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Abstract: In this paper, an efficient design of a Ti-modified Al-Si-Mg-Sr casting alloy with simultane-
ously enhanced strength and ductility was achieved by integrating computational thermodynamics,
machine learning, and key experiments within the Bayesian optimization framework. Firstly, a
self-consistent Al-Si-Mg-Sr-Ti quinary thermodynamic database was established by the calculation
of phase diagram method and verified by key experiments. Based on the established thermody-
namic database, a high-throughput Scheil-Gulliver solidification simulation of the A356-0.005Sr
alloy with different Ti contents was carried out to establish the “composition-microstructure” quan-
titative relationship of the alloy. Then, by combining the computational thermodynamic, machine
learning, and experimental data within the Bayesian optimization framework, the relationship
“composition/processing-microstructure-properties” of A356-0.005Sr with different Ti contents was
constructed and validated by the key experiments. Furthermore, the optimum alloy composition of
the Ti-modified A356-0.005Sr casting alloy was designed based on this integration method with the
Bayesian optimization framework and verified by the experiments. It is anticipated that the present
integration method may serve as a general one for the efficient design of casting alloys, especially in
the high-dimensional composition space.

Keywords: casting aluminum alloy; alloy design; CALPHAD; machine learning; Ti modification

1. Introduction

Al-Si-Mg casting alloys are widely used in the automobile and building industries
due to their excellent castability, corrosion resistance, good mechanical properties, and
low density [1]. However, the mechanical properties of Al-Si-Mg casting alloys are still
limited by the negative factors in the as-cast microstructure, including the coarse primary
(Al) and plate-like eutectic (Si). In general, the mechanical properties and performance of
Al-Si-Mg casting alloys can be enhanced by modifying the microstructure (such as grain
refinement, precipitation hardening, solid solution hardening, and so on) through, e.g., the
addition of alloying/micro-alloying elements [2]. For instance, Ti and Sr are two common
alloying elements in Al-Si-Mg casting alloys. It is generally believed that while Sr addition
can modify the morphology of eutectic (Si) from plate-like into finer fibrous [3–5]; Ti
addition can produce Al3Ti as heterogeneous nucleation sites for primary (Al) to realize the
refinement of (Al) grains [6,7]. Additionally, Schumacher et al. [8–10] found that Ti could
form an Al3Ti thin layer on the surface of TiB2 and improve the nucleation efficiency of the
TiB2; StJohn et al. [11–14] found that in aluminum alloys containing TiB2, the grain size
could be effectively reduced with the addition of Ti content, and the grain size was linearly
related to 1/Q (Q is the growth restriction factor) in a certain composition range, but the
element Ti had little effect on the SDAS (secondary dendrite arm spacing) of aluminum
alloys. To achieve the best comprehensive mechanical properties of the Ti/Sr-additional
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Al-Si-Mg casting alloys, it is necessary to obtain the optimal additional amounts of Ti and
Sr. Lipiński [15–17] performed a series of experimental studies on the effect of Sr, Ti, and B
in the form of powder and/or preliminary alloys on the microstructure and mechanical
properties of the Al-9Si-Mg alloy. His results indicated that there was higher strength in the
heat-treated Al-9Si-Mg alloy with preliminary alloy, while the modified elements showed a
significant positive effect on the mechanical properties of the alloy. Meanwhile, the order
of element addition also affected the alloy properties. Samuel et al. [18] experimentally
investigated the effect of Ti addition on the impact toughness of Sr-modified A356.2 alloys
by using an Al–10%Ti master alloy. They found that the alloy reached its highest value
of total absorbed energy after a T6 heat treatment when 0.04% Ti was added. However,
it is challenging to design the optimal amount of additional elements for Al-Si-Mg alloys
by using only the trial-and-error experimental method, which is also time-consuming and
costly. Moreover, it is worth noting that Chen and Fortier [19] point out that when Ti
exceeds 0.1 wt.% in the A356 alloy, problems such as feeding blockage and wormhole
defects appear due to the generation of the TiAlSi phase. According to their computational
thermodynamics (CT) results, Li [20] concluded that good grain refinement and casting
quality can be achieved when the Ti content is lower than ca. 0.15 wt.% in the Al-7Si alloy.
Therefore, the optimal amount of Ti addition in Al-Si-Mg alloys in the low addition range
is more worthy of study.

Under this situation, theoretical approaches can serve as important alternatives. For
the past decades, some theoretical alloy design approaches, such as CT [21–23], phase-field
simulation [24,25], computational kinetics [26,27], first-principles calculation [28,29], and
machine learning (ML) [30,31], have been successfully used to design a variety of alloys.
The CALPHAD (CALculation of PHAse Diagram) technique in the framework of CT can be
used to construct the non-equilibrium solidification diagram [21] for casting alloys based
on the reliable thermodynamic database of the target alloys. With such a solidification
diagram, the relationship between the composition and microstructure (here, only phase
type and phase fraction are considered) can then be established. Moreover, ML, as an
efficient alloy design method, can effectively construct complex relationships between the
desired properties and predict the properties of unexplored alloys based on the established
relationship [31,32]. A recent review by Yi et al. [2] proposed that combining ML and CT
can speed up the accurate design of materials, e.g., casting alloys. Soon later, the same
group of authors successfully applied the combinatorial method to design the optimal
amount (i.e., 0.005 wt.%) of Sr addition in the A356 alloy [5] in an efficient manner. In
order to verify the generality of such a combinatorial method, its applications in more real
examples, e.g., Ti/Sr-modified Al-Si-Mg casting alloys, are needed.

For accurate CALPHAD predictions, a high-quality thermodynamic database is es-
sential. Taking the Ti/Sr-modified Al-Si-Mg casting alloys, for instance, self-consistent
thermodynamic descriptions for the quinary Al-Si-Mg-Sr-Ti system should be established a
priori. However, there is always no ready-made reliable thermodynamic database for the
multicomponent system in the literature, such as the quinary Al-Si-Mg-Sr-Ti system here.

ML is an effective technique for fitting the desired relationships and has been used
with great success in materials design [33]. Very recently, ML was employed to construct
the relationship between the microstructure and mechanical properties based on a small
dataset in our research group [5]. However, the hyperparameters (i.e., the number of
hidden layers), showing to have a large impact on the results, were only obtained by the
trial-and-error method. Meanwhile, the next sampling scheme based on the model relied
on human experience [5]. In order to get rid of the disadvantages, a Bayesian optimization
framework, which combines the two steps of uncertainty assessment and decision-making,
can be used to determine the next sampling scheme [34–36]. In this framework, the trained
ML model is used to predict the values of random points considering the noise, and the
uncertainty of the predicted results can be determined. The average expectation and
uncertainty of the predicted results are then combined with the acquisition function to
obtain the optimal composition of the target alloy. It is expected to avoid the influence of
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the hyperparameter selection on the results and implement the automatic recommendation
of the next sampling, from which an efficient alloy design can be finally achieved.

Consequently, the major objectives of the present work are: (i) to establish the self-
consistent thermodynamic database of the Al-Si-Mg-Sr-Ti system in the Al-rich region and
validate its reliability by using the experimental data from the literature and/or the present
work; (ii) to design the optimal Ti amount in the A356-0.005Sr alloy in the low addition
range (i.e., ≤0.2 wt.% Ti) based on a Bayesian optimization framework integrating CT, ML,
and key experiments and conduct the experimental validation.

2. Computational Methods
2.1. Thermodynamic Modeling

Since only the Al-rich Al-Si-Mg alloys are concerned in this work, the thermodynamic
database of the target Al-Si-Mg-Sr-Ti system can be established by directly extrapolating
from the thermodynamic descriptions of the Al-Si-Mg-Sr and Al-Si-Mg-Ti quaternary
systems, together with key experimental validation. The thermodynamic descriptions
for the Al-Si-Mg-Sr system recently established in our research group [5] were directly
adopted here. While, for the Al-Si-Mg-Ti system, no thermodynamic descriptions have
been reported in the literature. Thus, one needs to obtain the thermodynamic descriptions
of the Al-Si-Mg-Ti system. There are four boundary ternary systems, i.e., Al-Si-Mg, Al-Si-Ti,
Al-Mg-Ti, and Si-Mg-Ti, in the Al-Si-Mg-Ti quaternary system. Considering the fact that
(i) we only focus on the design of Al-rich Al-Si-Mg alloys and (ii) the thermodynamic
descriptions of the Al-Mg-Ti and Si-Mg-Ti ternary systems are lacking in the literature, the
thermodynamic descriptions for the Al-Si-Mg-Ti system were also directly extrapolated
from the boundary ternary Al-Si-Mg and Al-Si-Ti systems. To ensure compatibility with
the adopted thermodynamic descriptions of the Al-Si-Mg-Sr system, the thermodynamic
parameters of the Al-Si-Mg system assessed by Tang [37] were directly utilized in the
Al-Si-Mg-Ti quaternary system. For the Al-Si-Ti system, the thermodynamic parameters
reported by Li [20] were employed in the Al-Si-Mg-Ti quaternary system, except for those in
the binary Al-Si system. That is because the thermodynamic descriptions of the Al-Si due to
Li et al. [20] are inconsistent with those in the Al-Si-Mg system due to Tang et al. [37]. Here,
the thermodynamic parameters of the Al-Si system reported by Tang et al. [37] were adopted
to replace those in the Al-Si-Ti system. The updated thermodynamic descriptions of the
ternary Al-Si-Ti system were verified and presented in Section S1 of the supplementary
material. Figures S1–S3 show the comparison of the vertical section, isothermal section, and
liquid phase surface projection below 900 ◦C calculated from the updated thermodynamic
descriptions of the Al-Si-Ti ternary system with the experimental data from the literature,
respectively. In order to visualize the process of database establishment, the schematic
diagram is shown in Figure S4 in Section S2 of the supplementary material.

Following the general treatments in the development of CALPHAD thermodynamic
databases [38,39], the thermodynamic models for the different phases involved in the
target system should be defined a priori. The Gibbs energies for pure elements, including
Al, Si, Mg, Sr, and Ti, were taken from the SGTE compilation by Dinsdale [40]. The
solution phases, i.e., liquid, fcc, bcc, hcp, and diamond, can be described as substitution
solution models [41,42]. The intermetallic compounds with negligible ternary solubility, i.e.,
Al5Ti2, Al2Ti, and Ti3Si, can be treated as stoichiometric ones. While for the intermetallic
compounds with experimentally observed ternary solubility, the sub-lattice models can be
applied [43]. Taking Al3Ti as an example, it can be modeled as (Ti, Al, Si)0.75(Ti, Al)0.25 [20]
because of the limited solubility of Si. The analytical expressions for the Gibbs energies of
the different phases in the present Al-Si-Mg-Sr-Ti system are presented in Section S2 of the
supplementary material.

2.2. Scheil-Gulliver Solidification Simulations

The Scheil-Gulliver solidification model [44], which can effectively predict the solidi-
fication sequences and solidified microstructures of the alloy, is widely used in different
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alloys [5,21,45,46]. For example, Lu and Zhang [21] and Yi et al. [5] used the Scheil-Gulliver
model to predict the solidification sequence, phase type, and phase fraction of aluminum
alloys. Cheng et al. [46] utilized the Scheil-Gulliver model to predict the solidification
sequences and the solidified microstructures in magnesium alloys. In the Scheil-Gulliver so-
lidification mode [44], two general assumptions are applied, i.e., (i) that a local equilibrium
exists over the solid-liquid interface at the solidification front and (ii) that the diffusion in
the liquid phase is fast enough to reach equilibrium while no diffusion is considered in the
solid phase.

Based on the established thermodynamic database of the quinary Al-Si-Mg-Sr-Ti
system, the influence of element Ti on the solidification sequences and the solidification
microstructures of A356-0.005Sr-xTi (in wt.%) alloys was studied by the Scheil-Gulliver
solidification mode. The process was completed on the high-throughput computing plat-
form (Malac-Distmas) recently developed in our research group [47] coupled with the
commercial software Pandat [48]. The solidification diagram of A356-0.005Sr with different
Ti contents was constructed by integrating the simulation results, from which the quantita-
tive relationship between the composition and solidification microstructure of the alloys
was established.

2.3. Machine Learning Technique

The relation “composition/processing-microstructure-properties” is indispensable
for materials design, as the inference and decision-making can be performed over the
concerned composition space and processing windows towards the desired material prop-
erties. An artificial neural network can approximately approach complex function relations,
which are generally non-linear and reside in the experimental observations, and make
inference feasible once the neural architecture is properly selected and trained. Moreover,
Bayesian optimization enables the screening of the most promising materials with the
desired properties [36,49]. A Bayesian optimization framework is currently postulated to
integrate the artificial neural network. A demonstration of the employed computational
framework in this work is illustrated in Figure 1.
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Figure 1. Machine learning training strategy diagram. Based on the thermodynamic database
and experimental data, ANN I and ANN II artificial neural networks were used to establish the
“composition-microstructure” and “microstructure-properties” relationships of the target alloys.
Based on the Bayesian optimization process, a Gaussian simulation process was performed, and then
the inference and validated results were obtained based on the simulation results. The new trail
should be used in the next iteration.

To begin with, the solidified microstructures for a series of alloys were predicted
through Scheil-Gulliver solidification simulations based on the established thermodynamic
database datasets, and the composition and corresponding solidified microstructures were
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then used as the dataset DS1. Subsequently, some key experiments of A356-0.005Sr-xTi
alloys were performed, and the experimental microstructures and mechanical properties
were measured and used as the dataset DS2. An artificial neural network, namely ANN I,
was employed for reconstructing the relation between the composition and solidified mi-
crostructure based on the DS1 dataset. Another artificial neural network, namely ANN II,
was designed and trained over the dataset obtained from experimental characterization
(hereinafter referred to as DS2), where the quantitative relations among the microstruc-
ture and mechanical properties, including ultimate tensile strength, yield strength, and
elongation, were established.

Furthermore, Bayesian optimization was adopted for unearthing the most appropriate
proposal for a composition of the optimal mechanical properties. A mimicry process was
therefore introduced based on the ANN II model. That is, the routine for making inferences
over random composition settings was carried out with the inferred properties as the
products. Assuming that the confidence level of the experimental observation is δ, the
inferred properties weighted with a random number in [1 − δ, 1 + δ] together with the
composition setting and corresponding microstructure information were merged to form
an augmented dataset. The trained ANN II was further re-trained and updated with the
augmented dataset, and the inference towards the properties over the full composition
range therefore proceeded. The purpose of this step is to obtain the augmented dataset,
and each augmented dataset can be updated for a new ANN II, and the mimic data can
be counted several times to obtain its mean and variance. The above-mentioned routine
would be repeated, i.e., 1000 times, and a set of mimic observations would therefore be
obtained. The statistics over the mimic observed dataset would be subsequently evaluated,
i.e., expectations (mean value) and the corresponding variances (standard deviation).

The expected improvement (EI) [36,50], as the common acquisition function, could be
calculated via

EI(x) =
(
µ(x)− f

(
x+

)
− ξ

)
·Φ(Z) + σ(x) · φ(Z) (1)

with
x+ = argmax f (xi) (2)

Z =
µ(x)− f (x+)− ξ

σ(x)
, (3)

where f (xi) is a function of the composition and the mean value obtained from all sim-
ulation processes. It refers to the surrogate model for the relation between the input x
and output y. In this work, ANN II, which can predict the mechanical properties of the
Ti-modified A356-0.005Sr alloys, was used as the surrogate model. f (x+) is the best me-
chanical property so far under the condition x+. µ(x) and σ(x) are the mean and standard
deviation of the posterior distribution on x from the simulation processes, respectively.
Φ(x) and φ(x) are the cumulative distribution function (CDF) and probability density
function (PDF), respectively. The parameter ξ can be tuned to balance the trade-off between
exploitation (i.e., the first term in Equation (1)) and exploration (i.e., the second term in
Equation (1)).

Finally, the proposal for the most promising composition setting was obtained by
maximizing the EI. The proposed composition should then be validated through practical
experiment measurements. The whole process would be repeated multiple times when the
concerned composition range is large, and the newly acquired data should be merged into
the training dataset.

Artificial neural networks were built based on the PyTorch library [51], and OPTUNA [52]
was employed for the artificial neural network hyperparameter optimization (including
the number of hidden layers and nodes and the activation function). The Dataset DS1 for
the ANN I model was obtained based on thermodynamic calculations using the present
thermodynamic database. The fundamental dataset DS2 for ANN II was acquired through
the key experiments in the present work. Moreover, the confidence level of the experimental
data was assumed as ±5, i.e., δ = 0.05.
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3. Experimental Procedure

High-purity elemental raw materials (purity: 99.99 wt.%) of Al, Si, and Mg were
employed. The elements Sr and Ti were added by master alloys Al-7.5%Sr and Al-5%Ti,
respectively. It should be noted that all the compositions in this paper are expressed as
weight percent unless otherwise stated. Each alloy corresponding to the nominal composi-
tion listed in Table 1 was melted in an electromagnetic inductive furnace under an argon
gas atmosphere. In Table 1, all the experimental samples were divided into three series:
(i) D series (3 samples) for validating the thermodynamic database, (ii) M series (6 sam-
ples) for constructing the experimental dataset of machine learning, and (iii) O series (only
1 sample) for validating the designed optimal composition. The extra 0.05 wt.% Mg was
added considering that Mg is prone to evaporate during melting [21]. After homogenizing
at 720 ◦C for 4 minutes and 750 ◦C for 4 minutes, respectively, the melt was poured into a
cylindrical graphite mold (20 mm in diameter and 100 mm in height) preheated to 100 ◦C.

The chemical composition of each sample was measured by both inductively coupled
plasma (ICP) and chemical analysis (CA) techniques. The plate-type tensile specimens
were prepared by wire-electrode cutting, and all specimens were mechanically ground
and further polished with oxide polishing suspension (OP-S) on an automatic mechanical
polishing machine with a rotation speed of 250 rpm. The microstructures of all the sam-
ples were analyzed by optical microscopy (OM; Lecia-DM4500P, Leica Microsystems CMS
GmbH, Wetzlar, Germany), back-scattered electron (BSE) imaging mode of scanning elec-
tron microscopy (SEM; JXA-8530, JEOL, Tokyo, Japan), and electron probe microanalysis
(EPMA; JXA-8530, JEOL, Tokyo, Japan) techniques. The area fraction of relevant phases
was measured using the Image-Pro Plus 6.0 metallographic analyzer. To reduce manual
error, each specimen was measured in at least four different image views. The differential
scanning calorimetry (DSC; STA 8000, PerkinElmer, Waltham, MA, USA) technique was
utilized to determine the thermal effects of the alloys during heating and cooling in the
temperature range of 400–700 ◦C at a speed of 10 K/min. A universal tensile machine
(America Instron-3369) was used to test the tensile properties with a loading speed of
1 mm/min. Four identical tensile specimens of each alloy were tested at room temperature,
and the mean values were accepted.

Table 1. List of nominal and actual composition of prepared Al-Si-Mg-Sr-Ti alloys in this work.

No. * Nominal Compositions
(wt.%)

Actual Compositions Measured by
ICP and CA (wt.%) **

Al Si Mg Sr Ti

D1 Al-7.0Si-0.45Mg-0.005Sr-0.03Ti Bal. 6.63 0.42 0.0036 0.025
D2 Al-7.0Si-0.45Mg-0.005Sr-0.08Ti Bal. 6.96 0.41 0.0043 0.069
D3 Al-7.0Si-0.45Mg-0.005Sr-0.20Ti Bal. 7.08 0.39 0.0031 0.170
M1 Al-7.0Si-0.45Mg-0.005Sr Bal. 6.52 0.38 0.0041 /
M2 Al-7.0Si-0.45Mg-0.005Sr-0.01Ti Bal. 7.08 0.33 0.0041 0.010
M3 Al-7.0Si-0.45Mg-0.005Sr-0.03Ti Bal. 6.63 0.36 0.0032 0.024
M4 Al-7.0Si-0.45Mg-0.005Sr-0.05Ti Bal. 6.86 0.35 0.0033 0.037
M5 Al-7.0Si-0.45Mg-0.005Sr-0.15Ti Bal. 7.21 0.37 0.0027 0.11
M6 Al-7.0Si-0.45Mg-0.005Sr-0.20Ti Bal. 7.08 0.37 0.0028 0.15
O1 Al-7.0Si-0.45Mg-0.005Sr-0.08Ti Bal. 6.96 0.36 0.0037 0.057

* Alloys of D series for thermodynamic database validation, alloys of M series for machine learning, and alloys
of O series for validation of the optimal composition. ** Elements Sr, Mg, and Ti were measured by ICP, while
element Si was measured by the CA method.

4. Results & Discussion
4.1. Thermodynamic Database of Quinary Al-Si-Mg-Sr-Ti System and Its Validation
4.1.1. Quaternary Al-Si-Mg-Ti System

Since there is no literature report on the quaternary compound in the Al-Si-Mg-Ti
quaternary system, the thermodynamic descriptions of the Al-Si-Mg-Ti quaternary system
were first obtained by directly extrapolating the boundary ternary systems Al-Si-Mg and
Al-Si-Ti [20,37]. The reliability of the thermodynamic descriptions was then verified by
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comparing the model-predicted results based on the thermodynamic descriptions with the
experimental microstructure information available in the literature.

Based on the microstructure images of the Al-Si-Mg-Ti alloy reported in the liter-
ature [7,53,54], the solidified phase fractions were counted by Image-Pro software and
compared with the model-predicted results. The comparison results are shown in Figure 2.
Figure 2a shows the comparison of the α-(Al) phase, while Figure 2b is the comparison of
the Al3Ti phase. It should be noted that the model-predicted phase fraction matches the
measured results exactly along the diagonal dashed line. As can be seen from the figure,
the simulated results are in good agreement with the experimental values for both the Al3Ti
and the α-(Al) phases, indicating that the thermodynamic descriptions of the quaternary
Al-Si-Mg-Ti system obtained in the present work are reliable.
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Figure 2. Comparison between the model-predicted fractions of (a) α-(Al), and (b) Al3Ti phase in
as-casted Al-Si-Mg-Ti alloys and the experimental data from the literature [7,53,54]. In the plots, the
calculated phase fraction is exactly the same as the measured phase fraction along the diagonal line.

4.1.2. Quinary Al-Si-Mg-Sr-Ti System and Key Experimental Validation

Based on the reported Al-Si-Mg-Sr system [5] and the updated Al-Si-Mg-Ti system
in Section 4.1, the thermodynamic database of the quinary Al-Si-Mg-Sr-Ti system was
constructed through direct extrapolation. To justify the reliability of the established thermo-
dynamic database, three key Al-Si-Mg-Sr-Ti alloys (i.e., D1, D2, D3) in the Al-rich corner
were prepared. The nominal composition and the actual composition of the three alloys
are shown in Table 1. The calculated phase transition temperatures and the solidified
microstructure information of the three key alloys based on the established database are
comprehensively compared with the experimentally measured data.

Figure 3 shows the experimental DSC curves of the three alloys. Three peaks were
detected in all three alloys during heating. However, during the cooling process, three
peaks were detected in the D2 and D3 alloys, while only two peaks were detected in the
D1 alloy. That is because (i) the thermal effect of the peak corresponding to Liquid →
(Al) + (Si) + Mg2Si/Liquid→ (Al) + (Si) + Mg2Si + Al2Si2Sr is too low to be detected with
the relatively high cooling rate (i.e., 10 ◦C/min) [55] and (ii) such a peak is quite close to
peak 1b in Figure 3a, and thus, they may overlap with each other under the relatively high
cooling rate (i.e., 10 ◦C/min) [55]. To further analyze the reliability of the thermodynamic
database, the phase transition temperatures of the DSC curves in Figure 3 were extracted
and compared with the calculated results, as shown in Figure 4.
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Figure 4a shows the calculated vertical section of Al-7.0Si-0.4Mg-0.005Sr-xTi based
on the presently established thermodynamic database, compared with the experimental
heating signals of the D1, D2, and D3 alloys. Three endothermic peaks were observed
for each sample during the heating process. For the D1 and D2 alloys, three peaks (from
high temperature to low temperature) correspond to the formation of α-(Al), the binary
eutectic reaction Liquid → (Al) + (Si), and the ternary eutectic reaction Liquid → (Al)
+ (Si) + Al2Si2Sr, respectively. As for the D3 alloy, the first peak and the last peak (cor-
responding to the respective highest and lowest temperatures) may be the formation of
α-Al (Liquid + Al3Ti → (Al)/Liquid → (Al)) and the reaction of Liquid → (Al) + (Si) +
Al2Si2Sr + τ1, respectively. However, only one peak was detected for several reactions
in between. That might be caused by the small temperature interval of those reactions,
resulting in the superposition of the peaks. Figure 4b displays the solidification diagram
of the Al-7.0Si-0.4Mg-0.005Sr-xTi and the comparison with the cooling signal of the DSC
experiment for the D1, D2, and D3 alloys. The three exothermic peaks in D2 and D3 alloys
correspond to the reactions: Liquid→ (Al) (and D3: Liquid + Al3Ti→ (Al)), Liquid→ (Al)
+ (Si), and Liquid→ (Al) + (Si) + Mg2Si, respectively. The two exothermic peaks in the
D1 alloy correspond to the reaction: Liquid→ (Al) and Liquid→ (Al) + (Si), respectively.
Regarding the signal of the formation of the Al3Ti in D3 alloy that was not detected during
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the DSC experiment heating/cooling process, the explanation might be that the amount of
dispersed Al3Ti as heterogeneous nucleation sites of (Al) is low. Based on the present ther-
modynamic calculations, with an additional Ti content of 0.2 wt.% in A356-0.005Sr alloy, the
generated Al3Ti content is approximately 0.28%. Moreover, parts of them dissolve in α-(Al).
Thus, the thermal effect of the formation of Al3Ti should be too low to be detected. What is
more, as can be seen from Figure 4b, there is a systematic difference (ca. ±10 ◦C) between
the experimental data from DSC cooling curves and the model-predicted values. That is
because the nucleation stage is not taken into account in the Scheil-Gulliver solidification
simulation, resulting in a systematic discrepancy between the model predictions and the
experimental results.

To further verify the reliability of the Al-Si-Mg-Sr-Ti quinary thermodynamic database,
the experimental solidification microstructures of the three alloys were analyzed and com-
pared with the calculated results. Figure 5 shows the solidification sequences of the three
A356-0.005Sr key alloys containing different Ti contents and the comparison between the
calculated phase fractions and the experimentally measured results. As shown in Figure 5a,
the blue line is the stage of the liquid phase transforming into α-Al, and the yellow and
green lines are the stages of liquid transformation into eutectic (Al) and Si (marked as
(Al)+(Si)) and liquid transformation into eutectic (Al), eutectic Si, and Mg2Si, respectively.
In the final stage, the residual liquid phase totally transforms into a quaternary eutectic mi-
crostructure consisting of (Al), Si, Mg2Si, and Al2Si2Sr, where Al2Si2Sr only precipitates in
this stage. Additionally, it should be noted that the Al3Ti was not found in the experimental
solidification microstructures in the present work because of the fact that the amount of the
generated Al3Ti phase is quite low and it diffusely distributes as heterogeneous nucleation
sites with relatively small particles. Figure 5b–d shows the comparison between the model-
predicted phase/structure fractions and the experimental measured results for alloys D1,
D2, and D3, respectively. As shown in Figure 5b, the model-predicted fractions of the α-(Al),
(Al)+(Si), Mg2Si, and Al2Si2Sr in alloy D1 are 50.0489 vol.%, 49.6277 vol.%, 0.3179 vol.%,
and 0.0055 vol.%, respectively. These model-predicted values agree very well with the cor-
responding experimental data (51.04 ± 1.5 vol.%, 48.65 ± 1.5 vol.%, 0.31 ± 0.03 vol.%, and
0.004 ± 0.002 vol.%, respectively) because they locate well within the standard deviation
of the experimental data (see the error bars in Figure 5b–d). As shown in Figure 5c,d, the
model-predicted phase/structure fractions in the D2 and D3 alloys also match well with
the experimental results. It is clearly demonstrated that the phase transition temperature
and solidified microstructure information in Figures 4 and 5 validate the reliability of the
thermodynamic database for the Al-Si-Mg-Sr-Ti system.

4.2. Efficient Design of Optimal Ti in A356-0.005Sr Alloys and Experimental Validation
4.2.1. Alloy Design

ML can create complex, hidden relationships for these correlated properties as well as
the final data. Effective applications of ML for materials design may require a large number
of data points and the use of the relevant properties of the material as input. However,
generating high-quality data points is time-consuming and expensive, and finding the
relevant properties of the materials is more important for the effective application of ML.
Fortunately, the CT approach can provide the relevant properties of the materials, such
as the solidified microstructure information. Combining a small amount of expensive
experimental data, ML is used to establish complex relationships between the inputs and
outputs, ultimately providing a relatively reliable prediction for the material. The strategy
diagram combining CT and ML methods for alloy designs is shown in Figure 6 and applied
to the design of optimal Ti content for A356-0.005Sr.
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Figure 6. Flow chart of high-efficiency alloy design by integrating computational thermodynam-
ics, machine learning, and key experiments. The thermodynamic database was validated by key
experiments and can provide feature variables for machine learning through the computation of
the high-throughput platform Malac-Distmas, while the mechanical properties obtained from key
experimental tests provide training data for machine learning. After training by machine learn-
ing, the points that may have the best comprehensive mechanical properties are recommended by
the acquisition function (EI) and validated by key experiments. Finally, combining computational
thermodynamics, machine learning, and key experiments establishes the relationship between the
“composition-process-microstructure-properties” of alloys to achieve efficient alloy design.
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Firstly, the high-throughput simulations of Scheil-Gulliver for a series of A356-0.005Sr
alloys with different Ti contents were performed using the Malac-Distmas coupled with
Pandat software based on the reliable thermodynamic database of the Al-Si-Mg-Sr-Ti
quinary system established in the present work. The fraction for each phase/structure,
which is closely related to the mechanical properties of target alloys, was used as the input
feature variable of the ML model. In A356-0.005Sr-xTi (x = 0–0.2 wt.%) alloys, the α-(Al) and
(Al) + (Si), as the main parts of the solidified microstructures, have the greatest influence on
the alloy properties. As a heterogeneous nucleation site, Al3Ti also has a strong influence
on the alloy properties. Moreover, the variation of the Ti content does not affect the contents
of Mg2Si and Al2Si2Sr, which were not considered feature variables during ML. Therefore,
the phase fractions of α-(Al), eutectic (Al), eutectic Si, and Al3Ti, along with different Ti
contents, were efficiently retrieved due to the high-throughput simulations of the Scheil-
Gulliver solidification, as displayed in Figure 7a. As the Ti content increases over the range
of 0–0.2 wt.%, both fractions of the eutectic (Al) and the eutectic (Si) show a slow decrease,
while that of the primary (Al) shows a faster increase till 0.078 wt.% Ti, followed by a slow
increase. Al3Ti starts to precipitate at a Ti content of 0.078 wt.% and gradually increases
with a further increase in Ti content. Based on the reliable thermodynamic database, the
quantitative relationship of the “composition/processing-microstructure” was established
and further densified by ANN I, which can provide composition information with arbitrary
accuracy for subsequent point recommendations.
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Figure 7. Optimal Ti content design for A356-0.005Sr alloy. (a) Fractions of different phases/structures
(i.e., a-(Al), eutectic (Al), eutectic Si, and Al3Ti) in A356-0.005Sr alloys with different Ti contents
obtained by computational thermodynamic; (b) simulation results of the mechanical properties,
quality index, and the expected improvement of A356-0.005Sr with different Ti content. Solid symbols
represent the experimental data or the quality index corresponding to the experimental data. The
lower part of the figure represents the expected improvement result based on the quality index, with
the recommended point that the Ti content is 0.08 wt.%.

Secondly, several A356-0.005Sr alloys with different Ti contents (0, 0.01, 0.03, 0.05, 0.15,
and 0.20 wt.% Ti), i.e., M1–M6 in Table 1, were prepared, and their measured mechanical
properties served as the training data for ML. At this stage, the inputs and outputs of the
ANN II are the experimental microstructural information and the mechanical properties of
alloys (ultimate tensile strength, 0.2% yield strength, and elongation, hereinafter referred
to as UTS, YS, and EL, respectively), respectively. After that, the ML within a Bayesian
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optimization framework was combined with CT to establish the relationship “composition-
process-microstructure-properties” in alloys. From the established “composition-process-
microstructure-properties” relationship, new data, which take into account the confidence
level δ, were inferred from the simulated random compositions, forming an augmented
dataset and updating ANN II. This process was performed 1000 times in parallel to obtain
the mean value and standard deviation. Based on the simulation results, the recommen-
dation point with the best comprehensive mechanical properties can be obtained by the
maximum EI (as shown in Equation(1)). More detail about machine learning can be found
in Section S3 of the supplementary materials. Figure S5 shows the distribution of the cumu-
lative distribution function (CDF) and probability density function (PDF) with different Ti
contents in A356-0.005Sr in this iteration of Bayesian optimization.

The results of ML are shown in Figure 7b, where the red dashed lines, the yellow
dashed lines, and the green dashed lines indicate the predicted UTS, YS, and EL values,
respectively, while the corresponding solid lines indicate the mean value of all the simulated
processes, respectively. Obviously, the simulated mechanical properties constitute the
region of the possible range of mechanical properties of the alloy, i.e., the uncertainty of
the predicted mechanical properties. The experimental data were also appended to the
figure as the solid symbol. To represent the comprehensive mechanical properties of the
alloy more intuitively, the quality index, QDJR = UTS + 150·log(EL) [56], was employed in
the present work. The relationship between the quality index and Ti content is given in
Figure 7b. In the figure, the orange dashed lines are the ML simulation results, while the
black solid line is the average value of the quality index. The quality indices corresponding
to the experimental values are represented by solid circles. Finally, the EI of the quality
index in the A356-0.005Sr alloy with different Ti contents was calculated and denoted by
the blue solid line in Figure 7b. Here, the inputs to the EI are the variance and mean of
the uncertainty QDJR. As can be clearly seen in Figure 7b, the A356-0.005Sr alloy may
exhibit the best mechanical properties at the Ti content of 0.08 wt.%, which represents the
recommended optimal alloy composition.

4.2.2. Experimental Validation

In order to verify the optimal Ti content in the alloy A356-0.005Sr recommended by the
maximum EI, the alloy A356-0.005Sr-0.08Ti (Al-7.0Si-0.4Mg-0.005Sr-0.08Ti, in wt.%), i.e., O1
in Table 1, was prepared, and its solidified microstructure and mechanical properties were
measured. The solidified microstructures of A356-0.005Sr alloys with different Ti contents
(including 0.08 wt.%) used for ML in this work are shown in Figures 8 and 9. As indicated
in the figures, the solidified microstructures of all the samples consisted of primary α-(Al),
eutectic (Al)+(Si), Mg2Si, and Al2Si2Sr, showing no obvious difference in the types of
phases/structures. All eutectic (Si) particles have a fine fibrous morphology due to the
addition of Sr, which is consistent with the fact previously reported by Yi et al. [5]. As stated
in the previous section, the phase of Al3Ti was not detected here either. Some information
on microstructure has been included as a statistic in Section S4 of the supplementary
material. As shown in Figure S6a of the supplementary material, the average grain size of
α-(Al) decreases with the addition of Ti. Figure S6c shows the size distribution of α-(Al). At
a Ti content of approximately 0.08 wt.% for the A356-0.005Sr alloy, the alloy size distribution
is more concentrated in small sizes. It is consistent with the average grain size of α-(Al)
and the mechanical properties of the alloy. A more detailed analysis of the microstructure
can be seen in Section S4 of the supplementary material.
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Ti; (c) 0.05 wt.% Ti; (d) 0.08 wt.% Ti; (e) 0.15 wt.% Ti; (f) 0.20 wt.% Ti. Figure 8. OM images of A356-0.005Sr alloys with different Ti contents: (a) 0.01 wt.% Ti; (b) 0.03 wt.%

Ti; (c) 0.05 wt.% Ti; (d) 0.08 wt.% Ti; (e) 0.15 wt.% Ti; (f) 0.20 wt.% Ti.

The measured mechanical properties of the A356-0.005Sr-0.08Ti alloy are displayed in
Figure 10a, i.e, that the ultimate tensile strength (UTS), 0.2% yield strength (YS), and elon-
gation (EL) are 199.6 MPa, 101.6 MPa, and 12.3%, respectively. Obviously, the experimental
values agree well with the predicted ones. At the designed composition, both UTS and EL
reached the highest values, while the YS also kept a relatively high value. Figure 10b shows
the validation results in terms of the quality index. Again, the experimental quality index
of the A356-0.005Sr-0.08Ti alloy represented the highest value, and also fits well with the
predicted data. To further prove the reliability of the optimal additional Ti content in the
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A356-0.005 Sr alloy designed in this work, the experimental data of the A356-0.005Sr-0.08Ti
alloy were fed back to the dataset for the next iteration of the Bayesian optimization. The
relevant proofs are presented in Section S5 of the supplementary material. Figure S7 shows
the distribution of the cumulative distribution function (CDF) and probability density
function (PDF) with different Ti content in A356-0.005Sr in the second iteration of Bayesian
optimization. Figure S8 shows machine learning results after adding the new experimental
data in the A356-0.005Sr alloy with different Ti contents. The results of the updated ML
indicate that the next recommendation is almost identical to the optimal result. It indi-
cates that the Bayesian optimization trend stabilizes. From the above analysis, it can be
concluded that the alloy design results based on the Bayesian optimization framework
are reliable.
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Figure 10. Experimental verification results of predicted optimal Ti content in A356-0.005Sr al-
loy. (a) Experimental results of mechanical properties with predicted optimal Ti content in A356-
0.005Sr alloy (i.e., 0.08%, the corresponding results are represented as UTS-Val, YS-Val, and EL-Val).
(b) Experimental validation results expressed as a quality index, where the quality index for optimal
Ti content is represented as Q-Val.

This work established the relationship between the Ti contents and the microstructures
of the A356-0.005Sr alloy using phase diagrams and high-throughput calculations based
on the CALPHAD technique; the relationship between microstructure and properties was
established by machine learning. The optimal Ti content of 0.08 wt.% in the A356-0.005Sr
alloy was finally designed, which is consistent with the fact that the common Ti content in
industrial production is below 0.15 wt.% and the optimal composition of Ti in the Al-7Si
alloy should be a low content as reported by Chen [19] and Li [20]. This reinforces the rea-
sonableness of the present work. Moreover, for the composition design of high-dimensional
alloys, the conventional trial-and-error method may cause expensive experimental costs,
while the combination of CALPHAD and Bayesian optimization can provide the potential
to design high-dimensional composition alloys at low costs.

5. Conclusions

• All boundaries binary/ternary systems were first unified, and the thermodynamic
databases of Al-Si-Mg-Ti and Al-Si-Mg-Sr-Ti systems were then directly extrapolated
from the boundaries. Their reliability was validated by the experimental data from the
literature and the present work.

• Combining CT, key experiments, and ML within the Bayesian optimization framework,
the quantitative relationship “composition/processing-microstructure-properties” of
A356-0.005Sr with different Ti contents was constructed. Based on the evaluated
acquisition function EI values, the A356-0.005Sr alloy with an additional 0.08 wt.% Ti
was designed to own the best performance point (UTS = 199.6 MPa, YS = 101.6 MPa,
and EL = 12.3%) and was finally experimentally validated.

• The successful design of Ti-modified A356-Sr alloys indicated that combining ML,
CT, and key experiments within the Bayesian optimization framework is one of the
most efficient alloy design methods when there is a small experimental dataset. Mean-
while, with the acquisition function EI, the optimal alloy composition with the best
comprehensive properties can be directly recommended, resulting in the avoidance
of blindly conducting expensive experiments and human involvement in the next
iteration. This can greatly reduce the difficulty of sampling in the complex composition
space. Therefore, the presently proposed integration method is anticipated to serve as
a general one for alloy design, especially the design of alloys with high-dimensional
composition space.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16010306/s1, Figure S1: The Al-Si-Ti isothermal sections
calculated by the latest database compared with experimental data [20] at different temperatures.
(a) 550 ◦C, (b) 650 ◦C, (c) 727 ◦C; Figure S2: The Al-Si-Ti vertical sections were calculated by the
latest database, and the experimental data came from Chen [19] and Dezellus [57] respectively.
(a) Al-9.0 at. % Si, (b) Al-13.0 at. % Si, (c) Al-18 at. % Si; Figure S3: The liquidus projection of Al-Si-Ti.
The experimental data were obtained from Dezellus [57] and Peronnet [58] respectively. The diamond
and triangle symbols represent the liquid compositions in equilibrium with Al3Ti and τ1 (τ2), respec-
tively. Red and green symbols represent the measured and interpolated or extrapolated compositions,
respectively [19]; Figure S4: Schematic diagram of the process of establishing the thermodynamic
database of Al-Si-Mg-Sr-Ti quinary system; Figure S5: Distribution of the cumulative distribution
function (CDF) (a) and probability density function (PDF) (b) with x. The x is equal to the Ti content
in A356-0.005Sr; Figure S6: Analysis of strengthening and toughing mechanisms by experiments
and computational thermodynamic. (a) the average grain size of α-(Al) in A356-0.005Sr-xTi alloys;
(b) calculated growth restriction factor Qtrue with different Ti content for A356-0.005Sr, (c) the size
distribution of α-(Al) in A356 alloys with different Ti additional contents; Figure S7: Distribution
of the cumulative distribution function (CDF) (a) and probability density function (PDF) (b) with
x. The x is equal to the Ti content in A356-0.005Sr in the second iteration of Bayesian optimization;
Figure S8: Machine learning results after adding the new experimental data in the A356-0.005Sr
alloy with different Ti contents. (a) Simulation results of mechanical properties after adding the
experimental values of the recommended point by EI, the solid symbols represent the experimental
data (including the recommended point), (b) Quality index, and expected improvement value of
A356-0.005Sr with different Ti content computed from the simulation results and experimental data,
the black dotted line represents next recommended value by EI. References [59–72] are cited in the
supplementary materials.
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