0

∫ R2
R3

α+β

π2 · exp
(
− R2

4σ2

)
· R

σ2 dRdθij

+
∫ π/2

0

∫ R1
R2

α
π2 · exp

(
− R2

4σ2

)
· R

σ2 dRdθij

. (A8)

Appendix B. The Process and Size Effect of the Monte Carlo Simulation on the
Percolation Threshold

The process of the Monte Carlo simulation on the percolation threshold is carried out
as follows.

Step 1. Generation of the 2D Network Models

In an RAE with a size of L × L, fibers are simplified as line segments with the length lf.
For a random network without aggregation, the position of the nanofiber midpoint (x0, y0)
and the orientation of the fiber θ follow uniform distributions in the ranges of [0, L), [0, L),
and [0, π), respectively, and follow the equations as:

x0
i = rand× L

y0
i = rand× L

θi = rand× π

, (A9)

where (x0
i , y0

i ) and θi indicate the midpoint position and the orientation angle of the i-th fiber
in the network, respectively, and the “rand” is a random number uniformly distributed in
the range of [0, 1).

For the network with aggregation, the aggregation degree of the networks can be
controlled by the degree of looseness σ and fiber number Nagg

f in an aggregating cluster. The
midpoint positions of Nagg aggregating clusters (xagg, yagg) are assumed to be uniformly
distributed in the ranges of [0, L) and [0, L), respectively. The positions of nanofibers in
each aggregating cluster are assumed to follow a normal distribution in two perpendicular
directions and can be shown as:{

x0
i = xagg

j + normrnd(0, σ)

y0
i = yagg

j + normrnd(0, σ)
, (A10)

where (xagg
j , yagg

j ) signifies the midpoint position of the j-th aggregating cluster. The

“normrnd” refers to a random number that conforms to the normal distribution N~(0, σ2).
The orientation of the fibers θ still follows uniform distribution in the range of [0, π).

The coordinates of two ends of the i-th nanofiber can be set as:{
x1

i
x1

i

}
=

{
x0

i
x0

i

}
+

lf
2

{
cos θi
sin θi

}
,
{

x2
i

x2
i

}
=

{
x0

i
x0

i

}
− lf

2

{
cos θi
sin θi

}
. (A11)

Assuming the squared RAE is a periodic section in the whole network, the parts
of nanofibers outside the area L × L should be moved to the opposite edge of the RAE
boundary, as shown in Figure A2, in which the blue line segments are those moved from
outside to inside. The 2D network models of RAE with different aggregation degrees are
shown in Figure 1c.
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Step 2. Search for the Connecting Path

Step 2.1. Pre-Process
(1) Search the fibers intersected with the left and right edges of the RAE and put them

into two groups, i.e., the “input group” and “output group”, respectively, and put all the
fibers outside of the “input group” into the “search group”.

(2) Record intersection relations between fibers and store them in a “link matrix”.
Step 2.2. Search for the Conductive Path
(1) Search the fibers in the “search group” that are intersected with fibers in the “input

group” according to the “link matrix”.

• If there is no fiber found, the network is not connected and the search process
is stopped.

• If there are fibers found, mark these fibers as “fiber temp”.

(2) Check if there are any fibers in “fiber temp” belonging to the “output group”.

• If there are, the network is connected and the search process is stopped.
• If there are not, move the fibers in “fiber temp” from the “search group” to the “input

group”, and go to step (1) of Step 2.2.

Step 3. Calculate the Connection Probability

A total of NS models for each set of parameters are generated and calculated. The
connection probability of the models is the ratio of the number of samples with connecting
path NP to the total number of samples NS, and can be written as:

P =
NP

NS
. (A12)

Step 4. Calculate the Percolation Threshold Using Boltzmann Function

Simulation results show that the connection probability P increases with the increase
in the combined dimensionless network density nfl2

f , presenting an “S” shape, as shown in
Figure A3. This S-shape curve can be described by the Boltzmann function and is written as:

P = P2 −
P2 − P1

1 + exp
(
(nfl2

f −C0)/dx
P2−P1

) , (A13)

where P1 and P2 are the minimum and maximum values of P, and should be set as 0% and
100%, respectively, C0 is the horizontal coordinate of the center of the central symmetrical
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Boltzmann curve and satisfies the relation P
∣∣∣nfl2

f =C0
= (P1 + P2)/2, and dx is the slope at

the center point. The network density at connection probability P = 50% is taken as the
percolation threshold [56].

The dimensionless network density nfl2
f of the uniformly distributed random nanofiber

network at connection probability P = 50% can be predicted by Equation (A13) as 5.8. Thus,
the relative density at the percolation threshold is:

ρR
th =

5.8
λf

. (A14)

It is noted that the process of the Monte Carlo simulation on the percolation threshold
for networks with random and aggregated nanofibers is the same, except for the modeling
process in Step 1.
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percolation threshold [56]. 

The dimensionless network density nfl
2 

f  of the uniformly distributed random 

nanofiber network at connection probability P = 50% can be predicted by Equation (A13) 

as 5.8. Thus, the relative density at the percolation threshold is: 

R

th

f

5.8



= . (A14) 

It is noted that the process of the Monte Carlo simulation on the percolation threshold 

for networks with random and aggregated nanofibers is the same, except for the modeling 

process in Step 1. 
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Figure A3. Effect of the relative size of RAE L/lf on the connection probability P of the networks. 
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