Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Methods
3. Results and Discussion
3.1. SEM Characterization
3.2. Resistivity vs. Temperature
3.2.1. Heating Curves
3.2.2. Cooling Curves
3.3. DSC Measurements
3.4. Temperature Self-Regulation Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, J. Stability of polymer composites as positive-temperature-coefficient resistors. Polym. Eng. Sci. 1974, 14, 706–716. [Google Scholar] [CrossRef]
- Narkis, M.; Ram, A.; Stein, Z. Effect of crosslinking on carbon black/polyethylene switching materials. J. Appl. Polym. Sci. 1980, 25, 1515–1518. [Google Scholar] [CrossRef]
- Narkis, M.; Lidor, G.; Vaxman, A.; Zuri, L. Innovative ESD thermoplastic composites structured through melt flow processing. In Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium Proceedings, 1999 (IEEE Cat. No.99TH8396), Orlando, FL, USA,, 28–30 September 1999; pp. 239–245. [Google Scholar]
- Xiang, D.; Wang, L.; Zhang, Q.Q.; Chen, B.Q.; Li, Y.T.; Harkin-Jones, E. Comparative study on the deformation behavior, structural evolution, and properties of biaxially stretched high-density polyethylene/carbon nanofiller (carbon nanotubes, graphene nanoplatelets, and carbon black) composites. Polym. Compos. 2018, 39, E909–E923. [Google Scholar] [CrossRef] [Green Version]
- Kiraly, A.; Ronkay, F. Temperature dependence of electrical properties in conductive polymer composites. Polym. Test 2015, 43, 154–162. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Porwal, H.; Busfield, J.J.; Peijs, T.; Bilotti, E. Pyroresistivity in conductive polymer composites: A perspective on recent advances and new applications. Polym. Int. 2019, 68, 299–305. [Google Scholar] [CrossRef]
- Bezzon, V.D.N.; Montanheiro, T.L.A.; de Menezes, B.R.C.; Ribas, R.G.; Righetti, V.A.N.; Rodrigues, K.F.; Thim, G.P. Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Adv. Mater. Sci. Eng. 2019, 2019, 4293073. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chang, C.; Li, X.; Li, Y.; Guan, G. A New Thermal Controlling Material with Positive Temperature Coefficient for Body Warming: Preparation and Characterization. Materials 2019, 12, 1758. [Google Scholar] [CrossRef] [Green Version]
- Shafiei, M.; Ghasemi, I.; Gomari, S.; Abedini, A.; Jamjah, R. Positive Temperature Coefficient and Electrical Conductivity Investigation of Hybrid Nanocomposites Based on High-Density Polyethylene/Graphene Nanoplatelets/Carbon Black. Phys. Status Solidi (A) 2021, 218, 2100361. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Schubert, D.W. Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. Nano-Micro Lett. 2021, 13, 64. [Google Scholar] [CrossRef]
- Luo, X.; Yang, G.; Schubert, D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy. Adv. Compos. Hybrid Mater. 2022, 5, 250–262. [Google Scholar] [CrossRef]
- Xue, F.; Li, K.; Cai, L.; Ding, E. Effects of POE and Carbon Black on the PTC Performance and Flexibility of High-Density Polyethylene Composites. Adv. Polym. Technol. 2021, 2021, 1124981. [Google Scholar] [CrossRef]
- Alallak, H.M.; Brinkman, A.W.; Woods, J. I-V Characteristics of Carbon Black-Loaded Crystalline Polyethylene. J. Mater. Sci. 1993, 28, 117–120. [Google Scholar] [CrossRef]
- Nagel, J.; Hanemann, T.; Rapp, B.E.; Finnah, G. Enhanced PTC Effect in Polyamide/Carbon Black Composites. Materials 2022, 15, 5400. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.F.; Ren, D.Q.; Liu, Z.Y.; Yang, W.; Yang, M.B. Unusual positive temperature coefficient effect of polyolefin/carbon fiber conductive composites. Mater. Lett. 2016, 164, 587–590. [Google Scholar] [CrossRef]
- Qiao, L.; Yan, X.; Tan, H.; Dong, S.; Ju, G.; Shen, H.; Ren, Z. Mechanical Properties, Melting and Crystallization Behaviors, and Morphology of Carbon Nanotubes/Continuous Carbon Fiber Reinforced Polyethylene Terephthalate Composites. Polymers 2022, 14, 2892. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.B. Positive temperature coefficient effect and mechanism of compatible LLDPE/HDPE composites doping conductive graphite powders. J. Appl. Polym. Sci. 2018, 135, 46453. [Google Scholar] [CrossRef]
- Tung, T.T.; Pham-Huu, C.; Janowska, I.; Kim, T.; Castro, M.; Feller, J.-F. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small 2015, 11, 3485–3493. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef] [Green Version]
- Shebani, A.; Klash, A.; Elhabishi, R.; Abdsalam, S.; Elbreki, H.; Elhrari, W. The influence of LDPE content on the mechanical properties of HDPE/LDPE blends. Res. Dev. Mater. Sci. 2018, 7, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Setnescu, R.; Caramitu, A.; Lungulescu, M.; Mitrea, S.; Bara, A.; Stancu, N. Electroconductive composite presenting self-regulating temperature effect and process for making them. RO Patent Application OSIM A/01053/2018.
- Setnescu, R.; Lungulescu, M.; Bara, A.; Caramitu, A.; Mitrea, S.; Marinescu, V.; Culicov, O. Thermo-Oxidative Behavior of Carbon Black Composites for Self-Regulating Heaters. Adv. Eng. Forum 2019, 34, 66–80. [Google Scholar] [CrossRef]
- Ogah, A.; Afiukwa, J. The effect of linear low density polyethylene (LLDPE) on the mechanical properties of high density polyethylene (HDPE) film blends. Int. J. Eng. Manag. Sci. 2012, 3, 85–90. [Google Scholar]
- Tang, H.; Piao, J.H.; Chen, X.F.; Luo, Y.X.; Li, S.H. The Positive Temperature-Coefficient Phenomenon of Vinyl Polymer Cb Composites. J. Appl. Polym. Sci. 1993, 48, 1795–1800. [Google Scholar] [CrossRef]
- Setnescu, R.; Lungulescu, M.; Nicula, N.; Bara, A.; Caramitu, A. PTC material and process for manufacture a temperature self-regulating heating cable. RO Patent Application OSIM A/00503/2022.
- Ilie, S.; Setnescu, R.; Lungulescu, E.M.; Marinescu, V.; Ilie, D.; Setnescu, T.; Mares, G. Investigations of a mechanically failed cable insulation used in indoor conditions. Polym. Test 2011, 30, 173–182. [Google Scholar] [CrossRef]
- Lungulescu, E.-M.; Setnescu, R.; Ilie, S.; Taborelli, M. On the Use of Oxidation Induction Time as a Kinetic Parameter for Condition Monitoring and Lifetime Evaluation under Ionizing Radiation Environments. Polymers 2022, 14, 2357. [Google Scholar] [CrossRef]
- Alamo, R.G.; Graessley, W.W.; Krishnamoorti, R.; Lohse, D.J.; Londono, J.D.; Mandelkern, L.; Stehling, F.C.; Wignall, G.D. Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content. Macromolecules 1997, 30, 561–566. [Google Scholar] [CrossRef]
- Caramitu, A.-R.; Setnescu, R.; Lungulescu, M.; Mitrea, S.; Pintea, J. Dielectric Behaviour of some Composite Materials of HDPE/CB Type. Electroteh. Electron. Autom. 2018, 66, 73–79. [Google Scholar]
- Cataldo, F. The role of fullerene-like structures in carbon black and their interaction with dienic rubber. Fuller. Sci. Techn 2000, 8, 105–112. [Google Scholar] [CrossRef]
- Setnescu, R.; Jipa, S.; Setnescu, T.; Kappel, W.; Kobayashi, S.; Osawa, Z. IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile. Carbon 1999, 37, 1–6. [Google Scholar] [CrossRef]
- Jipa, S.; Zaharescu, T.; Gigante, B.; Santos, C.; Setnescu, R.; Setnescu, T.; Dumitru, M.; Gorghiu, L.M.; Kappel, W.; Mihalcea, I. Chemiluminescence investigation of thermo-oxidative degradation of polyethylenes stabilized with fullerenes. Polym. Degrad. Stab. 2003, 80, 209–216. [Google Scholar] [CrossRef]
- Ren, D.Q.; Zheng, S.D.; Huang, S.L.; Liu, Z.Y.; Yang, M.B. Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J. Appl. Polym. Sci. 2013, 129, 3382–3389. [Google Scholar] [CrossRef]
- Ngai, J.H.L.; Polena, J.; Afzal, D.; Gao, X.; Kapadia, M.; Li, Y. Green Solvent-Processed Hemi-Isoindigo Polymers for Stable Temperature Sensors. Adv. Funct. Mater. 2022, 32, 2110995. [Google Scholar] [CrossRef]
- Zhang, J.J.; Rizvi, G.M.; Park, C.B. Effects of Wood Fiber Content on the Rheological Properties, Crystallization Behavior, and Cell Morphology of Extruded Wood Fiber/Hdpe Composites Foams. Bioresources 2011, 6, 4979–4989. [Google Scholar]
Abbreviation | Full Name/Description |
---|---|
PTC | Positive Temperature Coefficient |
NTC | Negative Temperature Coefficient |
HDPE (HD) | High Density Polyethylene |
LLDPE (LLD) | Linear Low-Density Polyethylene |
FEF | Fast Extruder Furnace |
SEM | Scanning Electron Microscopy |
CB | Carbon Black |
Gr | Graphite |
ρV | Volume resistivity |
ρs | Surface resistivity |
Ts | Sample surface temperature |
ρ-T | Resistivity-Temperature |
Xc | Crystallinity degree |
OOT | Onset Oxidation Temperature |
ΔHm/ΔHc | Melting/Crystallization enthalpies |
Tm/Tc | Melting/Crystallization temperatures |
Dose (kGy) | Cycle Number | ρ0 (kΩ/sq) | Onset Temperature (°C) | Slope of ρ Increase (K−1) | Tmax (°C) | ρmax·10−5 (kΩ/sq) | PTC Intensity lg(ρmax/ρ0) | Slope of ρ Decrease (K−1) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 3.50 | 137.0 | 0.54 | 139.6 | 2.32 | 4.83 | −0.26 |
2 | 1.49 | 133.2 | 0.49 | 135.2 | 1.92 | 5.11 | −0.47 | |
3 | 1.23 | 133.1 | 0.47 | 135.1 | 1.90 | 5.19 | −0.47 | |
150 | 1 | 1.11 | 126.1 | 0.27 | 130.3 | 6.51 | 5.77 | −0.14 −0.07 |
2 | 2.73 | 127.1 | 0.64 | 129.2 | 5.26 | 5.28 | −0.09 −0.03 | |
3 | 3.77 | 129.4 | 0.51 | 132.2 | 5.10 | 5.10 | −0.04 −0.03 |
Dose (kGy) | Cycle Number | ρ0 (kΩ/sq) | Onset Temperature (°C) | Slope of ρ Increase (K−1) | Tmax (°C) | ρmax·10−4 (kΩ/sq) | PTC Intensity lg(ρmax/ρ0) | Slope of ρ Decrease (K−1) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 4.12 | 122.2 | 0.25 | 132.8 | 0.481 | 3.07 | −0.05 |
2 | 6.85 | 126.3 | 0.26 | 130.5 | 1.143 | 3.22 | −0.05 | |
3 | 8.53 | 128.1 | 0.35 | 130.7 | 1.610 | 3.28 | −0.04 | |
150 | 1 | 4.49 | 129.0 | 0.32 | 131.5 | 5.560 | 4.09 | −0.04 |
2 | 11.2 | 126.5 | 0.37 | 130.5 | 7.860 | 3.85 | −0.03 | |
3 | 14.47 | 126.7 | 0.38 | 130.0 | 9.320 | 3.81 | −0.04 |
Dose (kGy) | Cycle Number | T′onset (°C) | Slope of ρ Increase in Molten State (K−1) | ρ′max⋅10−4 (kΩ/sq) | T′max (°C) | Slope of ρ Decay in Solid State (K−1) | Toffset (°C) | ρr.t. at the Cycle End (kΩ/sq) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 124.6 | −0.41 | 0.375 | 121.5 | 0.28 | 118.7 | 1.54 |
2 | 124.2 | −1.07 | 0.594 | 122.1 | 0.50 | 120.2 | 1.23 | |
3 | 124.1 | −1.10 | 0.602 | 122.2 | 0.55 | 120.3 | 1.19 | |
150 | 1 | 125.0 | −0.53 | 36.06 | 123.1 | 1.09 | 122.0 | 2.79 |
2 | 127.2 | −0.10 −0.01 | 36.50 | 121.81 | 0.33 | 119.0 | 3.83 | |
3 | 134.8 | −0.03 −0.01 | 47.65 | 121.64 | 0.20 | 114.4 | 8.7 |
Dose (kGy) | Cycle Number | T′onset (°C) | Slope of ρ Increase in Molten State (K−1) | ρ′max⋅10−4 (kΩ/sq) | T′max (°C) | Slope of ρ Decay in Solid State (K−1) | T′offset (°C) | ρr.t. at the End of Cycle (kΩ/sq) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 134.1 | −0.06 | 1.255 | 122.6 | 0.43 | 119.8 | 6.85 |
2 | >139 | −0.04 | 2.340 | 121.0 | 0.47 | 118.9 | 8.94 | |
3 | >137 | −0.04 | 3.030 | 121.1 | 0.41 | 118.9 | 13.15 | |
150 | 1 | 133.7 | −0.04 −0.18 | 4.55 | 121.7 | 0.51 | 119.2 | 11.22 |
2 | 129.2 | −0.02 −0.05 | 11.40 | 121.1 | 0.53 | 119.2 | 16.02 | |
3 | 135.9 | −0.03 −0.08 | 16.43 | 120.3 | 0.30 | 117.1 | 18.81 |
Dose (kGy) | Cycle | Tm (°C) | ΔHm (J/g) | Tonset (°C) | Toffset (°C) |
---|---|---|---|---|---|
0 | 1 | 130.66 | 122.5 | 124.6 | 133.24 |
2 | 128.14 | 117.5 | 121.4 | 130.82 | |
3 | 128.18 | 117.4 | 121.3 | 130.70 | |
150 | 1 | 130.72 | 122.2 | 123.7 | 133.30 |
2 | 128.43 | 119.9 | 121.6 | 130.35 | |
3 | 128.44 | 119.5 | 121.6 | 130.33 |
Dose (kGy) | Cycle | Tc (°C) | ΔHc (J/g) | Tonset (°C) | Toffset (°C) |
---|---|---|---|---|---|
0 | 1 | 117.96 | −106.6 | 119.87 | 114.28 |
2 | 117.93 | −106.6 | 119.85 | 114.17 | |
3 | 117.95 | −106.7 | 119.96 | 114.22 | |
150 | 1 | 118.47 | −106.4 | 120.21 | 114.56 |
2 | 118.43 | −106.2 | 120.25 | 114.45 | |
3 | 118.47 | −106.2 | 120.34 | 114.57 |
Dose (kGy) | Cycle | Tm (°C) | ΔHm (J/g) | Tonset (°C) | Toffset (°C) |
---|---|---|---|---|---|
0 | 1 | 131.92 | 183.4 | 124.56 | 135.84 |
2 | 131.24 | 156.2 | 122.84 | 134.66 | |
3 | 131.24 | 149.4 | 122.68 | 134.85 | |
150 | 1 | 131.92 | 175.5 | 124.56 | 135.84 |
2 | 130.67 | 157.1 | 121.53 | 133.65 | |
3 | 130.64 | 157.2 | 121.57 | 133.75 |
Dose (kGy) | Cycle | Tc (°C) | ΔHc (J/g) | Tonset (°C) | Toffset (°C) |
---|---|---|---|---|---|
0 | 1 | 119.90 | −128.7 | 122.73 | 112.31 |
2 | 119.84 | −122.4 | 122.52 | 112.59 | |
3 | 119.93 | −122.2 | 122.69 | 112.28 | |
150 | 1 | 119.47 | −128.8 | 121.88 | 112.12 |
2 | 119.42 | −121.4 | 121.98 | 112.32 | |
3 | 119.41 | −121.0 | 122.05 | 112.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setnescu, R.; Lungulescu, E.-M.; Marinescu, V.E. Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization. Materials 2023, 16, 157. https://doi.org/10.3390/ma16010157
Setnescu R, Lungulescu E-M, Marinescu VE. Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization. Materials. 2023; 16(1):157. https://doi.org/10.3390/ma16010157
Chicago/Turabian StyleSetnescu, Radu, Eduard-Marius Lungulescu, and Virgil Emanuel Marinescu. 2023. "Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization" Materials 16, no. 1: 157. https://doi.org/10.3390/ma16010157
APA StyleSetnescu, R., Lungulescu, E. -M., & Marinescu, V. E. (2023). Polymer Composites with Self-Regulating Temperature Behavior: Properties and Characterization. Materials, 16(1), 157. https://doi.org/10.3390/ma16010157