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Abstract: Ru attracted considerable attention as a candidate to replace TaN as a diffusion barrier layer
for Cu interconnect metallisation. The addition of W improves the diffusion barrier properties of Ru
but appears to weaken the adhesion strength between the barrier and Cu and the direct (seedless)
electroplatability behaviour. Although Cu can be directly electroplated on near equimolar Ru-W thin
films, no complete substrate coverage is obtained. The understanding of Cu electrocrystallisation on
Ru–W is essential to develop methods of fabricating thin, continuous, and well adherent films for
advanced interconnect metallisation, where Ru–W thin films could be used as diffusion barriers. This
work studies the effect of ultrasonic agitation on the growth of Cu films electroplated on Ru–W, namely
on the impact on substrate coverage. Film structure, morphology and chemical composition were
evaluated by digital and scanning and transmission electron microscopies, and X-ray diffraction. The
results show that Cu particles decrease with increasing current density, but when no electrolyte agitation
is applied, substrate coverage is incomplete in the central region, with openings around larger Cu
particles, regardless of current density. Under ultrasonic agitation, substrate coverage is remarkably
improved. An active particle detachment mechanism is proposed as responsible for attaining improved
substrate coverage, only possible at intermediate current density. Lower current densities promote
growth over nucleation, whereas higher currents result in extensive hydrogen reduction/formation.
Ultrasonic agitation also enhances a preferential Cu growth along <111> direction.

Keywords: Cu; Ru; W; diffusion barrier; seedless; electroplating; acidic; ultrasound; agitation

1. Introduction

Powerful and efficient integrated circuits (IC) such as central processing units (CPU)
and graphic processing units (GPU) are possible due to a continuous miniaturisation of
transistors, down to the nanoscale. Such evolution implies a continuous miniaturisation
of all the structures inside an IC, including the interconnects. This translates into new
challenges related to the materials being used for interconnect lining and metallisation,
among others [1].

Interconnect metallisation with Cu has been the industry standard for more than
20 years now, since its introduction by IBM in the late 1990s. Cu suitably replaced Al inter-
connects because of its lower resistivity (ρAl = 2.65 × 10−8 Ω·m; ρCu = 1.68 × 10−8 Ω·m)
and higher electromigration resistance. The fabrication of Cu interconnects, however, re-
quires different fabrication processes, different equipment, and the use of a lining to prevent
Cu diffusion into the surrounding dielectric materials. TaN has been the industry standard
material for that lining purpose, combined with a Ta adhesion layer sitting between TaN
and Cu [2]. Although effective as a diffusion barrier, TaN has a relatively high resistivity
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(ρTaN ≈ 80 × 10−8 Ω·m [3]) that, associated with ever narrower interconnect vias and
lines, increases overall interconnect resistivity, damping the electronic performance and
eventually leading to interconnect disruption. Additionally, due to the terminal effect [4],
Ta/TaN lining bilayers are not suitable for direct electroplating—the conventional method
for Cu interconnect fill-up—requiring a thin Cu seed layer to be first deposited by physical
vapour deposition (PVD) techniques. This seed layer is becoming more challenging to
fabricate as dimensions shrink. To overcome these setbacks, fully metallic systems have
been considered as alternatives to replace TaN as diffusion barrier layers.

Ru attracted considerable attention as candidate to replace TaN. Ru has a high melting
point (Tm,Ru = 2607 K), displays more than a 10-fold lower resistivity (ρRu ≈ 7.1 × 10−8 Ω·m)
than TaN [5], has better adhesion to Cu [6,7], and is suitable for seedless Cu electroplating. Ru
is also chemically inert and stable in conventional acidic electroplating solutions, contrary to
other candidates such as Co-based systems, which are prone to dissolution in acidic media [8,9].
As for the task of preventing Cu diffusion, Ru performance can be competitive when coupled
with other elements such as Ru–Co [10], Ru–Cr [11], Ru–Mn [12–14], Ru–Ta [12,15], and
Ru–W [12,16]. Wojcik et al. [12] studied the performance of Ru, and Ru–W, Ta, Mn) thin
films, finding that Ru–W (50:50) ranks among the best performing systems as a Cu diffusion
barrier, up to 600 ◦C, whereas Ru alone fails at temperatures as low as 350 ◦C. A similar
result was obtained by Yeh et al. [16] for Ru and near equimolar Ru–W thin films, with failure
temperatures of 650 and 500 ◦C, respectively. The addition of W improves the diffusion barrier
properties of Ru but appears to weaken the adhesion strength between the barrier and Cu
and the direct (seedless) electroplating behaviour. Although Cu can be directly electroplated
on near equimolar Ru–W thin films, no complete substrate coverage is obtained [17,18]. A
recent work shows that the growth of large Cu particles during electrocrystallisation hinders
nucleation on their vicinity, leaving substrate coverage gaps [18]. The adoption of Ru–W
barrier layers as alternatives to TaN depends on their effectiveness for seedless interconnect
metallisation. Since these layers can be produced by industry known processes such as PVD,
their adoption would not be technologically disruptive but would open the door to better
performing devices. Thus, the objective of this study is to enhance the substrate coverage
through mechanical stimulus during Cu electrodeposition. While Ru–W seems an interesting
candidate system as a diffusion barrier layer, the direct Cu electrodeposition behaviour and the
characteristics of electrodeposited Cu films on Ru–W lack a fundamental understanding. To
the best of our knowledge, the effect of ultrasonic agitation on the electrodeposition behaviour
of Cu on Ru–W thin films has never been reported. For this reason, the present work aims at
improving the seedless Cu electroplating on Ru–W using ultrasonic electrolyte agitation.

2. Experimental
2.1. Substrate Preparation

A ≈ 100 nm thick SiO2 layer was grown on the surface of a p-type B-doped Si (100)
wafer (Silicon Valley Microelectronics, Santa Clara, CA, USA) by plasma enhanced chemical
vapour deposition (PECVD) with high radio frequency in a CVD MPX chamber (SPTS
Technologies Ltd., Newport, UK). Afterwards, the wafer was cut in smaller portions
(15 mm × 15 mm) whereon Ru–W films were co-deposited by DC magnetron sputtering in
an ultra-high vacuum sputtering system (Kenosistec, Binasco, Italy). Power biases of 40
and 30 W were applied to Ru and W targets (99.95% purity, Testbourne Ltd., Basingstoke,
UK), respectively. Deposition was performed in a chamber at 6.9 × 10−1 Pa with Ar influx
of 20 sccm for 600 s. Sputtering parameters were selected in order to produce a ≈20 nm
Ru–W film with near-equimolar composition, based on a previous work [18].

2.2. Cu Electroplating

Cu electroplating was conducted in an acidic electrolyte of 0.05 M CuSO4·5H2O
(99.995%, Sigma-Aldrich, St. Louis, MO, USA), 0.05 M H2SO4 (Honeywell/Fluka, Charlotte,
NC, USA), 1 mM NaCl (Honeywell/Fluka, Charlotte, NC, USA) and 300 ppm poly(ethylene
glycol) 600 (Fluka Chemie GmbH, Buchs, Switzerland) prepared with deionized water. A
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two-electrode plating cell was assembled, with the Ru–W/SiO2/Si substrates as the cathode
and a 3 mm-thick copper plate as the anode, which was positioned parallel to the cathode at
a distance of 65 mm. Electrodeposition took place using a Gamry potentiostat/galvanostat
Interface 1000E (Gamry Instruments, Warminster, PA, USA) at room temperature with and
without ultrasonic (35 kHz) agitation in a Sonorex Super (Bandelin Electronic GmbH & Co.,
Berlin, Germany). Prior to electrodeposition, a polyvinyl chloride mask was applied
on the substrates limiting the exposed area to a circle of 0.50 cm2. After electroplating,
the substrates were gently rinsed in deionised water and dried with a soft Ar blow. A
descriptive illustration of substrate preparation and electroplating is shown in Figure 1.
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Figure 1. Schematic sequence of substrate preparation and Cu electroplating.

2.3. Structural and Chemical Characterisation of Substrate and Cu Films

The surfaces of the as-sputtered Ru–W/SiO2/Si substrates were observed by scan-
ning electron microscopy (SEM) (Thermo Fisher Scientific Quanta 400FEG ESEM, Thermo
Fisher Scientific, Hillsboro, OR, USA), and their chemical composition estimated by energy-
dispersive X-ray spectroscopy (EDS) (EDAX Genesis X4M, AMETEK, Berwyn, PA, USA).
Ru–W film structure was assessed by grazing incidence X-ray diffraction (GIXRD) at an
angle of 1.5◦, using Cu Kα radiation (λ = 1.54187 Å), and a step of 0.04 ◦·s−1 (Bruker D8 Dis-
cover, Bruker Corporation, Billerica, MA, USA), whereas the Cu films were analysed with
Bragg–Brentano configuration with a step of 0.005◦ (X’Pert Pro MRD, Malvern Panalytical,
Worcestershire, UK). The Cu films were also observed by digital microscopy (Leica DVM6,
Leica Microsystems GmbH, Wetzlar, Germany) and further analysed by SEM (Thermo
Fisher Scientific Quanta 650FEG ESEM, Thermo Fisher Scientific, Hillsboro, OR, USA). A
cross-sectional lamella was prepared by focused ion beam, FIB (Thermo Fisher Scientific
Helios 450S) and observed by scanning transmission electron microscopy, STEM (Thermo
Fisher Scientific Titan G2 ChemiSTEM). Surface roughness of Ru–W films was measured
by atomic force microscopy, AFM (Veeco Metrology Multimode, Veeco Instruments Inc.,
Oyster Bay, NY, USA), with a Bruker TESPA-V2 tip, and with the NanoScope software 6.13R1
(Veeco Instruments Inc.). Image analyses were performed on ImageJ software version 1.51p
(National Institutes of Health, Bethesda, MD, USA).

3. Results and Discussion

The conditions to fabricate near equimolar Ru–W thin films were determined in a previous
work [18] and herein replicated. In terms of structure, the Ru–W appears to have reduced
crystallinity given by the short, broad XRD peaks (Figure 2a). In fact, the addition of W to Ru
decreases the crystallinity in the film, an effect observed in other systems such as Ru–Cr [15].
The surface of the as-sputtered Ru–W thin films is relatively smooth (Figure 2b), with an average
roughness, Sa, of 0.67 nm, measured by AFM over a 1.5 × 1.5 µm (Figure 2c). Electroplating
was performed using direct current (DC) with densities, J, between 5 and 15 mA·cm−2, for 300
and 900 mC of transferred charge, Q. All current density and transferred charge combinations
were tested with and without ultrasonic agitation (UA), summarised in Table 1.
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Figure 2. As-sputtered Ru–W film X-ray diffractogram (a), and its surface observed by SEM (b) and
by AFM (c).

Table 1. Specimen tag names and respective electroplating conditions.

Specimen Tag Names J
mA·cm−2

Q
mC Ultrasonic Agitation

J5 5

300
900

NoJ10 10

J15 15

J5-UA 5
YesJ10-UA 10

J15-UA 15

As-deposited Cu/Ru–W surface images are displayed in Figure 3 for both 300 and
900 mC of transferred charge without electrolyte agitation. Considering substrate coverage,
the plating process starts on the outer limits of the substrate and progresses inwards as
the time unfollows. The central regions (yellow circles) of the substrate remain mostly
uncovered for Q = 300 mC (Figure 3a–c), whereas at 900 mC (Figure 3d–f) macroscopic
coverage is achieved. Small hydrogen bubbles form and grow close to the interface with the
mask, due to H+ co-reduction. Their appearance is noticeable during the electrodeposition
process, leaving bite-shaped marks around the Cu film that appear to increase in size with
current density, attributed to a more intense hydrogen formation. This process increases
with J, consuming a non-negligible part of the transferred charge that is not used for Cu
electrocrystallisation, explaining the comparatively better substrate coverage obtained
at 5 mA·cm−2 (Figure 4a–c). However, even in J5 the substrate remains considerably
uncovered when observed by SEM (Figure 4a); in here, early growth Cu particles are
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observed isolated from each other across the bare Ru–W film. This is more clearly seen by
the backscattered electron (BSE) SEM images overlaid on secondary electrons (SE) SEM
images. It is worth mentioning that in ideal electroplating conditions, i.e., infinite number
of active sites on the substrate for nucleation followed by uniform growth and absence of
hydrogen ion co-reduction (Faradaic efficiency = 1), a Q value of 300 mC would suffice to
form a ≈ 110 nm film across the substrate.

With a 3-fold increase in electroplating time (Q = 900B mC), far better coverage
is achieved in the central region of the substrate, with Cu particles of different sizes
densely grown on the surface, except in the vicinity areas of large particles (red arrows in
Figure 4d–f). Given their size, associated with a small contact area on the substrate, large
Cu particles can easily detach and fall off the surface when subjected to the mechanical
perturbation, such as during rinsing, drying, and transporting of the specimens, and even
during electrodeposition. However, their nucleation and growth sites can still be identified
by the coverage gaps left behind (yellow arrows in Figure 4e,f). Such incomplete substrate
coverage scenario was observed in a previous study, and a mechanism for its occurrence
was proposed [18]. The abnormal growth of some Cu particles presumably responsible for
incomplete substrate coverage is not eliminated by increasing the current density. In spite
of this, higher values of J favour nucleation over growth, effectively reducing the particle
size, given by the smaller average (d) and median (d̃) particle size values (Figure 5).
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Figure 3. Digital microscopy images of the as-deposited Cu films at 5 (a), 10 (b), and 15 mA·cm−2

(c) for 300 mC and the same current densities (d), (e), and (f), respectively, for 900 mC, without
electrolyte agitation.
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Macroscopic substrate coverage decreases when ultrasonic agitation is applied during
the electroplating process (Figure 6a–c). It is reasonable to assume that the mechanical
waves generated by UA constitute a strong stimulus for the detachment of many Cu
particles, especially the larger/more massive ones. Thus, under such conditions, the
amount of Cu mass that remains attached to the substrate after plating is expected to be
lower than that obtained when no electrolyte agitation is applied, for identical values
of J and Q. It is interesting to note that under UA, substrate coverage increases with
current density, contrary to what happens when agitation is absent; without agitation, the
macroscopical substrate coverage is mainly limited by the extent of hydrogen co-reduction,
whereas when UA is applied the extent of Cu particle detachment, due to mechanical
vibration, plays a dominant role when lower current densities are used. Since lower values
of J favour growth over nucleation resulting in larger particles, they should result in a
larger loss of mass when UA is applied. This outcome is clearly revealed by comparison
of Figure 2a with Figure 6a and explains the poor substrate coverage obtained in J5-UA.
For higher values of J, not only particles are smaller and comparatively less prone to
detachment under UA, but also hydrogen co-reduction plays a strong role, resulting in
substrate coverage differences (J15 in Figure 2c vs. J15-UA in Figure 6c) that are far
less expressive. The agitation of the electrolyte with ultrasonic waves promotes a faster
replenishing of Cu2+ ions to the substrate–electrolyte interface, decreasing the extension of
hydrogen co-reduction. The uncovered central region of the substrates at 300 mC under
UA is also revealed by SEM, with a few Cu particles scattered across the surface, being the
particle density higher with higher values of J (Figure 7a–c).
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Figure 7. SEM images of the central regions of the as deposited Cu films with current densities of 5 (a),
10 (b), 15 mA·cm−2 (c) for 300 mC and at the same current densities in (d), (e), and (f), respectively,
for 900 mC, under ultrasonic electrolyte agitation.

A 3-fold increase in the transferred charge (Q = 900 mC) for J5-UA fails to produce
anything close to a complete substrate coverage, given by a rather unimpressive improvement
over its 300 mC counterpart (Figure 6d). The extra charge supplied to the substrate is likely
offset by particle detachment under UA. The additional transferred charge is consumed to
promote the growth of the Cu film on the outer regions of the substrate. A major improvement
is observed for J10-UA where both particle detachment and hydrogen co-reduction are not
too intense, and an improved substrate coverage is achieved (Figure 6e). Under UA, any
hydrogen bubbles are promptly dissipated from the substrate’s surface, not being allowed to
grow, and imprint bite-shape marks around the Cu films; such was the case when agitation
is not used. Nevertheless, it is plausible that at higher current density (J = 15 mA·cm−2)
hydrogen reduction becomes strong enough to prevent complete coverage, as is seen for J15-
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UA (Figure 6f). This scenario is confirmed microscopically by SEM, with the central substrate
regions of the J5-UA (Figure 7d) and J15-UA (Figure 7f) specimens fairly exposed/uncovered,
whereas J10-UA displays an improved substrate coverage (Figure 7e). It is worth mentioning
that despite the central regions of the substrate in J5-UA and J15-UA both being uncovered,
the latter specimen has a much better coverage overall. This fact suggests that Cu particle
detachment (more likely to occur in J5-UA) exerts a more pronounced contribution to the loss
of transferred charge than hydrogen co-reduction does (more likely to take place in J15-UA). A
closer look at the Cu film surface for J10-UA shows no substrate coverage gaps, such as those
found around large particles when no agitation is used (Figure 4e). Under UA, the firstly
formed large Cu particles are detached/removed from the substrate, leaving an exposed area,
whereon many Cu nuclei readily form and grow. The process is repeated across the surface
until all the substrate openings are filled. Eventually, additional large Cu particles grow but
this time on top of a pre-existing thin Cu film. This is clearly observed in digital microscopy
where the uncovered portions of the Ru–W substrate (gaps) are revealed by bright bluish
zones (Figure 8a) and in higher magnification SEM images (Figure 8b). When UA is applied,
the gaps are filled with Cu film, shown as bright whitish zones (Figure 8c). It is noteworthy
that these Cu-filled gaps display a substantially finer/smoother surface (Figure 8d), hence
appearing brighter in digital microscopy. High-angle annular dark-field (HAADF) imaging
obtained in STEM for the J10 (900 mC) cross-section reveal that aside from the coverage
gaps, Cu film displays good interfacial continuity with the Ru–W substrate with thickness
varying between tens to several hundred nanometres (Figure 9). The proposed mechanism
for the effect of UA on substrate coverage is illustrated in Figure 10. A concerning aspect
regarding the use of UA is the impact on Cu film adhesion, since the films produced under
such condition were partially detached from the substrate during mask removal, particularly
for current densities of 10 and 15 mA·cm−2.

Materials 2022, 15, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 8. Digital optical microscopy images of the as-deposited Cu film obtained at 10 mA·cm−2 

without agitation (a) and under ultrasonic electrolyte agitation (c). The same films observed at 

higher magnification by SEM in (b) and (d), respectively. 

 

Figure 8. Digital optical microscopy images of the as-deposited Cu film obtained at 10 mA·cm−2

without agitation (a) and under ultrasonic electrolyte agitation (c). The same films observed at higher
magnification by SEM in (b) and (d), respectively.



Materials 2023, 16, 167 10 of 12

Materials 2022, 15, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 8. Digital optical microscopy images of the as-deposited Cu film obtained at 10 mA·cm−2 

without agitation (a) and under ultrasonic electrolyte agitation (c). The same films observed at 

higher magnification by SEM in (b) and (d), respectively. 

 

Figure 9. HAADF image of the Cu/Ru–W/SiO2/Si stack cross-section (a) and higher magnification of
the same zone showing interfacial continuity between electroplated Cu film and Ru–W substrate (b).

Materials 2022, 15, x FOR PEER REVIEW 11 of 13 
 

 

Figure 9. HAADF image of the Cu/Ru–W/SiO2/Si stack cross-section (a) and higher magnification 

of the same zone showing interfacial continuity between electroplated Cu film and Ru–W substrate 

(b). 

(a)  (b)  (c)  

Figure 10. Electrocrystallisation model for Cu on Ru–W thin films with and without ultrasonic agi-

tation. Incomplete substrate coverage around large Cu particles without ultrasonic agitation (a), Cu 

particle detachment via mechanical stimulus (b), and filling of the coverage gaps after Cu particle 

removal (c). 

The use of UA does not appear to have an impact on the average particle size (Figure 

11a), but it is interesting to note what it does to the electrocrystallisation of Cu on Ru–W 

in terms of preferential Cu growth along <111> directions. This preferential orientation, 

which is typically present in non-epitaxial growth [19], minimises interfacial energy and 

is perceived by a lower (200)/(111) peak intensity ratio, 𝐼(200), when comparing the EP-Cu 

XRD (𝐼(200),𝐽10 = 4.4%) with the ICDD Cu pattern (00-004-0836) (𝐼(200) = 46.0%). When UA 

is applied, such preferential growth is enhanced (𝐼(200),𝐽10−𝑈𝐴 = 0.8%), meaning an en-

hancement in the preferential <111> growth (Figure 11b). This is an interesting microstruc-

tural aspect for Cu interconnect due to the lower resistivity and higher electromigration 

resistance of the {111} planes [20]. 

 
(a) 

 
(b) 

Figure 11. Particle size distributions for current density of 10 mA·cm−2 with (J10-UA) and without 

(J10) agitation (a), and their respective X-ray diffractograms (b). 

4. Conclusions 

Cu was directly electroplated on Ru–W thin films with near equimolar composition 

at different current densities and two values of transferred charge, with and without ul-

Without Agitation Under Ultrasonic Agitation Improved Substrate Coverage 

Figure 10. Electrocrystallisation model for Cu on Ru–W thin films with and without ultrasonic agitation.
Incomplete substrate coverage around large Cu particles without ultrasonic agitation (a), Cu particle
detachment via mechanical stimulus (b), and filling of the coverage gaps after Cu particle removal (c).

The use of UA does not appear to have an impact on the average particle size (Figure 11a),
but it is interesting to note what it does to the electrocrystallisation of Cu on Ru–W in terms of
preferential Cu growth along <111> directions. This preferential orientation, which is typically
present in non-epitaxial growth [19], minimises interfacial energy and is perceived by a lower
(200)/(111) peak intensity ratio, I(200), when comparing the EP-Cu XRD (I(200),J10 = 4.4%) with
the ICDD Cu pattern (00-004-0836) (I(200) = 46.0%). When UA is applied, such preferential
growth is enhanced (I(200), J10−UA = 0.8%), meaning an enhancement in the preferential <111>
growth (Figure 11b). This is an interesting microstructural aspect for Cu interconnect due to
the lower resistivity and higher electromigration resistance of the {111} planes [20].
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Figure 11. Particle size distributions for current density of 10 mA·cm−2 with (J10-UA) and without
(J10) agitation (a), and their respective X-ray diffractograms (b).

4. Conclusions

Cu was directly electroplated on Ru–W thin films with near equimolar composition at
different current densities and two values of transferred charge, with and without ultra-
sonic agitation. When no agitation is used, hydrogen co-reduction is a key factor limiting
macroscopical substrate coverage, which is lower for higher current density. Microscopi-
cally, improved substrate coverage is hindered by abnormal Cu particle growth, regardless
of current density. Higher current density reduces average Cu particle size but promotes
a more intense hydrogen co-reduction. Under ultrasonic agitation, an active Cu particle
detachment reduces macroscopic substrate coverage, especially when particles grow larger,
at lower current density. Under an intermediate intensity of hydrogen co-reduction and
particle detachment, established by applying ultrasonic agitation at intermediate current
density, a continuous Cu film grows, with microscopical continuity. Ultrasonic agitation
enhances the preferential growth of Cu film along <111> directions.
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