Study on Shear Creep Characteristics of the Discontinuities with Different 3D Morphologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Test Equipment and Procedures
3. Shear Creep Characteristics of Rock Discontinuities
3.1. Creep Deformation of Different 3D Morphological Discontinuities
3.2. Creep Rate of Different 3D Morphological Discontinuities
4. Long-Term Strength of Rock Discontinuities
5. Non-Linear Burgers Model Based on Damage Mechanics
6. Conclusions
- (1)
- For the same normal stress, the 3D morphological features of discontinuities have a great influence on the shear creep characteristics. As the 3D morphological parameter increases, the duration of failure decreases and the damage is more intense. The creep deformation and creep rate decreased with increasing .
- (2)
- The long-term strength range of discontinuities determined by transient creep method and the long-term strength value further determined by inflection point method are in good agreement. The long-term strength increases linearly with the increase of .
- (3)
- Based on the non-linear Burgers model, a damage variable of discontinuities is employed, and an improved model considering damage mechanics is further proposed. This model can describe the accelerated creep characteristics of discontinuities and fits well with the experimental data under each stress level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulchrone, K.F.; Mukherjee, S. Shear senses and viscous dissipation of layered ductile simple shear zones. Pure Appl. Geophys. 2015, 172, 2635–2642. [Google Scholar] [CrossRef]
- Ye, G.L.; Nishimura, T.; Zhang, F. Experimental study on shear and creep behaviour of green tuff at high temperatures. Int. J. Rock Mech. Min. Sci. 2015, 79, 19–28. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, L.; Shen, M.; Zhang, F.; Zhang, G.; Wang, X. Shear stress relaxation behavior of rock discontinuities with different joint roughness coefficient and stress histories. J. Struct. Geol. 2019, 126, 272–285. [Google Scholar] [CrossRef]
- Griggs, D. Creep of rocks. J. Geol. 1939, 47, 225–251. [Google Scholar] [CrossRef]
- Curran, J.H.; Crawford, A.M. A comparative study of creep in rock and its discontinuities. In The 21st US Symposium on Rock Mechanics (USRMS); OnePetro: Richardson, TX, USA, 1980. [Google Scholar]
- Okubo, S.; Nishimatsu, Y.; Fukui, K. Complete creep curves under uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 77–82. [Google Scholar] [CrossRef]
- Fabre, G.; Pellet, F. Creep and time-dependent damage in argillaceous rocks. Int. J. Rock Mech. Min. Sci. 2006, 43, 950–960. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, M.; Zhi, W. Investigation of mechanical behavior of a rock plane using rheological tests. J. Mater. Civ. Eng. 2011, 23, 1220–1226. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, M.; Ding, W. The shear creep characteristics of a green schist weak structural marble surface. Mech. Adv. Mater. Struct. 2015, 22, 697–704. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, L.; Zhang, Q.; Yue, S.; Zhang, G. Creep characteristics and prediction of creep failure of rock discontinuities under shearing conditions. Int. J. Earth Sci. 2020, 109, 945–958. [Google Scholar] [CrossRef]
- Drescher, K.; Handley, M. Aspects of time-dependent deformation in hard rock at great depth. J. S. Afr. Inst. Min. Metall. 2003, 103, 325–335. [Google Scholar]
- Wang, Z.; Shen, M.; Ding, W.; Jang, B.; Zhang, Q. Time-dependent behavior of rough discontinuities under shearing conditions. J. Geophys. Eng. 2018, 15, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Asanov, V.A.; Pan’kov, I.L. Deformation of salt rock joints in time. J. Min. Sci. 2004, 40, 355–359. [Google Scholar] [CrossRef]
- Xia, C.C.; Tang, Z.C.; Xiao, W.M.; Song, Y.L. New peak shear strength criterion of rock joints based on quantified surface description. Rock Mech. Rock Eng. 2014, 47, 387–400. [Google Scholar] [CrossRef]
- Zhang, G.; Karakus, M.; Tang, H.; Ge, Y.; Zhang, L. A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses. Int. J. Rock Mech. Min. Sci. 2014, 72, 191–198. [Google Scholar] [CrossRef]
- Fan, W.; Cao, P. A new 3D JRC calculation method of rock joint based on laboratory-scale morphology testing and its application in shear strength analysis. Bull. Eng. Geol. Environ. 2020, 79, 345–354. [Google Scholar] [CrossRef]
- Babanouri, N.; Asadizadeh, M.; Hasan-Alizade, Z. Modeling shear behavior of rock joints: A focus on interaction of influencing parameters. Int. J. Rock Mech. Min. Sci. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Rock Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Shen, M.R.; Jang, B.A.; Ding, W.Q. Creep behavior of rocks with rough surfaces. J. Mater. Civ. Eng. 2016, 28, 04016063. [Google Scholar] [CrossRef]
- Homand, F.; Belem, T.; Souley, M. Friction and degradation of rock joint surfaces under shear loads. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 973–999. [Google Scholar] [CrossRef]
- Grasselli, G.; Wirth, J.; Egger, P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int. J. Rock Mech. Min. Sci. 2002, 39, 789–800. [Google Scholar] [CrossRef]
- Xia, C.C.; Xiao, W.; Wang, W.; Ding, Z. Calculation method for three-dimensional composite topography of joint under different contact conditions. Chin. J. Rock Mech. Eng. 2010, 29, 2203–2210. [Google Scholar]
- Zhang, Q.; Luo, Z.; Jang, B.A.; Wang, Q.; Zhong, Z.; Jiang, H. A Study of Instantaneous Shear Mechanical Properties on the Discontinuity of Rock Mass Based on 3D Morphological Properties. Geofluids 2021, 2021, 5549223. [Google Scholar] [CrossRef]
- Tse, R.; Cruden, D.M. Estimating joint roughness coefficients. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 303–307. [Google Scholar] [CrossRef]
- Yu, X.; Vayssade, B. Joint profiles and their roughness parameters. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 333–336. [Google Scholar] [CrossRef]
- Shen, M.; Chen, H. Testing study of long-term strength characteristics of red sandstone. Rock Soil Mech. 2011, 32, 3301–3305. [Google Scholar]
- Damjanac, B.; Fairhurst, C. Evidence for a long-term strength threshold in crystalline rock. Rock Mech. Rock Eng. 2010, 43, 513–531. [Google Scholar] [CrossRef]
- Liu, X. Rheology of Rocks; Geological Publishing House: Beijing, China, 1994; pp. 194–207. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
Sample No. | (MPa) | (MPa) | |
---|---|---|---|
p-c-1 | 0.242 | 5 | 2.16, 2.59, 3.03, 3.46, 3.89, 4.32, 4.76, 5.19 |
p-c-2 | 0.259 | 5 | 2.16, 2.59, 3.03, 3.46, 3.89, 4.32, 4.76, 5.19, 5.61 |
p-c-3 | 0.303 | 5 | 2.16, 2.59, 3.03, 3.46, 3.89, 4.32, 4.76, 5.19 |
Sample No. | Morphological Parameter | Transient Creep Method/MPa | Inflection Point Method/MPa |
---|---|---|---|
p-c-1 | 0.243 | 3.03~3.46 | 3.12 |
p-c-2 | 0.259 | 3.03~3.46 | 3.4 |
p-c-3 | 0.303 | 3.46~3.89 | 3.69 |
Sample No. | τ/MPa | G1/(MPa/mm) | G2/(MPa/mm) | b | /(MPa·h) | /(MPa·h) | n | R |
---|---|---|---|---|---|---|---|---|
p-c-1 | 2.16 | 24.443 | 203.276 | 0.00232 | 6.474 | −140.811 | −0.291 | 0.885 |
2.59 | 23.552 | 3.832 | 0.00027 | 0.060 | −3.874 | −0.001 | 0.942 | |
3.03 | 19.705 | 3.005 | −0.36330 | 819.631 | −3.3110 | −7.575 | 0.974 | |
3.46 | 20.410 | 1.976 | 0.00011 | 0.047 | −2.039 | −0.002 | 0.979 | |
3.89 | 15.894 | 1.420 | 0.00006 | 0.038 | −1.460 | −0.002 | 0.991 | |
4.32 | 4.350 | 1.189 | −9.05921 | 4.188 | −6.954 | −0.077 | 0.985 | |
4.76 | 49.553 | 0.612 | −0.00040 | 0.019 | −0.661 | −0.005 | 0.993 | |
5.19 | 8.222 | 0.418 | −1.68975 | 4.450 | 6.36 | 11.744 | 0.987 | |
p-c-2 | 2.16 | 5.393 | 106.157 | −2.49633 | 3.294 | −1478.965 | −1.349 | 0.896 |
2.59 | 65.231 | 1.050 | −20.08536 | 21.215 | 7.136 | 0.006 | 0.963 | |
3.03 | 47.233 | 1.016 | −15.49373 | 22.152 | 8.585 | 0.009 | 0.961 | |
3.46 | 58.000 | 0.925 | −11.48285 | 33.941 | 9.211 | 0.007 | 0.963 | |
3.89 | 48.541 | 0.904 | 0.00003 | 0.014 | −0.992 | −0.001 | 0.991 | |
4.32 | 44.475 | 0.745 | −0.38736 | −609.753 | 10.990 | 0.020 | 0.974 | |
4.76 | 50.612 | 0.804 | 0.00009 | 0.015 | −0.864 | −0.001 | 0.996 | |
5.19 | 36.964 | 0.741 | −0.46771 | −353.883 | 12.261 | 0.043 | 0.991 | |
p-c-3 | 2.16 | 7.742 | 216.871 | −1.16286 | 9.658 | −167.460 | −0.249 | 0.872 |
2.59 | 45.544 | 1.478 | 0.00009 | 0.017 | −1.700 | 0.000 | 0.989 | |
3.03 | 46.956 | 1.444 | 0.00014 | 0.020 | −1.627 | 0.000 | 0.985 | |
3.46 | 48.637 | 1.256 | 0.00014 | 0.019 | −1.379 | 0.000 | 0.991 | |
3.89 | 57.757 | 1.235 | 0.00014 | 0.021 | −1.349 | 0.000 | 0.997 | |
4.32 | 53.657 | 1.079 | 0.00008 | 0.019 | −1.157 | −0.001 | 0.996 | |
4.76 | 59.646 | 1.029 | −0.00534 | 5340.550 | 15.986 | 0.012 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Luo, Z.; Chen, Y.; Wang, Z. Study on Shear Creep Characteristics of the Discontinuities with Different 3D Morphologies. Materials 2023, 16, 405. https://doi.org/10.3390/ma16010405
Zhang Q, Luo Z, Chen Y, Wang Z. Study on Shear Creep Characteristics of the Discontinuities with Different 3D Morphologies. Materials. 2023; 16(1):405. https://doi.org/10.3390/ma16010405
Chicago/Turabian StyleZhang, Qingzhao, Zejun Luo, Ying Chen, and Zhen Wang. 2023. "Study on Shear Creep Characteristics of the Discontinuities with Different 3D Morphologies" Materials 16, no. 1: 405. https://doi.org/10.3390/ma16010405
APA StyleZhang, Q., Luo, Z., Chen, Y., & Wang, Z. (2023). Study on Shear Creep Characteristics of the Discontinuities with Different 3D Morphologies. Materials, 16(1), 405. https://doi.org/10.3390/ma16010405