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Abstract: Metal oxide semiconductor gas sensors are widely used to detect toxic and inflammable
gases in industrial production and daily life. The main research hotspot in this field is the synthesis
of gas sensing materials. Previous studies have shown that incorporating two or more metal oxides
to form a heterojunction interface can exhibit superior gas sensing performance in response and
selectivity compared with single phase. This review focuses on mainly the synthesis methods and gas
sensing mechanisms of metal oxide heterostructures. A significant number of heterostructures with
different morphologies and shapes have been fabricated, which exhibit specific sensing performance
toward a specific target gas. Among these synthesis methods, the hydrothermal method is noteworthy
due to the fabrication of diverse structures, such as nanorod-like, nanoflower-like, and hollow sphere
structures with enhanced sensing properties. In addition, it should be noted that the combination of
different synthesis methods is also an efficient way to obtain metal oxide heterostructures with novel
morphologies. Despite advanced methods in the metal oxide semiconductors and nanotechnology
field, there are still some new issues which deserve further investigation, such as long-term chemical
stability of sensing materials, reproducibility of the fabrication process, and selectivity toward homo-
geneous gases. Moreover, the gas sensing mechanism of metal oxide heterostructures is controversial.
It should be clarified so as to further integrate laboratory theory research with practical exploitation.

Keywords: metal oxide semiconductor; sensing materials; heterostructures; synthesis methods; gas
sensing mechanism

1. Introduction

As people pay increasingly more attention to the environmental protection, the detec-
tion of toxic, inflammable, and explosive gases is of vital significance [1–3]. Gas sensors are
devices which are capable of achieving this requirement. Among these, resistive-type gas
sensors based on metal-oxide-semiconductor (MOS) configurations are more attractive and
widely used. The electrical resistance of the MOS gas sensing material is correspondingly
changed with various types and concentrations of gases, which makes it convenient for gas
testing. Sensitivity, selectivity, response and recovery times, and stability are the critical
parameters of gas sensors. Considerable studies have been adopted to improve these gas
sensing parameters by the modification of the nanostructures of the sensing materials,
adding catalyst as well as synthesizing nanocomposites [4]. Because of easy fabrication,
high sensitivity, and stability of MOS sensors under ambient atmosphere compared with
other electronic devices, the correlative research on MOS-based gas sensors has become a
hotspot in this area.

According to the different conductive behaviors, MOSs are classified mainly into two
types, which are referred to as n-type and p-type. SnO2 [5] and ZnO [6] are the most
representative MOS, and they both exhibit n-type oxide conductivity feature. Other n-type
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MOSs such as TiO2 [7], Fe2O3 [8], and In2O3 [9] are also widely studied by researchers
for investigating their gas sensing behaviors. In contrast, p-type MOSs such as NiO, CuO,
Co3O4, and Cr2O3 have received relatively less attention because of their lower response
to target gases compared with n-type MOS. Some scholars such as M. Hübner et al. [10]
suggested that with the identical morphological structures, the response of an n-type MOS-
based gas sensor to target gases is equal to the square of that of a p-type MOS-based gas
sensor. This indicates that the responses of p-type MOS-based sensors should be enhanced
so as to ameliorate their gas sensing properties.

Nevertheless, regardless of whether MOS perform n-type or p-type conductive behav-
ior, there exists the intractable problem of poor selectivity among some reduction gases due
to their cross-sensitivity property, which makes it difficult to simultaneously quantify the
concentration of target gases in the presence of interfering gases [11–13]. More attention
should be paid that most p-type MOS exhibit excellent catalytic performance to promote
selective oxidation of some volatile organic compounds (VOCs) [14,15]. Additionally, by
compounding p-type and n-type MOS materials, p–n heterojunctions are created at the
interface between these materials, whereby the transport behavior of their respective charge
carriers will be changed. The combination of these two or more dissimilar components
allows the integration of their different properties; therefore, it will enhance their compre-
hensive sensing performances and weaken their respective intrinsic sensing defects, so that
the sensing parameters such as selectivity and sensitivity can be significantly improved.

The material structure incorporating two dissimilar components is often referred
to as a heterostructure. The nanomaterials which constitute a heterostructure always
have different Fermi levels. By creating electrical contact at the interface when contacting
dissimilar semiconducting materials, the Fermi levels can equilibrate to the same energy,
which results in a carrier transfer and the formation of a charge depletion layer [11,16].
This is the basic gas sensing enhancement mechanism of these heterostructures and will be
discussed later.

In recent years, there are several review articles which have been published about MOS
nanomaterials applied in the gas sensing field. However, this review article specifically
focuses on the MOS-heterostructured gas sensing materials [17,18]. Many researchers
have found that the selectivity and other sensing parameters of resistive-type MOS gas
sensors can be improved by synthesizing nanocomposites [19–24]. Attracted by the superior
performances of gas sensors with heterostructures, researchers still maintain a high interest
in nanostructured MOS which are used as based blocks to fabricate the heterostructures.
Analyzing the data of the search from the Web of Science since the year 2000 (Figure 1),
it can clearly be seen that the number of published papers on this topic is continually
increasing. In addition, the number of times papers corresponding to heterojunctions or
heterostructures gas sensors are cited is also gradually increasing.
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Figure 1. Records of the number of metal-oxide-heterojunctions-related published papers (a) or
metal-oxide-heterostructures-related published papers (b) and the number of their respective times
cited (c,d) since the year 2000. The search string: TITLE-ABS-KEY (metal and oxide and heterojunc-
tions/heterostructures and gas and sensors) (internet search of Web of Science on 28 June 2019).

2. Gas Sensing Mechanisms of Metal Oxide Semiconductors

Electrons and holes are the main charge carriers of MOS for conductivity. According
to the differences of their relative contents, n-type MOS are materials which carry more
electrons than holes, while the relative content of internal carriers of p-type MOS is the
opposite. When the electronic affinity of gas molecules is greater than the work function
of MOS surface, some oxidizing gases (e.g., O2) are able to capture electrons from the
MOS surface; thus, ionized oxygen anions (i.e., O2

−, O−, and O2−) will form with the
difference of temperature range. Furthermore, if the electronic affinity of gas molecules is
less than the work function of MOS surface, electrons can release to the surface from the gas
molecular, forming cations adsorption, such as reducing gases (CO and H2) substituting
for oxidizing gases absorbed. Therefore, for an n-type MOS, when exposed to an oxidizing
gas, electrons are captured and combined with the gas molecular, thus constructing an
electron depletion layer on the surface of the material to establish electrical core–shell
structure (Figure 2a), which exhibits a high resistance characteristic. When an n-type
MOS is exposed to a reducing gas, adsorbed oxygen ions are able to be oxidized, the
trapped electrons will re-inject into the MOS surface, thereby increasing the charge carrier
concentration and obviously decreasing the sensor resistance. It is widely noted that there
is a certain functional relationship between the response of MOS gas sensor and the gas
concentration [12,25–30]. Thus, it will be helpful for gas quantitative analysis.

In contrast, by adsorbing oxygen, the charge carriers of p-type MOS are mainly
holes which assemble on the surface of MOS to form a hole accumulation layer with
low resistance; in contrast, the MOS performs a high resistance characteristic, which
also establishes the core–shell configuration (Figure 2b). Under this configuration, when
adsorbing reducing gases, the electrons are released to the MOS through the reaction
between the reducing gases and the ionized oxygen anions on the surface of the materials,
which, in turn, decreases the concentration of holes in the shell layer and increases the
material resistance. Table 1 summarizes the converse gas sensing behaviors of n-type and
p-type MOS materials.
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Figure 2. Formation of core–shell structures of charge carriers in (a) n-type and (b) p-type oxide
semiconductors. Reproduced with permission from Ref. [25].

Table 1. Gas sensing behaviors of n-type and p-type materials to reducing and oxidizing gases.

Material Type Dominant Charge Carrier Reducing Gas Oxidizing Gas

n-type electrons (e−) resistance decreases resistance increases

p-type holes (h+) resistance increases resistance decreases

On the basis of the aforementioned MOS gas sensing mechanisms, Yamazoe firstly
proposed the grain-size effect which is illustrated as follows [31]. First, we introduce two
concepts. One is ‘D’ which represents the grain size of the particles; the other is the Debye
length (LD), which is defined as the furthest distance to which a fixed charge can provide a
force to the surrounding charges. Additionally, LD is approximately equal to the thickness
of electron depletion layer or hole accumulation layer. The grain size mainly determines the
response value of sensing materials if the grain size is greater than twice of the Debye length
(D > 2LD), whereas it will bring some influence to the gas response of p-type MOS in which
the conduction mostly occurs along the shell layer. Under this condition, the slight change
of the concentration of holes in the shell layer because of the gain or loss of the electrons
will not bring notable variation of the sensor resistance. This is the main reason why the
response value of p-type semiconductor is lower than that of n-type semiconductor.

3. Heterostructure Classification

Before introducing the heterostructure synthesis methods and elucidating the sensing
mechanisms of different heterostructural materials, it is worth describing the major clas-
sifications of heterostructural compound materials. The combination of these materials
fabricates diverse heterojunctions, such as p–n, n–n, and p–p nanojunctions according
to the semiconducting properties of sensing materials. The sensing mechanisms of these
different heterojunctions will be separately described in the following parts.

The relationship between the structure and distribution state of the constituents can
effectively influence the sensing performance of materials. Thus, it is worth describing
three structure–architecture types of heterostructure by the following nomenclature.

- A dash between the names of two or more constituents such as SnO2-Co3O4 repre-
sents a simple mixture of SnO2 and Co3O4, which are not controlled and randomly
distributed.

- An “@” sign between two or more constituents such as SnO2@CuO represents the base
material SnO2 with a second material CuO adding on it in some ways. For example,
CuO is coated on SnO2 in the ways such as sputtering, dipping, etc.
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- A forward slash between constituents’ names such as ZnO/NiO represents a clear par-
tition or a well-defined interface between these two materials. For example, ZnO/NiO
could represent a bi-layer structure or core–shell ZnO/NiO nanorods.

3.1. Simple Mixed Compound Structures

This synthetic method is an easy way to obtain the mixed compound structure by
mixing the existing oxide powders. B. Lyson-Sypien et al. [32] detected that by mechanical
mixing with different contents (0%, 2%, 10%, 50%, and 80%) of TiO2 and SnO2, the sensing
response to H2 gradually increases with the increase of TiO2 content and reaches the
maximum with 50% TiO2, which is attributed to the presence of most heterojunctions in
this composition. It should be noted that even though the nominal component of two
heterostructural materials is identical, the gas sensing behavior can be quite different.
The dispersion state of heterostructures, which depends on the processing routes, has
a significant influence on the behavior of the sensor material. D. Shaposhnik et al. [33]
studied the gas sensing behavior of TiO2-doped SnO2 by comparing co-precipitation with
mechanical mixing method. The results showed that the optimum composition which
performed the best sensitivity to H2 was 10 mol% TiO2 for co-precipitation and 20 mol%
TiO2 for mechanical mixing.

3.2. Layered Structures

Heterostructures based on bi-layers or multi-layers exhibit well-defined interfaces,
which are suitable for characterizing and modeling because of their simple stacked 2D
structure. Thanks to this structure, it becomes easier to characterize their electronic proper-
ties at the interface. In addition, it is easy to study the thermal stability which includes the
possible growth of mixed phases and the diffusion across the interface [34]. However, these
structures are less popular for some applications due to the lower specific surface area
ratio, which brings less gas-accessibility to the heterojunction interface, thus influencing
the gas sensor response. Dandeneau et al. [35] optimized the porosity and crystallinity
of the top CuO film by changing the pyrolysis temperature through the sol-gel process
of n-ZnO/p-CuO heterojunctions so as to rapidly analyze the gas diffusion rate to the
interface of heterojunctions.

3.3. Structures Decorated with Second-Phase Particles

Another common class of heterostructures is the decoration of the host oxide material
with nanoparticles of a second phase, which includes oxide materials [36–38], metals [39,40]
or carbon-based materials [41,42]. These structures are usually used in photocatalysis [43]
and photovoltaics, of which the secondary particle phases can perform as catalysts or
sensitizers so as to enhance the sensing performance. Moreover, noble metal nanoparticles
such as Au, Ag, Pt, and Pd are also used as the second-phase particles which are added into
host oxides [44–47] and which act as catalysts and activators to increase the dissociation
and reaction rate of gas molecular by reducing the activation energy of the reactions [48].
However, these noble metal nanoparticles can increase the cost and instability issues, such
as catalytic poisoning effect because of the activity decrease and phenomena of coarsening
or clustering at high temperatures [49].

3.4. One-Dimensional Structures

These nanostructures include mainly nanowires, nanorods, and nanofibers, which usu-
ally possess large specific surface areas. The selectivity and gas sensing properties can be sig-
nificantly improved by modifying the secondary-phase material on one-dimensional nanos-
tructures, such as nanowires modified by nanocrystals [50–52], core–shell nanowires [53,54],
core–shell nanotubes [55,56], and composite nanofibers [57–61]. Generally speaking, the
gas sensing enhancement mechanisms attribute mainly to three aspects including one-
dimensional structure model, heterojunction effect, and catalytic effect. One-dimensional
heterostructure usually has a high length–diameter ratio, which means that more surface
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atoms can participate in the gas–solid reaction compared with other heterostructures [62].
The actual effective heterojunction area of these one-dimensional composites varies with
the process types and synthetic methods, which will be introduced later.

3.5. Core–Shell Structures

The last morphology to which we often pay attention is core–shell structures. Among
all types of heterostructures for gas sensing applications, core–shell structures are the
most promising types and will attract future researchers. This morphology can provide a
maximized interfacial area with the help of completely covering the host material with a
secondary phase while minimizing the amount of the material as bulk. Because of their
unique structural features, core–shell structures integrate the properties of both internal
and external materials and also compensate for their respective shortcomings. Scholars
have conducted much research on core–shell structures recently. Wu et al. [63] found
that the zeolitic imidazolate framework-8 (ZIF-8) shell, which is a stable metal–organic
framework (MOF) porous material, had fine grains and was completely coated on the intact
ZnO nanorod core, as shown in Figure 3a. The coating of the ZIF-8 shell was uniform
and continuous, and the interfacial area between ZIF-8 shell and ZnO core was totally
maximized, as shown in Figure 3b,c. It can be seen in Figure 3d–f that the core–shell
structure of ZnO@ZIF-8 was particularly clear and the successful transition of ZnO core
to ZIF-8 shell was found by EDS element scanning. The cross-section image and EDXS
mappings of Figure 3g showed that ZIF-8 shell fully covered the ZnO nanorods, and the
porous ZIF-8 shell could control access of the gas species to the ZnO core so as to improve
the gas selectivity of the sensing materials.
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4. Overview of Synthesis Methods

With the development of the research on metal-oxide-based heterostructures, different
technologies have been employed to fabricate these materials. The preparation of these
heterostructures demands various factors such as structural affection and chemical homo-
geneity, which lead to the rapid development of synthesis methods. This investigation
will introduce some common fabrication techniques, making it possible to develop various
heterostructural nanomaterials by combining different types of MOS materials.

4.1. Sol-Gel Method

The sol-gel method has become one of the most preferable methods for fabricating
MOS-based heterostructures. The compounds with high chemical activity act as precursors,
which are evenly mixed in a liquid environment by adding surface active agent, form-
ing a stable and transparent sol system by internal chemical reactions. The stagnant gel
subsequently forms by slow polymerization. Finally, the nanostructured materials can be
synthesized by drying and sintering methods. Jiang et al. studied the effect of polyethylene
glycol on the microstructures of TiO2 thin films using the sol-gel method [64]. They reported
that porous and fine-grained TiO2 films can form when adding more or with a high molec-
ular weight of polyethylene glycol. They drew the conclusion that the sol-gel method could
control the shape and size of fabrication materials by changing the solution composition
and the synthesized conditions. In this aspect, many research groups synthesized different
shapes of MOS heterostructures. Hernández et al. fabricated heterostructural materials
based on TiO2 nanoparticles and ZnO nanowires by the sol-gel method [65]. Referring
to our previous work, we successfully prepared pristine SnO2 (Figure 4a–d), SnO2-In2O3
heterostructure (Figure 4e–h), and In3+-doped SnO2-In2O3 heterostructure (Figure 4i–l)
via the sol-gel method [66]. The structure morphology of the SnO2-In2O3 nanocomposite
was not affected after In3+ doping modification. The particle size of SnO2 was changed by
doping with In3+, which could improve sensing performance towards CO gas.
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4.2. Hydrothermal–Solvothermal Synthesis Method

Because of the morphology and structure of MOS-based heterostructures that play
an important role in improving their gas sensing properties, many researchers have
been making effort to fabricate heterostructures using novel methods. Among these, the
hydrothermal–solvothermal synthesis method is considered to be a powerful and efficient
route for the fabrication of diverse kinds of heterostructural semiconductor nanomaterials,
which can precisely control the structure and morphology of MOS nanomaterials, achieving
the goals of fabricating a wide spectrum of metal oxide heterojunctions. This method is per-
formed in an autoclave, where the solution concentration, reaction time ,and temperature
can be automatically controlled [67]. Therefore, phases with diverse morphology and prop-
erties are fabricated by controlling the reaction process and crystal growth. Due to allowing
the fabrication of a wide spectrum of metal oxide heterostructures, this method is widely
studied by most researchers. Recently, Liu et al. fabricated a flower-like structure com-
posed of NiO-decorated ZnO nanostructures via a one-step hydrothermal procedure [68]
(Figure 5). In addition, by varying the synthesis temperature and the solution concentra-
tion, a two-step hydrothermal method can construct heterostructures of the same materials
with diverse shapes. Wang et al. studied the effect of hydrothermal temperature on the
morphology of metal oxide heterostructures and successfully synthesized a nanobelt-like
structure of SnO2-TiO2 at relatively high temperatures [69]. Liu et al. controlled the reaction
time and temperature by means of solvothermal method and then obtained NiO/ZnO
hollow spheres materials [70]. The aforementioned introductions illustrate that a precise
control over the hydrothermal synthetic conditions is the key factor for the construction of
high-quality metal oxide heterostructures with diverse shapes.
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nanostructures (reprinted with permission from Ref. [68]).

4.3. Vapor Deposition Method

This method mainly consists of chemical vapor deposition (CVD) or physical vapor
deposition (PVD). CVD technology uses mainly one or several gaseous compounds or
elementary substances containing film elements to produce films by chemical reaction on
the substrate surface. CVD method can be used to purify materials, fabricate new crystals,
as well as deposit monocrystal, polycrystal, glassy inorganic films, etc. The physical
properties of materials can be precisely controlled by the process of vapor deposition.
Additionally, high purity samples with different structure and morphology can be obtained
by CVD method through precise control of vapor deposition process, such as the operating
temperature, the pressure in the reactor, the template material, as well as the composition
of the gas-phase [71]. Recently, by preparing SnO2/ZnO superlattice nanowires, Jiang et al.
found that Au loading is helpful for the adsorption of Zn/Sn vapor and the formation of
SnO2 superlattice on the ZnO lattice surface [72].

Another well-developed technique to synthesize novel heterostructures is PVD. Dif-
ferent catalyst layers could be deposited on the substrates to improve the nucleation of
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oxide materials. The catalyst type, the patterned template, the temperature and pressure
inside the furnace, and the carrier gas composition and its flow affect the morphology of
materials prepared by PVD method [73]. The PVD method is often carried out at high
temperatures in a high-vacuum or inert-gas environment, which obtains low dimensional
metal oxide heterostructures. Choi et al. deposited a thin Au layer on the surface of ZnO
nanofiber stems to promote the growth of SnO2 nanowires by PVD method and successfully
fabricated the ZnO-SnO2 nanofiber–nanowire stem–branch heterostructure [74].

4.4. Electrospinning Method

Electrospinning is a technique which utilizes high voltage electrostatic field force to
fabricate nanofibers. In this way, the polymer and related materials can be prepared into
one-dimensional nanofibers with high specific surface area, controllable composition and
shape, and porous structure after calcination. The working mechanism of this technology
is that the polymer or solution is electrified with the help of a high-voltage electrostatic
field, and the liquid drop at the tip of the nozzle will form a suspended liquid drop (i.e.,
“Taylor cone”) and extend from the tip of the cone to obtain the fiber filament. Meanwhile,
the liquid drops are subject to surface tension and surface charge repulsion force caused by
the electrostatic field. When the surface charge repulsion force is greater than the surface
tension, the micro flow of polymer will be ejected from the solution surface. The liquid flow
is stretched and dragged by electric field force, then the solvent volatilizes and solidifies,
and finally the sample is deposited on the prepared substrate to form polymer fiber [75].
Nanopolymer filaments can be fabricated by electrospinning. Feng et al. [76] prepared
TiO2-SnO2 composite heterojunction materials with core–shell nanofiber structure by the
electrospinning method (Figure 6).
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Figure 6. Field emission scanning electron microscopy (FESEM) images of (a) TiO2-SnO2 core–shell
nanofibers (NFs), (b) SnO2 NFs, and (c) TiO2 core–shell nanofibers, transmission electron microscopy
(TEM) images of (d) TiO2-SnO2 core–shell NFs, (e) SnO2 NFs, and (f) TiO2 core–shell NFs (reprinted
with permission from Ref. [76]).

5. Mechanisms of Gas Sensing Enhancement with Heterostructures
5.1. Working Mechanisms of Gas Sensing Materials

The sensing mechanism of MOS materials consists mainly in the interactions of the
target gas molecules with the pre-absorbed oxygen species on the surface of gas sensing
materials [77,78]. Referring to a resistive-type metal oxide gas sensor, the signal transmis-
sion mechanism is dependent on the change of the electrical resistance or conductance
of sensitive materials when interacting with the analytic gas. The resistance of MOS gas
sensors may increase or decrease on exposure to the gas depending on the type of metal
oxide and gas analyte [79–81]. Different semiconducting materials can form various hetero-
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junctions, which, in turn, integrate their respective conduction properties. Compared with
single gas sensing materials, the construction of heterostructured compound materials can
improve the sensing performance of gas sensors. Therefore, to understand the gas sensing
mechanisms of materials composed of heterojunctions, exploring the junction sensing
behavior is of vital importance.

5.2. Role of Heterojunction at the Interface

Two different solid-state materials can construct an electronic junction at the inter-
face between them, which is always called a heterojunction. The study on heterojunction
interface is significant when analyzing the mechanism of composite semiconducting ma-
terials. The p–n junctions are the most common heterojunctions used to modulate gas
sensing properties.

Referring to the heterostructures gas sensing literature, n-type MOS gas sensors are
more attractive to researchers in comparison with p-type MOS gas sensors because of sev-
eral considerations such as better stability and higher sensitivity [82,83]. The combination
of these two types of sensing materials opens a novel way to better improve the compre-
hensive sensing performance of gas sensors. In addition, these materials can be constructed
into different structure–architecture types of heterostructure [84–87]. For reference, some
sensing materials with their respective conduction types are listed in Table 2.

Table 2. Conduction types of MOS and semiconductors (adapted from Ref. [88]).

Material Type of
Conductivity

Materials
MOS Semiconductors

n SnO2, ZnO, TiO2, Al2O3, In2O3, V2O5, WO3 SiC, g-C3N4, GaN
p CuO, NiO, Co3O4, PdO, Cr2O3, Y2O3

n, p Fe2O3, HgO2 Si, GaAs, InP

Because of the difference in the Fermi energy (EF) between two different sensing
materials—for example, the EF of n-type semiconductor material is always higher than
that of the p-type semiconductor material when forming heterostructure—if they connect
to form a heterostructure, the electrons at the higher energies will flow across the inter-
face to unoccupied lower energies states until EF reach equilibrium, which results in the
recombination between electron and hole in the vicinity of a p–n junction. This decreases
the concentration of charge carriers and leads to the creation of a charge carrier depleted
zone at the interface called the depletion region. This phenomenon is often called “Fermi
level-mediated charge transfer”. Because of the band bending, a potential energy barrier
will develop at the interface, which is caused by the difference in the original EF of the
materials. Therefore, in order to pass through the interface, charge carriers must overcome
this potential energy barrier. According to the aforementioned conduction types of sensing
materials, the mechanisms of p–n, n–n, and p–p heterojunctions on gas sensing will be
discussed in the following sections.

5.2.1. p–n Nanojunctions

Considering a flower-like n-type ZnO decorated with p-type NiO nanoparticles (as
shown in Figure 7) [89], the normal ambient resistance of NiO-decorated ZnO flower-like
heterojunctions in air is higher than that of single pure ZnO microflowers. However, when
acetone is introduced, a large decrease of the resistance (Rg) may occur, resulting in a
large change of gas response for sensing materials; this is because the initial value of Ra is
exceedingly high, as the gas response is defined as Ra/Rg for reducing gas [90]. Therefore,
the response to target gas is obviously increased. The likely reasons can be interpreted as
follows. First, increasing the concentration of initial absorbed oxygen ions helps to improve
the gas sensitivity. NiO generally exhibits better oxygen-adsorption ability. With the help
of the catalytic function of NiO, oxygen ions can be easily absorbed on the surface of NiO,
and Ni2+ can be oxidized to a higher oxidation state (Ni3+), which significantly enhances
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the concentration of surface adsorbed oxygen. Secondly, the conduction of charge carriers
across the heterojunction interface can contribute to the gas sensing performance. Due to
the formation of an energy barrier potential at the interface between n-type ZnO and p-type
NiO, the conduction capability of electrons and holes across the p–n interface will be weak-
ened. When absorbing acetone, the height of energy barrier potential efficiently decreases,
contributing to the conduction of charge carriers and increasing the sensing response.
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Figure 7. (a,b) TEM image and corresponding HRTEM image of a single pure ZnO microflower;
(c,d) TEM image and corresponding HRTEM image of NiO-decorated ZnO to form NiO-ZnO com-
posite microflower; and (e–h) The corresponding EDS elemental mapping images. (Reprinted with
permission from Ref. [89]).

Irina et al. reported the synthesis of p-type CuO nanoparticles decorating SnO2
nanowires, constructing SnO2@CuO nanowires by chemical vapor deposition (CVD) for
enhancing the detection of H2S [91]. Figure 8a,b show the successful synthesis of SnO2
nanowires decorated with CuO nanoparticles. It is also shown in Figure 8c that the
successful formation of CuO-SnO2 heterostructure by STEM and EDS element analysis.
This research has certified that the CuO decorating narrows the conduction channel of
SnO2 when forming CuO-SnO2 heterostructures, increasing the initial resistance of sensors
in air. Quite interestingly, when absorbing H2S, p-type CuO will react with H2S and be
sulfuretted into CuS, destroying the potential energy barrier at the interface. Additionally,
the hydrogen ions will transfer on the surface of the host material, reacting with the
adsorbed oxygen ions and, thus, also decreasing the electrical resistance [92]. These are all
attributed to the strong chemical interaction between H2S and CuO, as shown in Figure 9b.
Irina et al. also performed a gas sensitivity test. It can be seen in Figure 9a that the response
of CuO-SnO2 heterostructure is obviously higher than that of pristine SnO2 nanowires,
certifying the sensing enhancement in heterostructures. The same phenomenon was also
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reported in the form of CuO-ZnO heterostructures for H2S testing. The potential energy
barrier height of heterojunctions was efficiently reduced because of the chemical interaction
between H2S and CuO [93].
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Figure 9. (a) A significant improvement in sensor response to H2S is observed when forming p–n
junctions. (b) Sensing mechanism of CuO sensitivity to H2S is explained. At the interface between
SnO2 and CuO, a depletion zone forms in air. After H2S joins in, p-CuO particles react with it and
transforms to CuS, resulting in decreasing the depletion region. (Reprinted with permission from
Ref. [92]).

It is worth noting that Mashock et al. reported an opposite heterostructure config-
uration of SnO2 nanoparticles coating CuO nanowires [94]. Similarly, an energy barrier
potential forms at the interface between n-type SnO2 and p-type CuO. Since p-type CuO
is dominated by surface conduction because of the accumulation layer formed in air, the
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effect of SnO2 deposition is worth considering. The study results showed that with the
deposition of SnO2 nanoparticles coating, a significant increase in the electrical resistance
occurred when forming CuO-SnO2 heterojunctions. Furthermore, by doubling the deposi-
tion time of SnO2, they could create a continuous coating and a core–shell structure was
successfully constructed. Prolonging the deposition times contributed to bringing an even
higher resistance, which also produced a smaller increase in response to NH3 compared
with the nanowires of shorter deposition time. The authors came up with two possible
mechanisms to explain this phenomenon: (1) NH3 lowers the hole concentration of CuO
nanowire by electron transfer, which increases the resistance; and/or (2) the increase of
electron concentration in SnO2 nanoparticle due to removing absorbed oxygen enhances
the p–n junction. This strong nanojunction is able to block the hole transport and increase
the resistance.

5.2.2. n–n and p–p Nanojunctions

Just like p–n heterojunctions, band bending of energy levels can also appear in n–n
and p–p heterojunctions [95–100]. Among these reports, n–n heterostructures are widely
studied by researchers for gas sensing. Different from a p–n junction with fewer electrons at
the interface due to electron-hole recombination that increases the resistance, electrons are
not exhausted in an n–n junction, and electrons from the material with a high Fermi level
can easily transfer to the one with a low Fermi level, which then forms an accumulation
layer rather than a depletion layer. While this accumulation layer will be depleted by
the subsequent oxygen adsorption on the surface, further increasing the potential energy
barrier at the interface to enhance the sensing performance.

Considering small n-type W18O49 nanowires grown on larger n-type SnO2 nanowires
(Figure 10) [95], the energy conduction band of SnO2 is higher than that of W18O49. When
they reach an equilibrium state with each other, electrons will transfer from the high energy
conduction band of SnO2 to W18O49 until their Fermi energy levels achieve equilibrium,
leading to the band bending at the interface between them. When exposed to the air, oxygen
species can adsorb on the surface of SnO2/W18O49 nano-heterostructures. By capturing
free electrons on the surface of heterostructures, these oxygen species can be ionized into
oxygen ions, leading to the formation of an electron depletion layer, increasing the energy
barrier height at the interface, which improves the H2S sensing performance.
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On the other hand, when referring to p-p heterostructure gas sensors, there are rare
reports in the literature since the year 2000. Quite interestingly, recently in 2017, a paper was
published on highly sensitive NO2 sensors based on NiO@CuO nanocomposite worked
at room temperature [98]. The increased gas sensing property towards the detection of
NO2 may be caused by two factors. Firstly, mesoporous hierarchical flower-like NiO
nanosheet owns a large surface area, which performs as the catalyst and allows NO2 to
adsorb and desorb effectively on the surface of the pores. Secondly, p-type CuO and
p-type NiO are able to form the p–p heterojunction which plays a vital role in improving
the sensing performance (Figure 11a–c). It helps to efficiently transfer the electrons from
NiO to CuO. When the Fermi energy arrives at equilibrium state, the hole accumulation
layer will form at the interface between NiO and CuO. O2 molecules will act as electron
acceptors and capture electrons from the conduction band of the sensing materials by
being absorbed on the surface of the sensing materials in air, which increases the holes
concentration and decreases the resistance of the sensors. If these sensors are exposed to
NO2, the NO2 molecules could interact with the chemisorbed oxygen ions on the surface of
the materials and directly be adsorbed on the surface, which can decrease the resistance
under NO2 atmosphere (Figure 11d). It may provide a novel method to detect NO2 gas at
room temperature by constructing NiO@CuO heterostructure gas sensors.
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5.3. Synergistic Effect

An additional mechanism that should be considered to enhance gas sensing perfor-
mance is synergistic behavior which occurs in the heterostructured composite materials.
These materials synthesize the advantages of each component, which results in a special
synergistic effect between each components to improve the gas sensing performance of
the materials. Generally speaking, it is when two different components of a material
respectively contact with the gas phase and each provides a different purpose which is
complementary to the other [11]. Ivanovskaya et al. found that composite oxide materials
which simultaneously have acidic and alkaline active sites could decompose the organic gas
molecules more completely due to the diverse redox properties of these composite oxide
materials [101]. Costello et al. found that SnO2 could completely oxidize butanol to butyral
and that ZnO had no effect on butanol decomposition while it could easily decompose
butyral; moreover, ZnO-SnO2 composite oxides could synergistically decompose butanol
and performed the highest sensing response [102]. Recently, Kamble et al. proposed that
the synergism of Cr and noble metal Pt-activated SnO2 gas sensors could exhibit enhanced
sensitivity and improved selectivity toward CO gas, which, respectively, synthesize the
advantages of Cr for improving selectivity and Pt for enhancing sensitivity [103].

5.4. Catalyzed Spill-Over Effect

The catalyzed spill-over effect is another important sensing behavior often men-
tioned in the literature [29,104–107]. In general, the target gas molecules firstly react
with one of the heterostructure composite constituents, forming a secondary product
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which remains adsorbed on the surface of the other constituent and directly affects the
sensing properties. This phenomenon often occurs in CuO composite materials for H2S
detection [91,92,108,109]. As aforementioned, with regard to CuO/SnO2 nanojunction
composites, H2S can react with CuO nanoparticles and transform them into CuS. Then
the left-over hydrogen spills over on the surface of the composite material, acting as a
reducing agent and reacting with the other host material, thus decreasing the resistance [91].
Meanwhile, CuO plays a part in improving the sensitivity of host materials to H2S. More-
over, the spill-over effect can improve the sensing response by removing the depletion
layer. Shao et al. [91] discovered that CuO was firstly combined with SnO2 to form a p–n
heterojunction, which increased the resistance in air. However, when H2S was introduced
in this p–n junction, CuO was converted to CuS and this new product acted as a moderate
conductor between CuO and SnO2, When the conversion was completed, an ohmic junction
could form between CuS and SnO2, eliminating the depletion region barrier of CuO/SnO2,
thus favoring the conduction across the interface.

In addition, the spill-over effect applies to noble metals which are used to catalyze
MOS materials. For example, noble metal Pt performs a strong catalytic effect at the surface
of SnO2 [110]. It can catalyze the dissociation of O2 and spill over the oxygen ions which
adsorbed on the surface of SnO2. The main advantage of Pt is to absorb exceptionally large
number of gas molecules and convert them into adsorbed ions, decreasing the activation
energy of MOS needed for reaction, hence reducing the response and recovery time and
lowering the operating temperature [88].

5.5. Response Inversion Effect

The addition of a p-type material to an n-type material can form an n–p composite
oxide material. It should be realized that under certain conditions, the p-type constituent
can counteract the resistance change of the n-type constituent to target gases. Sometimes the
p-type constituent can dominate the sensing properties over a certain range of constitution,
making the composite oxide material present a p-type response. Several studies reported
the n–p or n–p–n response inversion phenomena [111,112]. Kosc et al. [111] studied a
bi-phase TiO2/NiO sputtered film which showed p-type conductivity. When absorbing
a certain concentration of H2, the holes in the NiO layer would be fully compensated by
the added electrons from broken oxygen bonds, resulting in the response type inversion,
then the sensor presented n-type behavior. Additionally, Huang et al. [112] synthesized the
ZnO-modified SnO2 nanorods, which showed a typical n–p–n response inversion to H2.
Furthermore, it is worth noting that the response inversion phenomenon also occurs in p–n
heterostructure nanocomposites when exposed to homogeneous gases by adjusting the
metal oxide ratio. Yin’s research group has overcome the drawback of poor selectivity of
MOS-based gas sensors to homogeneous gases such as CO and H2 [113,114]. As exhibited
in Figure 12, due to the different adsorption tendency of CO and H2 on the surface of
SnO2 and Cr2O3, under the optimal heterojunction composition (Figure 12c), H2 molecules
prefer to adsorb on Cr2O3, causing the reduction of hole accumulation layer (HAL) on
Cr2O3, which is greater than the decrease of electron depletion layer (EDL) on SnO2,
and the increase of electron content is lower than the decrease of hole content. The hole
content variation dominates the conductivity of n-SnO2-p-Cr2O3 heterostructure, while
CO gas prefers to adsorb on SnO2, which brings about the opposite change tendency of
conductivity; thus, sensing behavior under this proportion presents a p-type response and
n-type response toward H2 and CO, respectively, successfully distinguishing these two
homogeneous gases.
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6. Conclusions and Future Outlook

The present work reported here has started to reveal novel and innovative ways to
synthesize MOS heterostructural materials for improving chemical gas sensor performance.
In this paper, a series of works by researchers in this field have been summarized. It is
demonstrated throughout this review that it is possible to utilize different synthesis meth-
ods for preparing metal oxide heterostructures with different morphologies and shapes,
each of them exhibiting a specific sensing performance towards particular target gas.

This literature review summarizes four different techniques which have been widely
adopted for fabricating metal oxide heterostructures, namely core–shell, bi-layer, hollow
spheres, and branched ones. The aforementioned methods have some advantages, such as
the obvious heterostructure interface between different phases, the selective growth on the
substrates, and the fabrication of multi-layered structures or composites. In recent years,
more attention has been paid to the hydrothermal method due to the development of MOS
materials with diverse morphologies and structures, such as nanorod-like, nanoflower-like,
nanobelt-like, or hollow spheres structures by precisely controlling the reaction process. In
addition, it seems that the combination of different fabrication methods is a more efficient
way to acquire metal oxide heterostructures with novel morphologies or dimensions
(core–shell nanostructures, one-dimensional heterostructures, two-dimensional layered
heterostructures, or three-dimensional hierarchical heterostructures).

Furthermore, gas sensing enhancement mechanisms of MOS-based heterostructure
materials have been demonstrated, which will make it useful to fabricate the correspond-
ing heterostructure toward a specific target gas. However, despite novel and advanced
technologies in the MOS field, nanotechnology and these complex configurations are now
facing new challenges and issues, such as long-term stability, reproducibility, gas selectiv-
ity, characterization of the key parameters, establishing the gas sensing mechanism, and
functional integration, which should be overcome in time. Recent works have provided us
with new ideas for fabricating metal oxide heterostructures as gas sensing materials. Going
forward, the synthesis of novel materials and the design of heterostructures will require
further study of the influencing factors and the gas sensing enhancement mechanisms.
Further study on MOS heterostructural semiconductor gas sensors should focus mainly
on (1) novel materials and new heterojunction interfaces, and (2) the mechanisms which
contribute to the gas sensing performance.
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Although the present research focuses mostly on the combination of binary com-
pounds, it should be realized that the interface of heterojunction is not limited to binary
compounds, as there are many other configurations which could be used to prepare hetero-
junctions. In particular, composite materials obtained by the combination of metal oxides
have proved to be extremely interesting for gas sensing applications. In addition, further
research on heterojunction should not be limited to metal oxide, as organic and hybrid
organic/inorganic composite materials also show great potential as gas sensors. Core–shell
structure has much potential due to the maximization of the interfacial heterojunction
area, where the electronic interaction is the most dominant. Self-assembly of 0D, 1D, and
2D structures can form unique morphologies and shapes. At present, it is still necessary
to develop new synthesis methods to self-assemble these types of structures to fabricate
special heterostructures.

Moreover, there are different opinions on the gas sensing mechanism, among which
the most prominent ones are the grain boundary–barrier model, heterojunction structure,
surface synergistic effect, catalyzed spill-over effect, response inversion effect, and sepa-
ration of charge carriers effect. It is possible to design complex structures with the rapid
development of new fabrication techniques. Therefore, it becomes essential to clarify the
gas sensing mechanisms in order to properly select the morphology and heterostructure for
a given application. On the basis of the first principles, the construction of gas adsorption
model of metal oxide heterojunction is expected to clarify the gas sensing mechanism
qualitatively.
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