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Abstract: The influence of the method of applying the activating additive ammonium chloride and
its concentration on the density and microstructure of zinc oxide ceramic obtained by cold sintering
at 244 ◦C was investigated. The activating agent was applied by two methods: impregnation and
subsequent autoclave treatment. When the powder was activated by the impregnation method, the
crystal sizes remained at the initial level of 0.17–0.19 µm. After the autoclave treatment, the crystal
sizes increased to 0.31–0.53 µm. Samples of cold sintering ZnO with relative density up to 0.96 and
average grain sizes 0.29–0.86 µm were obtained. ZnO powders and ceramic samples were analyzed
using SEM, TGA/DSC, and XRD to reveal the effect of the powder activation method and cold
sintering conditions on the material microstructure. The effect of ammonium chloride concentration
on grain growth and microstructure of ceramic samples is shown. It was found that the average grain
size of ceramic samples with an increase in additive concentration passes through a minimum. In
cold sintering of the autoclave activated powder, the effect of reducing the average grain size was
observed. The results of this work are discussed on the basis of the idea of the solid-phase mobility of
the crystal structure arising when interacting with an aqueous medium.

Keywords: oxide ceramics; zinc oxide; cold sintering; thermo-vapor treatment; microstructure

1. Introduction

Cold sintering (CS) is a well-known and an actively discussed low-temperature process
for the consolidation of ceramics [1,2] and ceramic composites [3–5]. Despite its relative
novelty and predominantly laboratory level of development [6], CS attracts significant
research attention due to the great environmental and economic benefits of adoption
in industry [7,8]. Recently, significant progress has been made in understanding the
mechanisms of the process [9], some approaches to the implementation of CS have been
scientifically substantiated [10], and basic intervals for varying process modes have been
established for the most studied materials, such as ZnO, BaTiO3, and CeO2 [11].

However, despite the advances made, there are still many unknown aspects and
unresolved research challenges in CS. Among the main ones, there is the choice of the
type and concentration of the activating additive. A common approach is to choose
them on the basis of solubility of the ceramic material in liquid media. Distilled or
deionized water in an amount of 4–25 wt% is used if the material is soluble in water,
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such as NaCl [12], NaNO2 [13], Li2MoO4, and K2Mo2O7 [3]. If the sintered material
is insoluble in water, aqueous solutions of acids or alkalis are usually used, for exam-
ple, Ba(OH)2 for BaTiO3 [14]; 5–35 wt% NaOH 1–5 M for SiO2 [15], Zeolite [16] and
Na3.4Sc0.4Zr1.6Si2PO12 [17]; and 1.6–60 wt% AcOH 1–17.5 M for ZnO [18–20], TiO2 [21],
SnO [22], and Na3.4Sc0.4Zr1.6Si2PO12 [17]. Even for the most studied ZnO material, there is
no clear understanding of the principle of selecting the type and concentration of an acti-
vating additive [11,23,24]. In addition, the issues of controlling the change in the quantity
and state of the liquid/gaseous medium in the CS process remain unresolved [19,25]. In
addition to the above, it remains unclear how liquid activating additives can be used. Little
research has been published on this topic, and they were carried out with ZnO and mostly
one additive: zinc acetate (Zn (CH3COO)2·2H2O) [26,27].

The decrease in temperature under the conditions of CS of oxides in most works [1,2]
is explained by the role of liquid as a transport phase in the so-called “dissolution–
precipitation” mechanism. In pressure dissolution theory, CS is believed to involve se-
quential dissolution steps at stressed grain contact points, then diffusion transfers along
grain boundaries to open pore surfaces, and then deposition on the grains surface in the
pore region. It is important that all this occurs under the action of chemical potential
gradients aimed at minimizing excess surface energy of particles during compaction [28].
In the number of works [26,27,29,30], an alternative cold sintering mechanism has been
proposed, according to which mass transfer and powder compaction occur due to the ap-
pearance of super pre-phase mobility of the crystal structure of oxides when interacting with
an aqueous medium. The main ideas about solid-phase mobility developed during
studying the influence of activating additives on mass transfer and the formation of fine
crystalline powders during autoclave treatment of hydroxides or amorphous oxides in
an aqueous medium at temperatures of 100–400 ◦C [31,32]. In the CS process, the pow-
der also interacts with the aqueous medium, but to the fullest extent, the powder is
pressed/compressed by mechanical force. The proximity of the conditions for interaction
of the oxide with the aqueous medium during cold sintering and autoclave processing
made it possible to consider the processes taking place from the standpoint of ideas about
the low-temperature solid-phase mobility of the crystalline structure of oxides [29,30]. In
the autoclave treatment of powders, two approaches are used: the first is the heating of the
oxide powder in the activator solution; the second, one activator is preliminarily applied
on powder by the impregnation method, and powder is worked on in the medium of water
vapor or fluid [33]. These approaches were used in cold sintering of ZnO in a spark plasma
sintering unit (SPS) with injection into a mold with a powder of 1.6 wt% of an aqueous
solution of an activator or deionized water into a powder with a pre-applied activator [26].
It has been found that by rapidly heating the mold of the SPS unit, pre-application of the
zinc acetate activating agent by impregnation provides sintered samples at 250 ◦C with
a higher relative density than other methods of introducing the activator into the powder.

The present work continues the CS process study using the pre-addition of an ammo-
nium chloride (NH4Cl) activator additive to the ZnO powder. Since there are currently no
data on the effect of the NH4Cl additive method, two methods for bringing the activating
additive have been selected in the present work: impregnation and thermal-vapor treat-
ment, which result in different states of the ZnO powder [26]. The first studies showed
a significant influence of these methods on the CS process using zinc acetate as an example.
When the additive is applied by the impregnation method, its activating effect at CS can
be explained within both mentioned mechanisms (i.e., “dissolution–precipitation” and
solid-phase mobility). TVT leads to a change in the mass between crystals, a change in
the dispersion of the powder, and the decomposition of the activating additive [31]. In
this case, it is difficult to explain the dissolution–precipitation mechanism of compaction
in CS of ZnO powder with zinc acetate subjected to TVT [26,27]. It is assumed that after
decomposition of the additive during TVT, activation of the mobile state of the crystal
structure is maintained. Due to this, the changed state of the crystals (solid-phase mobility)
ensures CS of the powder without the additional use of an activator.
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Based on studies of recrystallization of ZnO under TVT (100 ◦C < T < 450 ◦C), it was
found that the addition of 0.3% to 3% by weight of NH4Cl leads to a pronounced growth of
ZnO crystals and a change in their shape [31]. In the previous CS work, it has been shown
that activation of the process by adding NH4Cl results in the formation of ceramics with
a relative density greater than 0.9 and an average grain size of about half that of using
acetate media in identical CS modes [29,30].

The purpose of the present work is to compare the CS activation of ZnO powder in
two methods of pre-application of the NH4Cl additive: impregnation and TVT. The study
is based on the idea of the influence of the components of the aqueous salt solution on
the processes of mass transfer/redistribution between crystals of dispersed powder in the
medium of water vapor or low-density aqueous fluid in the region of near and supercritical
temperatures. The CS study is based on the idea that the formation of dense ceramics
under these conditions is due to the influence of mechanical pressure on the mass transfer
processes in the medium of water vapor or low-density fluid.

2. Materials and Methods

ZnO powder (JSC «Krasny Khimik», St. Petersburg, Russia) with average (median)
particle size of 0.174 µm (mean 0.193 ± 0.002) was used in the work. The sintering activating
agent was NH4Cl ammonium chloride (AmCl). All reagents had a purity of >99% by weight.
The reference designations of the samples are given in Table 1.

Table 1. The sample’s reference designations.

Before CS After CS

Impregnation ZnO@AmCl CS-ZnO@AmCl
TVT TVTZnO@AmCl CS-TVTZnO@AmCl

To apply the activating agent by impregnation, 20 g of ZnO powder was mixed with
30 mL of an aqueous activator solution when treated in an ultrasonic bath. The resulting
mass, after drying for 12 h at 70 ◦C, was triturated in an agate mortar and sieved through
a 300 µm capron sieve. The composition of the samples after application of AmCl by the
impregnation method is shown in Table 2.

Table 2. Content of AmCl additive in ZnO when applied by the impregnation method.

Content 1 Content 2 Content 3

wt% 0.3 1 3
mol% 0.456 1.52 4.56

The second option for ZnO activation was TVT treatment of ZnO powder with AmCl
deposited in a vapor medium at 220 ◦C in a laboratory autoclave. The 1–5 g powder was
poured into a Teflon (PTFE) container, which was placed in a 17 mL autoclave on a stand.
Outside the powder container, distilled water was poured onto the bottom of the autoclave
in an amount of 20% of the free volume of the autoclave. The autoclave was sealed, heated,
and held at 220 ◦C for 20 h. At the same time, heating and isothermal exposure of the
powder took place in a vapor medium. The features of TVT have been described in detail
in [27,29,30].

CS was performed in a steel mold with induction heating (Figure 1). The mold
contained four punches (11 mm in diameter), between which there was a ZnO powder
in the middle, and between the other punches, there were PTFE O-rings. O-rings were
used to prevent water from extruding and evaporating through gaps in the mold during
pre-pressing and during CS mixing.



Materials 2023, 16, 408 4 of 15

Materials 2022, 15, x FOR PEER REVIEW 4 of 16 
 

 

CS was performed in a steel mold with induction heating (Figure 1). The mold con- 139 

tained four punches (11 mm in diameter), between which there was a ZnO powder in the 140 

middle, and between the other punches, there were PTFE O-rings. O-rings were used to 141 

prevent water from extruding and evaporating through gaps in the mold during pre- 142 

pressing and during CS mixing. 143 

 144 

Figure 1. CS setup scheme. 145 

ZnO powder in an amount of 1 g was poured into the mold, and 0.2 mL of distilled 146 

water was added with stirring. Then, the second pair of punches with or without a sealing 147 

ring were added (Figure 1). The thermocouple was placed in the cavity of the mold adja- 148 

cent to the powder. The molding was conducted on a P–50 hydraulic press providing a 149 

pressing force of up to fifty tons. A mold with a heater was installed along the axis of the 150 

hydraulic press (Figure 1a). The shrinkage of the powder in the mold was controlled by 151 

measuring the axial displacement of the lower platform of the hydraulic press using a 152 

mechanical clock-type movement indicator (with a division price of 10 μm) mounted on 153 

the frame. CS mode was selected based on the results of [29,30]: sintering temperature 244 154 

°C, heating time to sintering temperature of 40 min, holding time of 60 min, and PTFE O- 155 

rings. The heating was started when the pressing was 395 MPa. The used pressing force, 156 

at which no deformation of the mold tooling occurred, was selected in the preliminary 157 

tests. 158 

Powder morphology and microstructure of ceramics were examined using an elec- 159 

tron microscope JSM–6390 LA (JEOL Ltd., Tokyo, Japan). The crystal size distribution of 160 

the powder and grains of the CS ceramic samples was determined by analyzing scanning 161 

electron microscope (SEM) images. Measurements were made using Image-Pro Plus soft- 162 

ware (version 4.5, Media Cybernetics, Inc., USA). On the SEM image, the particle size was 163 

measured, the contour of which is reliably determined. Measurements covered particles 164 

of the upper layer and partially of the lower layer of powder. On the fractured surface of 165 

the ceramic samples, grains of the upper layer were measured. In the case of isometric 166 

grains, the diameter was measured. For non-dimensional grains, the area of the grain was 167 

measured, which was converted into an equivalent diameter [34]. As a characteristic of 168 

the crystal size, the average/mean size (dmn) and the median measured values (dmd) were 169 

used, which gave a more accurate result for an asymmetric distribution, since it was not 170 

affected by emissions in the set of measurements in the case of small volumes of statistical 171 

sample. 172 

Figure 1. CS setup scheme.

ZnO powder in an amount of 1 g was poured into the mold, and 0.2 mL of distilled
water was added with stirring. Then, the second pair of punches with or without a sealing
ring were added (Figure 1). The thermocouple was placed in the cavity of the mold adjacent
to the powder. The molding was conducted on a P–50 hydraulic press providing a pressing
force of up to fifty tons. A mold with a heater was installed along the axis of the hydraulic
press (Figure 1). The shrinkage of the powder in the mold was controlled by measuring
the axial displacement of the lower platform of the hydraulic press using a mechanical
clock-type movement indicator (with a division price of 10 µm) mounted on the frame. CS
mode was selected based on the results of [29,30]: sintering temperature 244 ◦C, heating
time to sintering temperature of 40 min, holding time of 60 min, and PTFE O-rings. The
heating was started when the pressing was 395 MPa. The used pressing force, at which no
deformation of the mold tooling occurred, was selected in the preliminary tests.

Powder morphology and microstructure of ceramics were examined using an electron
microscope JSM–6390 LA (JEOL Ltd., Tokyo, Japan). The crystal size distribution of the
powder and grains of the CS ceramic samples was determined by analyzing scanning
electron microscope (SEM) images. Measurements were made using Image-Pro Plus
software (version 4.5, Media Cybernetics, Inc., Rockville, MD, USA). On the SEM image,
the particle size was measured, the contour of which is reliably determined. Measurements
covered particles of the upper layer and partially of the lower layer of powder. On the
fractured surface of the ceramic samples, grains of the upper layer were measured. In the
case of isometric grains, the diameter was measured. For non-dimensional grains, the area
of the grain was measured, which was converted into an equivalent diameter [34]. As
a characteristic of the crystal size, the average/mean size (dmn) and the median measured
values (dmd) were used, which gave a more accurate result for an asymmetric distribution,
since it was not affected by emissions in the set of measurements in the case of small
volumes of statistical sample.

Thermal analysis (TGA/DSC) of powder and ceramic samples was carried out in
STA 449 C Jupiter thermal analyzer (Erich NETZSCH GmbH & Co. Holding KG, Selb,
Germany). The samples were heated in argon with the rate of 10 ◦C/min from 40 to
800 ◦C. X-ray diffraction analysis of the initial and activated powders as well as of ceramic
samples was conducted by means of X-ray diffractometer XRD 6000 (Shimadzu Corp.,
Kyoto, Japan). A high-resolution Image Plate Huber G670 camera was used, CuKα1
radiation, λ = 1.540598 Å, Ge (111) monochromator, angular range 3000–100,300◦ 2θ◦, and
pitch 0.005◦ 2θ.
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Relative density of ceramics was determined at 20 ± 2 ◦C and 60 ± 5% relative humid-
ity by the Archimedes method. Kerosene was used as a saturating medium, since sample
destruction could occur in distilled water. Partial fracture at the edges of the sample when
determining density in a liquid medium increased the error of the measurement result.

3. Results

The ZnO stock powder has crystals of various habituses with dimensions mainly less
than 0.5 µm (Figure 2). After the AmCl additive is applied by the impregnation method,
thin elongated crystals disappear, but the size range of the powder crystals does not
change. However, when comparing histograms of crystal size distributions (Figure 3), with
an increase in the content of the additive in the dispersed composition of the powder, fine
crystals appear. These crystal particles on the histogram of the size distribution (Figure 3)
correspond to the appearance and growth of the shoulder on the left wing of the histogram.
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Figure 3. SEM image and crystal size distribution of ZnO powder after activation by the impregnation
method with additive AmCl: 0.3% (a), 1% (b), and 3% (c).

TVT of the powder with the applied additive AmCl leads (Figure 4) to the growth of
crystals of the powder and the isolation of fine crystals into a separate component (a fine
component of the dispersed composition of the powder) concentrated in a narrow range of
0–0.2 microns on the axis of crystal size. Moreover, with an increase in the content of AmCl
additive, the relative proportion of crystals of the fine component increases.
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Figure 4. SEM image and crystal size distribution of ZnO powder activated by the TVT method at
content of additive AmCl: 0.3% (a), 1% (b), and 3% (c).

Figure 5 shows the change in mean and median with the addition of two powder
activation methods. As the number of additive increases, the average crystal size decreases
with both activation methods. In the case of impregnation, this is due to an increase in the
proportion of the fine component. Activation of the powder by the TVT method results in
crystal sizes twice as large. In this case, the overall average crystal size with an increase
in the activator content is more influenced by a decrease in the crystal size of the main
component. It can be noted that the average crystal sizes in mean and median formats
vary equally.

Materials 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 215 

Figure 5. Dependence of the average particle (crystal) size of ZnO powder on the concentration of 216 
AmCl and the activation method: impregnation (Imp, blue line) and TVT (red line). Letters indi- 217 
cated: dmn - average size (circles); dmd - median value (triangles). 218 

Figure 6a shows XRD patterns of powders activated with 3% AmCl and their CS ce- 219 

ramic samples. Against the background of intensive ZnO reflexes on diffraction patterns 220 

of activated powders (ZnO@AmCl and ZnO@AmClTVT), there are small reflexes of im- 221 

purity phases. These impurity phases disappear after CS (CS–ZnO@AmCl and CS– 222 

ZnO@AmClTVT). In Figure 6b, XRD patterns of samples with impurity phases are shown 223 

on a larger scale. The triangular icon marks reflexes corresponding to zinc hydroxide mon- 224 

ohydrate Zn5(OH)8Cl2·H2O (JCPDS 7–155). An unidentified phase is marked with an as- 225 

terisk. From the comparison of the patterns, it follows that after impregnation of the pow- 226 

der with AmCl solution, traces of impurity phases appear and after TVT their presence 227 

increases markedly. However, under CS conditions, the impurity phases disappear. 228 

  

(a) (b) 

Figure 6. XRD patterns of powders (a) activated with 3% AmCl additive and obtained samples of 229 
CS ceramics; (b) the triangular icon marks reflexes corresponding to Zn5(OH)8Cl2*H2O (JCPDS 7– 230 
155), and an unidentified phase is marked with an asterisk. 231 

Figure 7 shows the results of thermogravimetric analysis of ZnO@AmCl powder 232 

(with 3% AmCl) and TVTZnO@AmCl powder (with 3% AmCl), as well as the resulting 233 

ceramic sample CSTVTZnO@AmCl. Weight loss of 0.12% at 105 °C is associated with de- 234 

sorption of weakly bound water. The weight loss of the ZnO@AmCl sample in the range 235 

from 105 °C to 208 °C (Figure 7a—powder activated by the impregnation method) has at 236 
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AmCl and the activation method: impregnation (Imp, blue line) and TVT (red line). Letters indicated:
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Figure 6a shows XRD patterns of powders activated with 3% AmCl and their CS
ceramic samples. Against the background of intensive ZnO reflexes on diffraction pat-
terns of activated powders (ZnO@AmCl and ZnO@AmClTVT), there are small reflexes
of impurity phases. These impurity phases disappear after CS (CS–ZnO@AmCl and
CS–ZnO@AmClTVT). In Figure 6b, XRD patterns of samples with impurity phases are
shown on a larger scale. The triangular icon marks reflexes corresponding to zinc hydroxide
monohydrate Zn5(OH)8Cl2·H2O (JCPDS 7–155). An unidentified phase is marked with
an asterisk. From the comparison of the patterns, it follows that after impregnation of the
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powder with AmCl solution, traces of impurity phases appear and after TVT their presence
increases markedly. However, under CS conditions, the impurity phases disappear.
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Figure 6. XRD patterns of powders (a) activated with 3% AmCl additive and obtained samples of CS
ceramics; (b) the triangular icon marks reflexes corresponding to Zn5(OH)8Cl2*H2O (JCPDS 7–155),
and an unidentified phase is marked with an asterisk.

Figure 7 shows the results of thermogravimetric analysis of ZnO@AmCl powder (with
3% AmCl) and TVTZnO@AmCl powder (with 3% AmCl), as well as the resulting ceramic
sample CSTVTZnO@AmCl. Weight loss of 0.12% at 105 ◦C is associated with desorption of
weakly bound water. The weight loss of the ZnO@AmCl sample in the range from 105 ◦C to
208 ◦C (Figure 7a—powder activated by the impregnation method) has at least three stages
(1.39%, 0.45%, and 1.35%—only 3.19%) with a two-stage water release and an endoeffect
at 137 ◦C. The second endoeffect (at 185 ◦C) in this temperature region with the release of
water and CO2 can be associated with the decomposition of surface hydroxocarbonates.
In addition, ammonia is released, which is evidenced by the maxima MS 17 and 16 m/z in
the absence of a signal from 15 m/z (Figure 7a, insert). Ammonia is recovered by reacting
the adsorbed additive NH4Cl and ZnO to form ZnCl2. Then, the slow decline of MS curves
for masses 17 and 16 m/z in the temperature region of 250–500 ◦C is accompanied by a small
contribution of the exoeffect, noticeable in the growth of the DSC curve in the temperature
region of 300–500 ◦C (Figure 7a). At a higher temperature, the resulting ZnCl2 sublimates
with a weak release of HCl (36 m/e in Figure 7a) and an endoeffect with a maximum at
539 ◦C. ZnCl2 sublimation is not recorded in mass spectrometric gas flow analysis due to
condensation on cold walls. TVT changes the decomposition of surface compounds during
thermal analysis of the TVTZnO@AmCl sample (Figure 7b). A slight decline in the MS
curve of 36 m/z indicates the isolation at T < 150 ◦C of a small amount of HCl weakly bound
on the surface of ZnO crystals. As can be seen from the TGA/DSC data, the release of H2O
and CO2 has two stages with a mass loss of 2.41%. However, the main process proceeds
in a narrower temperature range from 109 ◦C to 164 ◦C and slowly decays to 500 ◦C. The
change in the isolation of water and CO2 during heating of the TVTZnO@AmCl sample is
due to the structuring of the Zn5(OH)8Cl2·H2O phase, the formation of which is observed
during impregnation. The substantially equal residual weight of 93.30% and 93.42% for the
impregnated and TVT samples, respectively, indicates the decomposition of the surface
compounds that preceded the formation of the Zn5(OH)8Cl2·H2O phase and the resulting
phase. The endoeffect at 119 ◦C is associated with the first stage of water release and the
formation of Zn5(OH)8Cl2. The co-release of water and CO2 with the maximum endoeffect
at 143 ◦C is probably caused by the decomposition of Zn5(OH)8Cl2. It is important to note
here that the second endoeffect observed in the previous case at 185 ◦C has disappeared. It
was associated with the reaction between NH4Cl and ZnO in impregnated samples. With
TVT activation, instead of NH4Cl, Zn5(OH)8Cl2·H2O was formed in the powder. A wide
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synchronous maximum of MS curves 16 m/z and 15 m/z with a slight change of 17 m/z of
about 400 ◦C indicates methane release. Weight loss of 1.97% at temperatures above 500 ◦C
with an endoeffect at 550 ◦C is similar to that observed for the impregnated sample. It is
also associated with ZnCl2 sublimation.
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A small total weight loss of 0.45% of the ceramic sample CSTVTZnO@AmCl (Figure 7c)
occurs when adsorbed water and SO2 are isolated. The absence of appreciable mass loss
effects corresponds to the XRD degradation of impurity phases during CS.
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Histograms of crystal grain size distribution in ceramic samples are shown in Figure 8
for CS ZnO powder activated by impregnation and Figure 9 for powder with TVT activation.
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When comparing the histograms in Figures 3 and 8, it can be seen that under CS
conditions, the size of the main component of crystalline grains increased, and a fine com-
ponent isolated in a narrow size range appeared. The result of crystal mass redistribution is
similar to the change in powder dispersion during TVT (Figure 4) with CS at 244 ◦C lasting
40 min and TVT at 220 ◦C lasting 20 h. A fine powder component with TVT activation
(TVTZnO@AmCl) and its size range are preserved in ceramic CS samples with 0.3% and
1% addition (Figures 4a,b and 9a,b) with a slight change in the size of the grains of the main
component. In the case of an addition of 3% after CS, the size of crystalline grains, both the
main component and fine component (Figures 4c and 9c), sharply increased.

Figure 10a shows the change in average crystal size during CS with increasing additive
content. The average size of crystalline ceramic grains varies from 0.29 to 0.86 µm, in which
the minimum grain was obtained by activating the powder by the impregnation method,
and the largest grain and most of the size range from 0.366 to 0.86 µm belong to the TVT
activation method. Figure 10b shows the change in the average size of crystalline grains of
ceramic samples relative to the average size of the crystals of the used powder (according to
the ordinate, the ratio of the average sizes of ceramic grains and powder crystals is shown).
When activated by impregnation, the size of crystalline grains increases 1.5–2 times during
CS with a weak dependence on the content of the additive. Crystal growth under CS
conditions is due to the same effect of the medium on mass transfer processes at CS and
TVT and corresponds to the ratio of average crystal particle sizes in Figure 5.
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Figure 10. Dependence of average grain size (a) and relative change in average crystal size (b) of
CS samples on concentration of AmCl additive and method of ZnO powder activation: red line,
circles-TVT method (indicated as TVT); blue line, squares-impregnation method (indicated as Imp).

During CS, there is a relative decrease in the average crystal size of the TVT-activated
powder (Figure 10b) in the low additive content area. This change also corresponds to the
course of the relationship in Figure 5, but the shift of the left wing of the main component
in the histogram (Figures 4 and 9) noted above is more pronounced. In contrast to this
relationship, increasing the additive content to 3% results in a sharp increase in crystal
size at CS (Figure 10b). This effect should be associated with the action of compressing the
powder by mechanical force.

Figure 11 shows the dependence of the relative density of CS ceramic samples on
the content of ammonium chloride additive in two powder activation methods. It can be
seen that both methods of activating the powder make it possible to obtain high-density
ceramics over the entire range of AmCl concentrations used.
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4. Discussion

Previously, the experiments of ZnO cold sintering in pure water performed poor
effectiveness because of low interaction rate of ZnO and H2O [26]. Application of AmCl
additive by the impregnation method and then treating the powder in the TVT conditions
activate cold sintering of ZnO powder to form high-density ceramics. When the ZnO
powder is impregnated with AmCl solution, the formation of impurity phases occurs
in insignificant amounts (at the trace level), and in the water vapor medium at 220 ◦C
during TVT, the formation of impurity phases is recorded by the XRD method (Figure 6b).
Zinc hydroxide monohydrate Zn5(OH)8Cl2·H2O was found in their composition. The
formation of this phase under similar conditions has been reported in [25,30,35]. This is
a layered compound with a high interlayer distance (0.79 nm), which could be occupied
by H2O or CO2 molecules [36]. Simultaneous ejection of H2O or CO2 observed in TGA of
TVTZnO@AmCl is associated with the decomposition of Zn5(OH)8Cl2·H2O.

The thermal decomposition of Zn5(OH)8Cl2·H2O is affected by the humidity of the
surrounding atmosphere [36]. In this work, the decomposition commenced above 100 ◦C
with elimination of water when Zn5(OH)8Cl2·H2O dehydrated to Zn5(OH)8Cl2. Then,
in a range of 161–197 ◦C, Zn5(OH)8Cl2 transformed to amorphous ZnO·ZnCl2·2H2O.
Decomposition of ZnO·ZnCl2·2H2O is affected by the humidity. In a humid medium, it
transforms into ZnO with elimination of HCl, while in a dry atmosphere, above 225 ◦C,
water and ZnO·ZnCl2 are formed. Above 400 ◦C, ZnCl2 was reported to volatilize.

From the Figure 7a,b, ZnCl2 was volatilized on heating ZnO@AmCl and TVTZnO@AmCl
samples in argon above 450 ◦C. In the case of ZnO@AmCl, the formation of ZnCl2 accom-
panied by ammonia elimination occurred at about 200 ◦C when NH4Cl interacted with
ZnO. This result corresponded to that reported in [37]. A weak exothermal effect at about
400–450 ◦C (Figure 7a) could be attributed to the crystallization of ZnCl2, which evapo-
rated above 450 ◦C. ZnCl2 evaporation on the heating of TVTZnO@AmCl was caused by
Zn5(OH)8Cl2 decomposition and the formation of intermediate ZnO·ZnCl2. Due to this, the
temperature of ZnCl2 evaporation appeared to be higher (Figure 7a,b). A higher amount of
ZnCl2 (1.97% and 1.64%) is explained by the partial decomposition of NH4Cl on heating
the ZnO@AmCl sample. Methane detection during TGA of TVTZnO@AmCl pointed to
catalytic activity on the ZnO·ZnCl2 surface in relation to CO2 and H2O. According to our
data, Zn5(OH)8Cl2·H2O remains stable at a temperature of TVT 220 ◦C and decomposes
under CS conditions at 244 ◦C. The result is a ceramic free of volatile impurities (Figure 7b).
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Comparison of crystal size distributions (Figures 3, 4, 8 and 9) leads to the conclusion
that the mass redistribution between the crystals due to the influence of the wet medium
begins already at 70 ◦C during the drying process of the powder impregnated with the
AmCl solution. The first process is the formation of new crystals of the fine component
(Figure 3). With TVT powder with an AmCl additive, the formation of crystals of the fine
component is completed, and diffusion redistribution processes occur with the growth
of crystals of the original powder. Crystals of the fine component are not involved in
these processes. The causes and mechanism of small crystal formation are not clear and
require further investigation. These special properties also appear in the formation of
ceramics—crystals of a fine component remain at the boundaries between the growing
crystalline grains of ceramics.

The growth of crystals of the main component of ZnO powder occurs by two mass
transfer mechanisms at temperatures above 70 ◦C. As previously described [29–31] by one
mechanism, slow crystal growth (Figure 10) occurs with diffusion spreading of the mass of
crystals with increased solid-phase mobility. Increased solid-phase mobility of the crystal
structure appears under the influence of an additive that activates the exchange interaction
of crystals with an aqueous medium. The second mechanism leads to rapid crystal growth.
It is associated with the coalescence of neighboring crystals due to the disappearance of the
border with sufficient crystallographic correspondence [38]. The coalescence mechanism
begins to appear when a certain threshold for the content of the activating additive is
exceeded from 1 to 3%. This means that after exceeding a certain threshold of the content
of the activating additive, it becomes possible to achieve a crystallographic correspondence.
When the content of the activating additive is low, the pressing force brings together and
deforms the fine crystals with the movable structure, resulting in the formation of a dense
ceramic (Figures 8c and 9a,b). The threshold content of the additive is associated with the
need to reorient neighboring crystals to a crystallographic correspondence, which, with
their dense packaging, cannot occur due to the rotation of the crystals. The increase in
the content of the activating additive causes an increase in the structural mobility of the
crystals and their diffusion rearrangement. At the same time, the degree of influence of
deformation caused by mechanical force is reduced.

As a result of coalescence of a group of neighboring crystals, crystalline grains are
formed with forced cutting (Figure 9c) and filling the intergranular space [30]. Crystals
of the fine component do not participate in coalescence. Their structure does not have
solid-phase mobility. For an unknown reason, the AmCl additive does not activate their
interaction with the aqueous medium. Crystal size of fine component depended on struc-
tural mobility of the main component. When the size of the main component sharply
increased with the increase in the additive amount, the size of the fine component grew as
well (Figure 9). This effect was revealed for ZnO recrystallization in TVT conditions [31]
and was observed during CS [30]. Crystals of the main component of ZnO@AmClTVT
powder, during TVT, grow and acquire a more perfect structure due to the ordering process
when interacting with the medium [30]. The traces of activator remained in their structure,
which was evidenced by the formation and sublimation of ZnCl2 at 450–550 ◦C during the
thermal analysis of the activated powders. The trace amounts of the activator provided
sufficient mobility in water medium during CS so that mass transfer processes are restored
under cold sintering conditions, even though pure water without an activator was added
to the powder. This is like the long-term preservation of mass transfer processes when
storing ZnO powder (synthesized in an aqueous acetate medium) in a humid atmosphere
and at room temperature [39].

The difference between powder activation by impregnation and TVT is that during
TVT activation, the main slow process of mass transfer with crystal growth has already
passed, and under CS conditions, the coalescence of crystals under the action of mechanical
pressure with an increased content of the activator prevails (Figure 10a). The result is
ceramics with relatively large grains. When the powder is activated by the impregnation
method, a slow mass transfer does not have time to lead to the growth of large crystals
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in a short time under CS conditions (Figure 10a). However, the crystals increase by about
a factor of two (Figure 10b). Densification of ceramics at a low content of the activator
is achieved, as noted above, due to the deformation of crystals with a mobile structure.
As a result, small parts are separated from large crystals of the main component of the
TVTZnO@AmCl powder, and the average size of crystalline grains decreases (histograms in
Figures 4a,b and 9a,b, as well as Figure 10b). Grain size reduction in CS ceramics was also
found in [25]. The falling branches of dependencies in the range of low additive content
in Figure 10a,b are due to an increase in the improvement of the crystal structure with an
increase in the content of the additive. With an increase in the perfection of the structure, the
intensity of the exchange of water molecules with the medium decreases, the solid-phase
mobility, and mass transfer by the surface spreading mechanism (slow growth mechanism)
decrease. In addition, large crystals of the main component of the TVTZnO@AmCl powder
are more easily crushed, losing structural mobility. However, in the region of a higher
content of the additive, the mobility of the structure covers the volume of crystals and
the probability of their coalescence increases. Thanks to this, the dependence branches in
Figure 10a,b rush up. The described processes also affect the relative density of ceramics,
the dependence of which on the additive content also has branches of different directions.

5. Conclusions

Two methods of introducing an additive from 0.3 to 3 wt% ammonium chloride by
impregnation and autoclave thermal-vapor treatment led to a different state, dispersion,
and activity of ZnO powder during cold sintering. The average size of 0.174 microns of
the initial crystalline powder particles after the ammonium chloride addition increased to
0.176–0.53 microns. Cold sintering of the activated powder at a temperature of 244 ◦C in
the presence of distilled water made it possible to obtain ceramics with a relative density of
up to 0.96. The grain size was in a range of 0.29–0.86 µm. When the powder is activated
by impregnation or TVT, the grains of ceramics vary their sizes between 0.29 and 0.41 µm
or 0.366 and 0.86 µm. The discussion of the processes occurring during thermal-vapor
treatment and cold sintering of ZnO powder is based on the idea of the appearance of solid-
phase mobility of the crystal structure when interacting with an aqueous medium. It is
concluded that the application of mechanical pressure to the powder leads to the formation
of the ceramic’s dense microstructure and different grain sizes by two mechanisms: the
first, due to deformation of crystals with mobile structure and moderate crystal growth;
and the second, by crystals coalescence with the formation of large grains when structural
mobility occurred in their bulk on the increase in the activator amount.
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