Numerical Study on the Progressive Damage Behavior of the Interfacial Debonding between Shape Memory Alloy and Polymer Matrix
Abstract
:1. Introduction
2. Materials Models
2.1. Shape Memory Alloy Model
2.2. Interfacial Debonding Model
3. Finite Element Model
3.1. Pull-Out Test Finite Element Model
3.2. Cohesive Elements with Random Interfacial Properties Generated by PYTHON Language
3.3. Interfacial Bonding Properties of Cohesive Elements
4. Results and Discussion
4.1. Simulation Results and Analysis of the Interfacial Debonding Behavior
4.2. Simulation of the Composites with Different Embedded Depths
4.3. Analysis of the Composites with Different SMA Dimensions
5. Conclusions
- The interfacial debonding behavior between SMA and polymer matrix is caused by the progressive damage and connection of different positions of the interface with random interfacial bonding properties. A dramatic load drop of the pull-out test is induced by the interfacial debonding behavior between SMA and polymer matrix.
- The ultimate load and the corresponding displacement of the SMA fiber pulled out from the polymer matrix increase with the increase of the embedded depth, while the average interfacial bonding strength of the SMA/polymer matrix composites is decreased, which is caused by the influence of the weak interface performance due to the poor compatibility between SMA and the polymer matrix.
- With the length-diameter ratio of the SMA fiber decreasing, the ultimate load and the associated displacement of the SMA/polymer matrix composites is improved, while the average interfacial bonding strength is decreased. Compared to the composites with the length–diameter ratio of 40, the ultimate load and the average interfacial bonding strength of the composites with length–diameter ratio of 10 increased by 198.1% and decreased by 25.3%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemi, M.R.; Shabakhty, N.; Enferadi, M.H. Vibration control of offshore jacket platforms through shape memory alloy pounding tuned mass damper (SMA-PTMD). Ocean Eng. 2019, 191, 106348. [Google Scholar] [CrossRef]
- Damanpack, A.R.; Bodaghi, M.; Aghdam, M.M.; Shakeri, M. On the vibration control capability of shape memory alloy composite beams. Compos. Struct. 2014, 110, 325–334. [Google Scholar] [CrossRef]
- Guo, W.; Kato, H. Development of a high-damping NiTi shape-memory-alloy-based composite. Mater. Lett. 2015, 158, 1–4. [Google Scholar] [CrossRef]
- Glock, S.; Michaud, V. Thermal and damping behaviour of magnetic shape memory alloy composites. Smart Mater. Struct. 2015, 24, 065025. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Wang, Z.; Yu, Z.; Liu, Y.; Sun, M. The low velocity impact response of shape memory alloy hybrid polymer composites. Polymers 2018, 10, 1026. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jiang, C.; Wu, Y.; Huang, Y.; Wan, Y.; Chen, R. Experimental study on the low-velocity impact failure mechanism of foam core sandwich panels with shape memory alloy hybrid face-sheets. Sci. Eng. Compos. Mater. 2021, 28, 592–604. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Z.; Tong, L.; Zhou, B.; Fu, J. Experimental and numerical investigation on the macroscopic mechanical behavior of shape memory alloy hybrid composite with weak interface. Compos. Struct. 2013, 101, 301–312. [Google Scholar] [CrossRef]
- Lin, M.H.; Fan, F.Y.; Kuo, C.H.; Lin, L.W.; Wang, K.K.; Chen, C.F.; Wang, Y.H.; Ou, S.F. Nanostructured hydroxyapatite coatings on NiTi shape memory alloys by ultrasonic mechanical coating and armouring. Surf. Coat. Technol. 2022, 431, 127998. [Google Scholar] [CrossRef]
- Rossi, S.; Deflorian, F.; Pegoretti, A.; D’Orazio, D.; Gialanella, S. Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf. Coat. Technol. 2008, 202, 2214–2222. [Google Scholar] [CrossRef]
- Gapeeva, A.; Vogtmann, J.; Zeller-Plumhoff, B.; Beckmann, F.; Gurka, M.; Carstensen, J.; Adelung, R. Electrochemical surface structuring for strong SMA wire–polymer interface adhesion. ACS Appl. Mater. Inter. 2021, 13, 21924–21935. [Google Scholar] [CrossRef]
- Huang, C.; Xie, Y.; Zhou, L.; Huang, H. Enhanced surface roughness and corrosion resistance of NiTi alloy by anodization in diluted HF solution. Smart Mater. Struct. 2009, 18, 024003. [Google Scholar] [CrossRef]
- Man, H.C.; Zhao, N.Q. Phase transformation characteristics of laser gas nitrided NiTi shape memory alloy. Surf. Coat. Technol. 2006, 200, 5598–5605. [Google Scholar] [CrossRef]
- Pequegnat, A.; Michael, A.; Wang, J.; Lian, K.; Zhou, Y.; Khan, M.I. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys. Mat. Sci. Eng. C 2015, 50, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lei, H.; Wang, Z.; Zhang, J.; Zhou, L.M. Effects of SMA filament surface nano SiO2 modification on interface bonding strength of SMA/epoxy composites. Acta Mater. Compos. Sin. 2015, 32, 1341–1348. [Google Scholar]
- Wang, Z.; Liu, Y.; Li, H.; Sun, M. Effect of enhancement of interface performance on mechanical properties of shape memory alloy hybrid composites. Compos. Interface 2018, 25, 169–186. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, C. Strengthening bonding strength in NiTi SMA fiber-reinforced polymer composites through acid immersion and Nanosilica coating. Compos. Struct. 2020, 239, 112001. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Lv, H.; Yang, B. Enhancement of interface performance between shape memory alloy fiber and polymer matrix using silane coupling agent KH550 and Al2O3 nanoparticles. Polym. Compos. 2018, 39, 3040–3047. [Google Scholar] [CrossRef]
- Xu, L.; Shi, M.; Wang, Z.; Zhang, X.; Xue, G. Experimental and numerical investigation on the low-velocity impact response of shape memory alloy hybrid composites. Mater. Today Commun. 2021, 26, 101711. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Chen, S.; Jin, X.; Fan, X.; Lu, C.; Yang, C. Low-velocity impact behaviors of glass fiber-reinforced polymer laminates embedded with shape memory alloy. Compos. Struct. 2021, 272, 114194. [Google Scholar] [CrossRef]
- Sun, M.; Chang, M.; Wang, Z.; Li, H.; Sun, X. Experimental and simulation study of low-velocity impact on glass fiber composite laminates with reinforcing shape memory alloys at different layer positions. Appl. Sci. 2018, 8, 2405. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Bai, Y.; Jia, Z.; Lau, K.T.; Hung, P.Y. Structural deformation performance of glass fiber reinforced polymer composite beam actuated by embedded indented SMA wires. Compos. Part B-Eng. 2019, 159, 284–291. [Google Scholar] [CrossRef]
- Gupta, A.K.; Velmurugan, R.; Joshi, M.; Gupta, N.K. Studies on shape memory alloy-embedded GFRP composites for improved post-impact damage strength. Int. J. Crashworthiness 2019, 24, 363–379. [Google Scholar] [CrossRef]
- Chen, S.; Mitsume, N.; Bui, T.Q.; Gao, W.; Yamada, T.; Zang, M.; Yoshimura, S. Development of two intrinsic cohesive zone models for progressive interfacial cracking of laminated composites with matching and non-matching cohesive elements. Compos. Struct. 2019, 229, 111406. [Google Scholar] [CrossRef]
- Liu, Q.; Gorbatikh, L.; Lomov, S.V. A combined use of embedded and cohesive elements to model damage development in fibrous composites. Compos. Struct. 2019, 223, 110921. [Google Scholar] [CrossRef]
- Cao, D.; Duan, Q.; Hu, H.; Zhong, Y.; Li, S. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements. Compos. Struct. 2018, 192, 300–309. [Google Scholar] [CrossRef]
- Moheimani, R.; Sarayloo, R.; Dalir, H. Failure study of fiber/epoxy composite laminate interface using cohesive multiscale model. Adv. Compos. Lett. 2020, 29, 2633366X20910157. [Google Scholar] [CrossRef]
- Din, I.U.; Naresh, K.; Umer, R.; Khan, K.A.; Drzal, L.T.; Haq, M.; Cantwell, W.J. Processing and out-of-plane properties of composites with embedded graphene paper for EMI shielding applications. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105901. [Google Scholar] [CrossRef]
- Din, I.U.; Hao, P.; Franz, G.; Panier, S. Elastoplastic CDM model based on Puck’s theory for the prediction of mechanical behavior of Fiber Reinforced Polymer (FRP) composites. Compos. Struct. 2018, 201, 291–302. [Google Scholar] [CrossRef]
- Tan, W.; Falzon, B.G.; Chiu, L.N.; Price, M. Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Compos. Part A Appl. Sci. 2015, 71, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.F.; Liao, B.B.; Jia, L.Y.; Peng, X.Q. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact. Compos. Struct. 2016, 149, 408–422. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Z.; Zhou, B.; Tong, L.; Wang, X. Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Mater. Des. 2012, 40, 138–147. [Google Scholar] [CrossRef]
Materials | Density (kg·m−3) | Modulus (GPa) | Poisson’s Ratio | ||||
---|---|---|---|---|---|---|---|
SMA | 6.45 | 30 | 0.32 | 365.89 | 412.68 | 98.83 | 61.51 |
Epoxy resin | 1.6 | 3.9 | 0.39 |
Parameters | Interface Stiffness (Mpa/mm) | Interface Strength (Mpa) | Interface Fracture Toughness (N/mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Kn | Ks | Kt | |||||||
Weaker interface | 500 | 310 | 310 | 20 | 10 | 10 | 0.42 | 0.42 | 0.42 |
Weak interface | 500 | 310 | 310 | 25 | 15 | 15 | 0.42 | 0.42 | 0.42 |
Medium interface | 500 | 310 | 310 | 35 | 20 | 20 | 0.42 | 0.42 | 0.42 |
Strong interface | 500 | 310 | 310 | 45 | 25 | 25 | 0.42 | 0.42 | 0.42 |
Stronger interface | 500 | 310 | 310 | 50 | 30 | 30 | 0.42 | 0.42 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jiang, C.; Yu, Z.; Wan, Y.; Ma, Y.; Yang, Z. Numerical Study on the Progressive Damage Behavior of the Interfacial Debonding between Shape Memory Alloy and Polymer Matrix. Materials 2023, 16, 168. https://doi.org/10.3390/ma16010168
Li H, Jiang C, Yu Z, Wan Y, Ma Y, Yang Z. Numerical Study on the Progressive Damage Behavior of the Interfacial Debonding between Shape Memory Alloy and Polymer Matrix. Materials. 2023; 16(1):168. https://doi.org/10.3390/ma16010168
Chicago/Turabian StyleLi, Hao, Cong Jiang, Zhaogang Yu, Yun Wan, Yunsheng Ma, and Zhaoyang Yang. 2023. "Numerical Study on the Progressive Damage Behavior of the Interfacial Debonding between Shape Memory Alloy and Polymer Matrix" Materials 16, no. 1: 168. https://doi.org/10.3390/ma16010168
APA StyleLi, H., Jiang, C., Yu, Z., Wan, Y., Ma, Y., & Yang, Z. (2023). Numerical Study on the Progressive Damage Behavior of the Interfacial Debonding between Shape Memory Alloy and Polymer Matrix. Materials, 16(1), 168. https://doi.org/10.3390/ma16010168