Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization Methods
2.4. In Vitro Cytotoxicity Assay
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Predoi, S.-A.; Ciobanu, C.S.; Motelica-Heino, M.; Chifiriuc, M.C.; Badea, M.L.; Iconaru, S.L. Preparation of Porous Hydroxyapatite Using Cetyl Trimethyl Ammonium Bromide as Surfactant for the Removal of Lead Ions from Aquatic Solutions. Polymers 2021, 13, 1617. [Google Scholar] [CrossRef] [PubMed]
- Dexiang, L.; Zheng, W.; Li, X.; Yang, Q.; Yue, X.; Guo, L.; Zeng, G. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J. Hazard. Mater. 2010, 177, 126–130. [Google Scholar] [CrossRef]
- Jang, S.H.; Min, B.G.; Jeong, Y.G.; Lyoo, W.S.; Lee, S.C. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J. Hazard. Mater. 2008, 152, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Günay, A.; Arslankaya, A.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef]
- Ramakrishnan, P.; Nagarajan, S.; Thiruvenkatam, V.; Palanisami, T.; Naidu, R.; Mallavarapu, M.; Rajendran, S. Cation doped hydroxyapatite nanoparticles enhance strontium adsorption from aqueous system: A comparative study with and without calcination. Appl. Clay Sci. 2016, 134, 136–144. [Google Scholar] [CrossRef]
- Sandrine, B.; Ange, N.; Didier, B.A.; Eric, C.; Patrick, S. Removal of aqueous lead ions by hydroxyapatite: Equilibria and kinetic process. J. Hazard. Mater. 2007, 139, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Hokkanen, S.; Bhatnagar, A.; Repo, E.; Lou, S.; Sillanpaa, M. Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2016, 283, 445–452. [Google Scholar] [CrossRef]
- Hassan, H.S.; El-Kamash, A.M.; Ibrahim, H.A.S. Evaluation of hydroxyapatite/poly (acrylamide-acrylic acid) for sorptive removal of strontium ions from aqueous solution. Environ. Sci. Pollut. Res. 2019, 26, 25641–25655. [Google Scholar] [CrossRef]
- Kim, J.; Sambudi, N.S.; Cho, K. Removal of Sr2+ using high-surface-area hydroxyapatite synthesized by non-additive in-situ precipitation. J. Environ. Manag. 2019, 231, 788–794. [Google Scholar] [CrossRef]
- Nielsen, S.P. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef]
- Metwally, S.S.; Ahmed, I.M.; Rizk, H.E. Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J. Alloys Compd. 2017, 709, 438–444. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Li, X.; Wang, L.A.; Xiao, H.; Liu, D. Toxicity assessment of artificially added zinc, selenium, and strontium in water. Sci. Total Environ. 2019, 670, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, S.; Sumer, H.; Kocoglu, G. Rickets and soil strontium. Arch. Dis. Child 1996, 75, 524–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnakumari, B.; Gayathiri, B.; Dhivya, C.; Abarna, K. Remediation of Contaminated Ground Water. Int. Res. J. Eng. Technol. 2018, 6, 1–3. [Google Scholar] [CrossRef]
- Koliyabandara, P.A.; Hettithanthri, O.; Rathnayake, A.; Rajapaksha, A.U.; Nanayakkara, N.; Vithanage, M. Hydroxyapatite for environmental remediation of water/wastewater. In Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development; Kumar, V., Kumar, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 167–191. [Google Scholar]
- Strontium in Drinking Water—Guideline Technical Document for Public Consultation. Available online: www.Canada.ca (accessed on 10 December 2022).
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Jiménez, A.; De La Montaña Rufo, M. Effect of water purification on its radioactive content. Water Res. 2002, 36, 1715–1724. [Google Scholar] [CrossRef]
- Najm, I. Strontium in Water: Critical Review of its Treatment Options and Considerations for Its Removal; Water Research Foundation: Denver, CO, USA, 2016; ISBN 978-1-60573-239-8. [Google Scholar]
- Corami, A.; Mignardi, S.; Ferrini, V. Cadmium removal from single-and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci. 2008, 317, 402–408. [Google Scholar] [CrossRef]
- He, J.; Zhang, K.; Wu, S.; Cai, X.; Chen, K.; Li, Y.; Sun, B.; Jia, Y.; Meng, F.; Jin, Z.; et al. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water. J. Hazard. Mater. 2016, 303, 119–130. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) Ions onto Hydroxyapatite Nanopowders in Aqueous Solutions. Materials 2018, 11, 2204. [Google Scholar] [CrossRef] [Green Version]
- Vila, M.; Sánchez-Salcedo, S.; Vallet-Regí, M. Hydroxyapatite foams for the immobilization of heavy metals: From waters to the human body. Inorganica Chim. 2012, 393, 24–35. [Google Scholar] [CrossRef]
- Campisi, S.; Castellano, C.; Gervasini, A. Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper (II) and lead (II) ions. New J. Chem. 2018, 42, 4520–4530. [Google Scholar] [CrossRef]
- Brazdis, R.I.; Fierascu, I.; Avramescu, S.M.; Fierascu, R.C. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials 2021, 14, 6898. [Google Scholar] [CrossRef] [PubMed]
- Handley-Sidhu, S.; Mullan, T.K.; Grail, Q.; Albadarneh, M.; Ohnuki, T.; Macaskie, L.E. Influence of pH, competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci. Rep. 2016, 6, 23361. [Google Scholar] [CrossRef] [Green Version]
- Gomes, D.S.; Santos, A.M.C.; Neves, G.A.; Menezes, R.R. A brief review on hydroxyapatite production and use in biomedicine. Cerâmica 2019, 65, 282–302. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yuan, Y.; Liu, C.; Wu, Y.; Lu, X.; Qian, J. Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 2014, 9, 397–412. [Google Scholar] [CrossRef]
- Srivastav, A.; Chandanshive, B.; Dandekar, P.; Khushalani, D.; Jain, R. Biomimetic hydroxyapatite a potential universal nanocarrier for cellular internalization & drug delivery. Pharm. Res. 2019, 36, 60. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, L.; Zheng, H.; Wang, Z. Hydroxyapatite nanocrystals for biomedical applications. J. Phys. Chem. C 2010, 114, 18352–18357. [Google Scholar] [CrossRef]
- Kadu, K.; Kowshik, M.; Ramanan, S.R. Does the nanoparticle morphology influence interaction with protein: A case study with hydroxyapatite nanoparticles. Mater. Today Commun. 2021, 26, 102172. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Massuyeau, F.; Constantin, L.V.; Costescu, A.; Predoi, D. Synthesis, structure and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders. J. Nanomater. 2012, 2012, 942801. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Motelica-Heino, M.; Buton, N.; Megier, C. Obtaining and Characterizing Thin Layers of Magnesium Doped Hydroxyapatite by Dip Coating Procedure. Coatings 2020, 10, 510. [Google Scholar] [CrossRef]
- Prodan, A.M.; Iconaru, S.L.; Predoi, M.V.; Predoi, D.; Motelica-Heino, M.; Turculet, C.S.; Beuran, M. Silver-Doped Hydroxyapatite Thin Layers Obtained by Sol-Gel Spin Coating Procedure. Coatings 2020, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Motelica-Heino, M.; Guegan, R.; Buton, N. Evaluation of Antibacterial Activity of Zinc-Doped Hydroxyapatite Colloids and Dispersion Stability Using Ultrasounds. Nanomaterials 2019, 9, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Predoi, D.; Vatasescu-Balcan, R.A. Osteoblast interaction with iron oxide nanoparticles coated with dextrin in cell culture. J. Optoelectron. Adv. Mater. 2008, 10, 152–157. [Google Scholar]
- Prodan, A.M.; Iconaru, S.L.; Chifiriuc, C.M.; Bleotu, C.; Ciobanu, S.C.; Motelica-Heino, M.; Sizaret, S.; Predoi, D. Magnetic Properties and Biological Activity Evaluation of Iron Oxide Nanoparticles. J. Nanomater. 2013, 2013, 893970. [Google Scholar] [CrossRef] [Green Version]
- Iconaru, S.L.; Predoi, M.V.; Chapon, P.; Gaiaschi, S.; Rokosz, K.; Raaen, S.; Motelica-Heino, M.; Predoi, D. Investigation of Spin Coating Cerium-Doped Hydroxyapatite Thin Films with Antifungal Properties. Coatings 2021, 11, 464. [Google Scholar] [CrossRef]
- Bogya, E.S.; Barabas, R.; Savdari, A.; Dejeu, V.; Baldea, I. Hydroxyapatite modified with silica used for sorption of copper (II). Chem. Pap. 2009, 63, 568–573. [Google Scholar] [CrossRef]
- Nie, Y.; Hu, C.; Kong, C. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. J. Hazard. Mater. 2012, 233–234, 194–199. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Groza, A.; Gaiaschi, S.; Rokosz, K.; Raaen, S.; Ciobanu, S.C.; Chapon, P.; Predoi, D. Antimicrobial Properties of Samarium Doped Hydroxyapatite Suspensions and Coatings. Coatings 2020, 10, 1124. [Google Scholar] [CrossRef]
- Asjadi, F.; Rahmani, A.H.; Hadi, F. Mechanism of strontium adsorption on nanostructured hydroxyapatite in an aqueous solution. J. Adv. Mater. Technol. 2022, 11, 23–34. [Google Scholar] [CrossRef]
- Özbek, Y.Y.; Baştan, F.E.; Üstel, F. Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications. J. Therm. Anal. Calorim. 2016, 125, 745–750. [Google Scholar] [CrossRef]
- Mehta, K.; Jha, M.K.; Divya, N. Statistical optimization of biodiesel production from Prunus armeniaca oil over strontium functionalized calcium oxide. Res. Chem. Intermed. 2018, 44, 7691–7709. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dyea dsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Padmesh, T.V.N.; Palanivelu, K.; Velan, M. Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameterand three parameter isotherm models. J. Hazard. Mater. 2006, 133, 304–308. [Google Scholar] [CrossRef]
- Mohan, S.; Karthikeyan, J. Removal of lignin and tannin color from aqueous solution by adsorption on to activated carbon solution by adsorption on to activated charcoal. Environ. Pollut. 1997, 97, 183–187. [Google Scholar] [CrossRef]
- Rosskopfova, O.; Galamboš, M.; Rajec, P. Study of sorption process of strontium on the synthetic hydroxyapatite. J. Radioanal. Nucl. Chem. 2011, 287, 715–722. [Google Scholar] [CrossRef]
- Sekine, Y.; Motokawa, R.; Kozai, N.; Ohnuki, T.; Matsumura, D.; Tsuji, T.; Kawasaki, R.; Akiyoshi, K. Calcium-deficient hydroxyapatite as a potential sorbent for strontium. Sci. Rep. 2017, 7, 2064. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wright, J.V.; Conca, J.L.; Peurrung, L.M. Effects of pH on heavy metal sorption on mineral apatite. Environ. Sci. Technol. 1997, 31, 624–631. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Hanafusa, T.; Yamashita, J.; Yamamoto, Y.; Ono, T. Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J. Radioanal. Nucl. Chem. 2016, 307, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Šljivić, M.; Smičiklas, I.; Plećaš, I.; Mitrić, M. The influence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ions. Chem. Eng. J. 2009, 148, 80–88. [Google Scholar] [CrossRef]
- Thomson, B.M.; Smith, C.L.; Busch, R.D.; Siegel, M.D.; Baldwin, C. Removal of metals and radionuclides using apatite and other natural sorbents. J. Environ. Eng. ASCE 2003, 129, 492–499. [Google Scholar] [CrossRef]
- Smiciklas, I.; Dimovic, S.; Plecas, I.; Mitric, M. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006, 40, 2267–2274. [Google Scholar] [CrossRef]
- Simon, F.G.; Biermann, V.; Peplinski, B. Uranium removal from groundwater using hydroxyapatite. Appl. Geochem. 2008, 23, 2137–2145. [Google Scholar] [CrossRef]
- Handley-Sidhu, S.; Renshaw, J.C.; Yong, P.; Kerley, R.; Macaskie, L.E. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol. Lett. 2011, 33, 79–87. [Google Scholar] [CrossRef]
- Kim, G.Y.; Kang, S.M.; Jang, S.C.; Huh, Y.S.; Roh, C. The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms. Korean J. Environ. Health Biol. 2016, 34, 107–115. [Google Scholar] [CrossRef]
- Morohashi, T.; Sano, T.; Yamada, S. Effects of strontium on calcium metabolism in rats i. a distinction between the pharmacological and toxic doses. Jpn. J. Pharmacol. 1994, 64, 155–162. [Google Scholar] [CrossRef]
- Kroes, R.; Den Tonkelaar, E.M.; Minderhoud, A.; Speijers, G.J.A.; Vonk-Visser, D.M.A.; Berkvens, J.M.; Van Esch, G.J. Short-term toxicity of strontium chloride in rats. Toxicology 1977, 7, 11–21. [Google Scholar] [CrossRef]
- Er, K.; Polat, Z.A.; Özan, F.; Taşdemir, T.; Sezer, U.; Siso, Ş.H. Cytotoxicity analysis of strontium ranelate on cultured human periodontal ligament fibroblasts: A preliminary report. J. Formos. Med. Assoc. 2008, 107, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartley, J.C.; Reber, E.F. Toxic effects of stable strontium in young pigs. J. Nutr. 1961, 75, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Seregin, I.V.; Kozhevnikova, A.D. Strontium transport, distribution, and toxic effects on maize seedling growth. Russ. J. Plant Physiol. 2004, 51, 215–221. [Google Scholar] [CrossRef]
- Cohen-Solal, M. Strontium overload and toxicity: Impact on renal osteodystrophy. Nephrol. Dial. Transplant. 2002, 17, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Sasmaz, M.; Sasmaz, A. The accumulation of strontium by native plants grown on Gumuskoy mining soils. J. Geochem. Explor. 2017, 181, 236–242. [Google Scholar] [CrossRef]
- Pasqualetti, S.; Banfi, G.; Mariotti, M. The effects of strontium on skeletal development in zebrafish embryo. J. Trace Elem. Med. Biol. 2013, 27, 375–379. [Google Scholar] [CrossRef]
- Aimaiti, A.; Maimaitiyiming, A.; Boyong, X.; Aji, K.; Li, C.; Cui, L. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res. Ther. 2017, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Arkin, V.H.; Narendrakumar, U.; Madhyastha, H.; Manjubala, I. Characterization and in vitro evaluations of injectable calcium phosphate cement doped with magnesium and strontium. ACS Omega 2021, 6, 2477–2486. [Google Scholar] [CrossRef]
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
HAp | R2 | qm (mg/g) | KL (L/mg) | R2 | n | kf |
0.997 | 93.63 ± 3.25 | 78.19 | 0.993 | 4.53 | 137.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predoi, S.A.; Ciobanu, S.C.; Chifiriuc, M.C.; Motelica-Heino, M.; Predoi, D.; Iconaru, S.L. Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions. Materials 2023, 16, 229. https://doi.org/10.3390/ma16010229
Predoi SA, Ciobanu SC, Chifiriuc MC, Motelica-Heino M, Predoi D, Iconaru SL. Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions. Materials. 2023; 16(1):229. https://doi.org/10.3390/ma16010229
Chicago/Turabian StylePredoi, Silviu Adrian, Steluta Carmen Ciobanu, Mariana Carmen Chifiriuc, Mikael Motelica-Heino, Daniela Predoi, and Simona Liliana Iconaru. 2023. "Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions" Materials 16, no. 1: 229. https://doi.org/10.3390/ma16010229
APA StylePredoi, S. A., Ciobanu, S. C., Chifiriuc, M. C., Motelica-Heino, M., Predoi, D., & Iconaru, S. L. (2023). Hydroxyapatite Nanopowders for Effective Removal of Strontium Ions from Aqueous Solutions. Materials, 16(1), 229. https://doi.org/10.3390/ma16010229