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Abstract: This study focused on the microstructural analysis, superplasticity, modeling of superplastic
deformation behavior, and superplastic forming tests of the Al-Mg-Si-Cu-based alloy modified with
Fe, Ni, Sc, and Zr. The effect of the thermomechanical treatment with various proportions of hot/cold
rolling degrees on the secondary particle distribution and deformation behavior was studied. The
increase in hot rolling degree increased the homogeneity of the particle distribution in the aluminum-
based solid solution that improved superplastic properties, providing an elongation of ~470–500% at
increased strain rates of (0.5–1) × 10−2 s−1. A constitutive model based on Arrhenius and Beckofen
equations was used to describe and predict the superplastic flow behavior of the alloy studied. Model
complex-shaped parts were processed by superplastic forming at two strain rates. The proposed
strain rate of 1 × 10−2 s−1 provided a low thickness variation and a high quality of the experimental
parts. The residual cavitation after superplastic forming was also large at the low strain rate of
2 × 10−3 s−1 and significantly smaller at 1 × 10−2 s−1. Coarse Al9FeNi particles did not stimulate
the cavitation process and were effective to provide the superplasticity of alloys studied at high
strain rates, whereas cavities were predominately observed near coarse Mg2Si particles, which act as
nucleation places for cavities during superplastic deformation and forming.

Keywords: microstructure; superplasticity; mathematical modeling; cavitation

1. Introduction

The 6000-type Al-Mg-Si-Cu-based alloys are extensively used in the transportation
industry due to their high specific strength [1,2]. The alloys belong to a group of heat-
treatable aluminum-based alloys strengthened by metastable β´(Mg2Si) and Q´(AlMgSiCu)
phases during T6 treatment, including solid solution treatment and aging [3–6]. The
precipitation strengthening effect gives the 6000-type alloys a considerable advantage over
5000-type and 3000-type alloys. These alloys are attractive for the superplastic forming of
the complex-shaped parts due to a low critical cooling rate providing the supersaturated
solid solution.

In the 6000 alloys, the sum of the concentrations of the key alloying elements of Mg,
Si, and Cu is usually below 3 wt.%. The low solute contributes to the corrosion resistance
and processing properties. However, alloys with a low solute content have a tendency
to intense grain growth that weakens the elevated temperature formability. For high-
strain rate superplastic forming and quick plastic forming techniques, fine-grained and
ultrafine-grained alloys are required [7,8]. The optimization of both chemical composi-
tion and thermomechanical treatment helps to form a fine-grained and thermally stable
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structure [9–13]. The approach to designing fine-grained and ultrafine-grained alloys
has been repeatedly reported. Alloying with transition metals (TM), including rare earth
(RE) elements, led to a grain refinement through the combination of particle-stimulated
nucleation (PSN) [14–16] and Zener pinning [17–19] mechanisms. The coarse particles of
~1 µm in size provide a PSN effect. The coarse particles are formed due to the fragmenta-
tion of eutectic-originated phases in thermomechanical treatment. The fine dispersoids of
5–50 nm in size that precipitate during decomposition of the supersaturated by TM/RE
solid solution in a thermomechanical treatment [20–26] lead to a Zener pinning effect.
Dispersoids pin grain boundaries and inhibit grain growth. This approach is realized
for 5000-type [27–30], 6000-type [31–34], 7000-type [35–37], and 2000-type [38,39] alloys.
Thermomechanical treatment should provide a uniform distribution of the coarse particles
in the aluminum matrix and a high number density of nanoscale-sized dispersoids. Thus,
the thermomechanical treatment has an important role in microstructure evolution and
final grain refinement. An intermediate heterogenization annealing and a high degree of
cold/warm rolling are required to realize the PSN effect and to form a fine-grained struc-
ture in the conventional high-alloyed Al-Zn-Mg-Cu based 7075 alloy [14], Al-Mg-based
alloys. Oppositely, an experimental Al-Zn-Mg-Cu-based alloy with Ni and a high fraction
of coarse Al3Ni particles demonstrated a fine-grained structure and good superplastic
properties after both small (10–20%) and large (70%) cold rolling degrees [36]. A recently
developed Al-Mg-Si-Cu-based alloy alloyed with Fe and Ni, and minor Sc and Zr additions,
exhibited high strength and demonstrated a fine-grained structure and superplasticity in a
strain rate range of 2 × 10−3–2 × 10−2 s−1 and a temperature range of 440–520 ◦C [32]. A
high number density of nanoscale precipitates of the Al3(Sc,Zr) phase provided a strong
Zener pinning effect, and they are formed during the low-temperature annealing of as-cast
alloy [40]. Owing to low temperature annealing, the residual non-equilibrium Mg2Si phase
and Al3(Sc,Zr) nanoscale precipitates worsen ductility at room temperature and limit the
processing properties of the alloy. A decreased cold rolling degree can help to overcome
the processing problems, but cold rolling can be a principal operation that is required for
the accumulation of high-store energy of recrystallization during further superplastic flow
and fine-grained structure formation [15]. Therefore, it is necessary to study the influence
of the hot/cold rolling degree ratio on the grain structure and superplastic properties of
the novel Al-Mg-Si-Cu-based alloy.

The characterization of the stress-strain behavior involves a mathematical descrip-
tion of the superplastic deformation process that is important for a successful forming
operation. The mathematical modeling helps to simulate superplastic forming based on
the finite element method and to develop forming regimes for complex-shaped parts. A
model of the deformation behavior provides a “bridge” between material properties and
forming processes to make high-quality complex-shaped metallic components with uni-
form thickness distribution. The models based on the Zener–Hollomon parameter and
Arrhenius-type equations are widely utilized to describe the hot deformation behavior of
materials characterized by a near stable flow [41–44].

The purposes of the current study included (1) the study of the effect of hot/cold
rolling degree on the grain structure and superplasticity of the novel Al-Mg-Si-Cu-Fe-Ni-
Zr-Sc alloy to choose appropriate treatment and conform the high strain rate formability
of the alloy, and (2) to describe the deformation behavior of the alloy with a constitutive
mathematical model.

2. Materials and Methods

The alloy of the following composition of Al-1.2 wt.%Mg-0.7 wt.%Si-0.9 wt.%Cu-1.0
wt.%Fe-1.0 wt.%Ni-0.2 wt.%Zr-0.1 wt.%Sc was prepared in a laboratory inductive furnace
(Interselt, Saint-Petersburg, Russia) using a graphite-fireclay crucible (Lugaabrasiv, Luga,
Russia). The casting was processed in a water-cooling copper mold with an internal size of
100 × 40 × 20 mm. The melt was prepared using the following pure metals: 99.99 wt.%Al,
99.95 wt.%Mg, and master alloys of Al-20 wt.%Ni, Al-10 wt.%Fe, Al-12 wt.%Si, Al-2 wt.%Sc,
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Al-5 wt.%Zr, and Al-53.6 wt.%Cu. Before casting, the melt was heated to 800 ◦C. The
temperature during solidification was controlled using a chromel–alumel thermocouple,
and the cooling rate was ~15 K/s.

The obtained ingots were subjected to one- or two-stage heat treatment. The first stage
was performed at 350 ◦C for 8 h, and the second stage was carried out at 480 ◦C for 3 h. The
annealed samples were thermomechanically treated with 4 various regimes, including hot
rolling (Rolling mill V-3P, GMT, Saint-Petersburg, Russia) at 450 ◦C (HR) and cold rolling
(CR) at room temperature in different proportions (Table 1). The final thickness of sheets
was 1.00 ± 0.05 mm.

Table 1. Parameters of the thermomechanical treatment regimes.

Regime Annealing Regime for
As-Cast Alloy

Reduction at Hot
Rolling (%)

Reduction at Cold
Rolling (%)

1HR 350 ◦C, 8h 95 0

2HR

350 ◦C, 8h + 480 ◦C, 3h

95 0

CR50 90 50

CR80 75 80

The samples for microstructural examination were prepared using a Struers LaboPoll-
5 polishing machine via mechanical grinding on SiC papers (grit sizes of 320, 800, 1200,
2400, 4000) and final polishing with an OP-S silica-based colloidal suspension (grain
size of 0.04 µm). Scanning electron microscopy (SEM) in a Tescan-VEGA3 LMH (Tescan
Brno s.r.o., Kohoutovice, Czech Republic) and light optical microscopy (OM) in a Zeiss
Axiovert 200 M (Carl Zeiss, Oberkochen, Germany) were used for the microstructural
examination. SEM was equipped with an energy dispersive X-ray spectrometer (EDS) X-
MAX80 (Oxford Instruments plc, Abingdon, UK) and an EBSD-detector HKL NordlysMax
(Oxford Instruments plc, Abingdon, UK). The grain structure was studied with OM in a
polarized light. For this purpose, the pre-polished samples were anodized at a voltage of
18 V in a Barker’s solution for 60 s at a temperature of 2 ◦C below zero. The EBSD maps
were generated from an area of 150 × 150 µm2 using a step size of 0.3 µm. The samples for
microstructural examination were prepared using a Struers La-boPoll-5 polishing machine
via mechanical grinding on SiC papers and polishing in an OP-S silica-based colloidal
suspension. The transmission electron microscopy (TEM) was performed using a JEOL JEM
2100 microscope (JEOL, Tokyo, Japan). For the TEM analysis, disc-type samples that were
3 mm in diameter and 0.22± 0.01 mm thick were used. The samples were electrochemically
thinned in a methanol solution of 30% nitric acid using a Struers TenuPol-5 twinjet machine
(Struers APS, Ballerup, Denmark) at a temperature of minus 20 ± 1 ◦C and a voltage of
19 ± 2 V.

The mean particle/dispersoid size (equivalent diameter), volume fraction, and aspect
ratio were calculated using AxioVision Vs.40 V4.5.0.0 software (Carl Zeiss, Oberkochen,
Germany). The interparticle space was calculated using a linearly secant method in a
longitudinal cross section perpendicularly to the rolling direction. At least 40 secants were
used for each state. The channel 5 software (Oxford Instruments plc, Abingdon, UK) was
used to calculate the mean grain size for the EBSD data. To determine the size of the L12
phase precipitates, high-resolution TEM images and dark field images were used. The
number of measurements was in the range of 200–900 for grains and subgrains, 300–400 for
eutectic originated particles, and 400–500 for dispersoids. The error bars for a mean value
were calculated as a confidence interval with a confidence probability of 0.95.

The superplastic properties of the studied material were analyzed using a Walter
Bai LFM-100 machine (Walter + Bai AG, Löhningen, Switzerland) through a uniaxial
tensile test with a constant strain rate and periodically stepped strain rate following the
ASTM-E2448–11 standard. The tensile test with a constant strain rate was performed in
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a strain rate range of 2 × 10−3–1 × 10−2 s−1. The strain rate was maintained constant
by an increasing crosshead velocity that was proportional with an increase in the length
of the gage part of the sample. To identify the strain rate sensitivity m-coefficient and
its strain-induced evolution, the step tests, in which strain rate was periodically stepped
to 20% above nominal and then back to nominal every 0.1 strain. The sample gage part
width was 6 mm, the thickness was 1 mm, and the length was 14 mm. Three samples per
point were tested. The stress–strain curves were used to construct a constitutive model to
predict the superplastic flow behavior of the alloy. To evaluate the quality of the model,
a correlation coefficient R2, an average absolute relative error (AARE), and a root mean
square error (RMSE) were calculated [45–47]. Higher correlation coefficients and reduced
error are noteworthy indicators of the quality of the models. The results of the model and
experiments were fed into DEFORM 3D v.6.1 software (Scientific Forming Technologies
Corporation, Columbus, USA) to simulate the forming process and determine a pressure-
time regime. Superplastic forming was processed at 480 ◦C, and strain rates of 2 × 10−3

and 1 × 10−2 s−1 were processed in a laboratory forming machine with control of the Ar
gas pressure and temperature of the process using the regime obtained by DEFORM 3D
based on the data of the tensile tests. The shape and dimensions of the used mold were
described in our previous works [48,49]. The used mold shape was designed to have a
critical region with different strain rates to evaluate the superplasticity of this region and to
assess the thickness difference.

3. Results
3.1. Microstructure of the Alloy

The as-homogenized structure of the studied alloy is shown in Figure 1. After the first
homogenization stage at 350 ◦C, the aluminum-based solid solution (Al) and the Al9FeNi
and Mg2Si phases were observed. The volume fractions of the Al9FeNi and Mg2Si phases
were 4.5 ± 0.5% and 2.0 ± 0.2%, respectively. Sc and Zr were dissolved in the Al-based
solid solution, and the solidification origin phases enriched with these elements were not
found. After the second step of annealing at 480 ◦C, the volume fractions of the Al9FeNi
and Mg2Si phases were 4.4 ± 0.5% and 1.8 ± 0.2%, respectively. The second annealing
stage led to the fragmentation and spheroidization of the Al9FeNi and Mg2Si particles
and the partial dissolution of the Mg2Si phase. The microstructures of the studied alloy
with 0.1 wt.%Sc in as-cast and as-annealed states were similar to the alloy with a higher Sc
content of 0.2 wt.% [32].
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Figure 1. SEM images (backscattered electrons) of the samples annealed at (a) 350 ◦C for 8 h and
(b) 350 ◦C for 8 h and a second step at 480 ◦C for 3 h.

The TEM study of the samples annealed at 350 ◦C for 8 h revealed a high density
of the nanoscale precipitates (Figure 2a,b). The mean size of precipitates was 10 ± 1 nm.
The selected area electron diffraction (SAED) (Figure 2c) exhibiting ordered superlattice
reflections confirmed the L12 structure for precipitates. The Al [011] zone axis was parallel
to the [011] zone axis of the L12 phase. The second annealing step at 480 ◦C for 3 h increased



Materials 2023, 16, 445 5 of 18

the mean size of precipitates to 13 ± 1 nm (Figure 2) but did not influence their structural
type, which was confirmed by SAED (Figure 2f) and Fast Fourier Transform patterns
(Figure 2i).
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Figure 2. TEM images for the samples (a–c) after one-stage annealing at 350 ◦C for 8 h and (d–i) for
two-step annealing with the first stage at 350 ◦C for 8 h and the subsequent second stage at 480 ◦C for
3 h; (a,d,g) bright fields, (b,e) dark fields, (c,f) SAEDs, (h,i) high resolution with corresponding FFT.

After thermomechanical treatment, the eutectic-originated phases were fragmentized
independently on the treatment regime. The parameters of particles for various regimes are
shown in Table 2. As a result, particles with a size in the range of 1.1–1.7 µm surrounded
by the aluminum solid solution were formed (Figure 3). The mean size of the Al9FeNi
particles was 0.9 ± 0.1 µm for hot rolled samples (1HR and 2HR) independently on the
homogenization regime, and it was 0.7 ± 0.1 µm for cold rolled samples (CR50 and CR80);
the particle aspect ratio was 0.80 for hot rolled samples (1HR and 2HR), and lower values
of 0.72 were observed for cold rolled samples (CR50 and CR80). For the Mg2Si phase, the
mean particle size was 0.8 ± 0.1 µm, and the particle aspect ratio was 0.8 for the studied
treatment regimes, including two-step homogenization, and finer particles of 0.5 ± 0.1 µm
with a lower aspect ratio of 0.71 were observed in the samples pre-homogenized at a
low temperature in one step. The mean values of the interparticle spaces were 1.4 ± 0.3,
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1.2 ± 0.1, 1.1± 0.2, and 1.1± 0.3 µm with a standard deviation of 0.9, 0.5, 0.7, and 0.9 µm for
the 1HR, 2HR, CR50, and CR80 regimes, respectively. The treatment regime 2HR including
two-step annealing and hot rolling with 90% reduction, providing particles of about 1 µm
and the most homogeneous microstructure with a low deviation of the interparticle space
compared to the other treatment regimes (Figure 3a,b).
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Figure 3. SEM images of the samples thermomechanically treated in (a) 1HR, (b) 2HR, (c) CR50, and
(d) CR80 regimes.

Table 2. Microstructure parameters for various regimes of thermomechanical treatment.

Microstructural Parameter
Regimes

1HR 2HR CR50 CR80

Al9FeNi particle size (µm) 0.9 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.7 ± 0.1

Al9FeNi particle aspect ratio 0.8 0.8 0.72 0.72

Mg2Si particle size (µm) 0.5 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1

Mg2Si aspect ratio 0.71 0.8 0.8 0.8

Interparticle space 1.4 ± 0.3 1.2 ± 0.1 1.1 ± 0.2 1.1 ± 0.3

Standard deviation for interparticle space 0.9 0.5 0.7 0.9

3.2. Superplastic Deformation Behavior

The true stress vs. true strain dependencies obtained by the constant strain rates in a
range of 2 × 10−3–1×10−2 s−1 and at a temperature of 480 ◦C are shown in Figure 4. The
m > 0.3 was observed for all studied regimes in the studied strain range. The hot rolled
samples (1HR and 2HR regimes, Figure 4a,b) provided a stable flow behavior during the
test, whereas strain hardening was observed for the samples processed with cold rolling
(CR50 and CR80 regimes, Figure 4c,d).

The m-value varied within 0.33–0.45 for the HR1 regime (Figure 4a), 0.37–0.44 for HR2
(Figure 4b), 0.32–0.45 for R50 (Figure 4c), and 0.29–0.41 for R80 (Figure 4d). Herewith, the
2HR regime provided a stable m-value during the test, whereas for CR50 and CR80, the m
value decreased with the strain increase.
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The elongation-to-failure values for the samples processed with different treatments
are shown in Table 3. The elongations reached from 350 to 470%, and the maximum value
was observed at a strain rate of 1 × 10−2 s−1 for all treatment regimes. A more uniform and
stable flow with large elongations even at a high strain rate of 2 × 10−2 s−1 were observed
for the samples treated with the 2HR regime.

Table 3. Elongation-to-failure (%) for the studied alloy treated by different regimes after tensile tests
at 480 ◦C.

Constant Strain Rate (s−1)
Treatment Regime

1HR 2HR CR50 CR80

2 × 10−3 348 ± 8 447 ± 5 370 ± 10 420 ± 20

5 × 10−3 348 ± 12 442 ± 7 380 ± 10 390 ± 25

1 × 10−2 353 ± 5 470 ± 5 420 ± 16 450 ± 20

For the 2HR-treated samples, which demonstrated a good superplasticity, the stress–
strain behavior was studied in the wider temperature and strain rate ranges of 440–500 ◦C
and 2 × 10−3–2 × 10−2 s−1 (Figure 5). The increase in temperature and decrease in strain
rate resulted in a decrease of flow stress values. A larger elongation with stable flow was
revealed at the temperatures of 460–480 ◦C compared to 440 and 500 ◦C (Table 4).
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Table 4. Elongation-to-failure (%) and stress values at a steady stage (true strain of ε = 1) for the
2HR-treated samples at different strain rates and temperatures.

Strain Rate (s−1)

Temperature, ◦C

440 460 480 500 440 460 480 500

Elongation (%) σ at ε = 1 (MPa)

2 × 10−3 450 ± 8 458 ± 5 447 ± 5 452 ± 8 17 14 13 13

5 × 10−3 371 ± 7 498 ± 5 442 ± 7 357 ± 10 23 17 17 17

8 × 10−3 376 ± 5 388 ± 5 452 ± 5 375 ± 8 26 20 18 19

1 × 10−2 380 ± 7 390 ± 6 470 ± 5 343 ± 10 27 23 21 20

2 × 10−2 267 ± 5 267 ± 5 352 ± 7 317 ± 5 32 28 27 27

3.3. Constitutive Modeling of the Superplastic Deformation

Modeling the flow stress behavior during the deformation helps to reduce time, efforts,
trials, materials, and the manufacturing cost. To describe the strain rate (

.
ε) dependence vs.

stress (σ) during the deformation that occurs at limited temperatures and strain rates and
that is characterized by a small stress, Equation (1) [50,51] was used.

.
ε = Aσnexp(− Q

RT ) (1)

where A and n are the material constants depending on strain; Q (J/mol) represents the
apparent activation energy and also depends on strain; R is universal gas constant is
8.314 J/(mol K),

.
ε in s−1, σ in MPa, and T in K.
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The experimental stress–strain curves were divided in two groups: group A was used
in constructing the model and calculating the equation constants, and group B was used to
assess the predictability of the constructed model. For reliable checking, the second part
was selected to include different temperatures and different strain rates, including four
testing conditions: 0.005 s−1 and 440 ◦C; 0.008 s−1 and 460 ◦C; 0.01 s−1 and 480 ◦C; and
0.002 s−1 and 500 ◦C. Equation (2) was created, as follows (Equation (3)), by taking the
natural logarithm of both sides:

ln(
.
ε) = ln(A) + n ln(σ)−

(
Q
R

(
T−1

))
(2)

For determining n, the partial differentiation of ln(
.
ε) with respect to ln(σ) should be

used. At a constant temperature, Equation (3) can be expressed as follows:

n =

[
∂ ln

.
ε

∂ ln σ

]
T=const

(3)

For determining Q, the partial differentiation of Equation (2) with respect to T−1

should be used, and Equation (3) is expressed by (Equation (4)):

∂ ln(
.
ε)

∂ ln(T−1)
=

∂ ln(A)

∂ ln(T−1)
+ n

(
∂ ln(σ)

∂ ln(T−1)

)
−
(

Q
R

∂T−1

∂ ln(T−1)

)
(4)

For a constant strain rate:

0 = 0 + n
∂ ln(σ)

∂ ln(T−1)
− Q

R
⇒ Q

R
= n

∂ ln(σ)
∂ ln(T−1)

(5)

Q = R×
[

∂ ln
.
ε

∂ ln σ

]
T
×
[

∂ ln σ

∂(T−1)

]
.
ε

(6)

Finally, the values of the flow stress were calculated as follows, according to the simple
power law (Equation (7)):

σ =
( z

A

) 1
n (7)

where Z =
.
ε× exp

(
Q
RT

)
is the Zener-Holomon parameter. The strain dependencies of

the material constants of Q, n, and A are illustrated in Figure S1, and the corresponding
polynomial fitting parameters in Equation (8) are presented in Table S1. The fifth polynomial
equation provided a good fitting with the lower error (R2 = 0.98–1.0) compared to the third
and fourth polynomial equations.

Q = Y10 + B11ε1 + B12ε2 + B13ε3 + B14ε4 + B15ε5

n = Y20 + B21ε1 + B22ε2 + B23ε3 + B24ε4 + B25ε5

A = Y30 + B31ε1 + B32ε2 + B33ε3 + B34ε4 + B35ε5
(8)

Figure 6 shows the stress-strain curves obtained from experiments and the model.
The presented curves revealed a high approximation accuracy of the model in fitting the
data of group A, which was used for this model. The validation of the model proved
the high predictability of the unmodeled data of group B (Figure 7a). The statistical
comparisons between the experimental data and the fitted (group A) and expected (group
B) data confirm the excellent capability of the constructed simple law model in fitting and
prediction (Figure 7b,c). The comparison indices, R2, AARE (%), and RMSE, after fitting
group A and prediction group B are 0.98, 1%, 0.5 and 0.97, 4%, 0.7, respectively.

The constructed model was used in predicting the untested data, and model data
were fed into a finite element simulator (Deform 3D) to adjust the material performance
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inside the simulator for the successful simulation of the superplastic forming process
(see Section 3.5).
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group B.

3.4. The Microstructural Evolution during Superplastic Deformation

To analyze the microstructure before the start of the superplastic deformation, the ther-
momechanically treated sheets were annealed at 480 ◦C for 20 min, followed by cooling with
cold water. The samples exhibited partly recrystallized grain structure at elevated tempera-
tures (Figure S2), which was the result of the Zener pinning effect of nanoscale dispersoids.

The EBSD grain boundary maps and misorientation angle distributions after 200% of
superplastic deformation at 480 ◦C and a strain rate of 1× 10−2 s−1 demonstrated an almost
recrystallized structure with a large fraction of high-angle grain boundaries (Figure 8). Thus,
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dynamic recrystallization occurred during the superplastic deformation. For the 1HR, 2HR,
CR50, and CR80 regimes, the HAGB fractions were 80–85%, the mean subgrain size was
3 ± 1 µm, and the mean grain size was 4 ± 1 µm for all studied samples. There were no
significant differences between grain sizes and misorientation angle distributions for the
deformed samples treated with different modes.
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rolled samples (1HR and 2HR) and 1.9 ± 0.6% for the samples processed with cold rolling
(CR50 and CR80). Cavities were predominantly formed near the Mg2Si particles (Figure 9).
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3.5. Superplastic Forming

All stress–strain results, experimental data, and predicted data for the untested condi-
tions from the constructed model were fed into the DEFORM-3D software to define and
adjust the material characteristics for finite element simulation and to determine the form-
ing regimes and pressure-time dependence corresponding to 1× 10−2 s−1 and 2 × 10−3 s−1

and strain distributions after the process.
The superplastic forming (SPF) of the thin-walled complex-shaped part was performed

using sheets processed with the 2HR regime. Geometry for the SPF part was chosen
according to [45]. The presented geometry exhibited a complex shape with a high strain,
and metallic parts of a such shape are difficult to process with traditional forming methods.
The median cross-section of the parts and thickness distributions are presented in Figure 10.
Importantly, the thickness distribution for the high strain rate SPF at 1 × 10−2 s−1 was
more uniform than that for the low strain rate SPF at 2 × 10−3 s−1.
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Figure 10. The median cross section and thickness of the part obtained by: (a,c) SPF and (b,d) FES by
DEFORM 3D at different strain rates, (a,b) 2 × 10−3 s−1, and (c,d) 1 × 10−2 s−1.

The experimental FSP and FES results are identical with small differences (Figure 10),
and the errors do not exceed 10%. Therefore, the constructed model is recommended to be
used for predicting the flow behavior of this alloy without performing experiments, and
these data can be fed into any FE simulator for process simulation. Thus, the right modeling
flow behavior could decrease the time, raw materials, energy, and the manufacturing cost.

The microstructural analysis revealed that forming at a strain rate of 2 × 10−3 s−1 led
to a higher residual cavitation of 8.5% compared to 2.1% at a strain rate of 1 × 10−2 s−1

(Figure 11). It should be noted that the cavities were observed near the Mg2Si particles,
while Al9FeNi particles did not initiate cavitation, similarly to tensile tests.
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4. Discussion

Grain growth and dynamic grain growth were pronounced for Al-Mg-Si-based al-
loys [52,53]. Due to low solute content at a superplastic deformation temperature and the
presence of high diffusive Si atoms, a high number density of nanoscale precipitates was a
critical component that provided the superplasticity of the studied alloys [31,54,55]. Alloy-
ing with Sc and Zr is an effective combination of the alloying elements to form nanoscale
L12 precipitates for a strong Zener pinning effect. Considering data of [56,57], the Si atoms
may substitute Al in the L12 phase to form the (Al,Si)3(Sc,Zr) phase. It is notable that Si
insignificantly influences the mean size of precipitates for the studied alloys. A similar
mean size of the Al3(Sc,Zr) precipitates was observed after annealing at 350 ◦C in Si-free
Al-Mg-Zr-Sc-based alloys [40]. A similar L12 phase precipitate size was observed for the
Al-Mg-Si-Cu-Fe-Ni-Zr-Sc alloy with 0.2%Sc [32]. Therefore, the 0.7%Si and change in the Sc
in a range of 0.1–0.2 wt.% insignificantly influenced the precipitate size. Finer precipitates
of the L12 phase in the studied alloy than that of in Al-Si-Sc alloys [57,58] can be explained
by the Zr core. Zr atoms, due to a low diffusion rate in Al, stabilize the size of L12 struc-
ture [59]. The alloys exhibited a similar size to L12 precipitates after both the one-step and
two-step homogenization of 10–13 nm. Due to L12 precipitates, the microstructure of the
alloy studied was almost non-recrystallized independently on the treatment regime, and
dynamic recrystallization occurred during the superplastic deformation.

Coarse particles of both Al9FeNi and Mg2Si are also important microstructural com-
ponents, proving superplasticity at high strain rates for the studied alloy. The role of the
coarse particles in the superplastic deformation behavior of the aluminum-based alloys
with initial non-recrystallized grain structure is discussed in [14]. Coarse particles led to the
PSN effect during superplastic deformation and stimulated dynamic recrystallization. Thus,
coarse particles provide fine equiaxed recrystallized grains that are required for successful
grain boundary sliding and superplastic behavior [60]. The thermomechanical treatment
had a noticeable influence on the particle distribution and superplasticity of the alloy. The
homogeneous distribution of the particles is important for homogeneous recrystallized
grain structure and stable superplastic flow at high strain rates. First, the two-step homoge-
nization provided the fragmentation and spheroidization of the coarse particles. Second,
the increase in the hot/cold rolling ratio increased the particle distribution homogeneity
and favored a uniform particle distribution after rolling. Thermomechanical treatment
with cold rolling did not provide an advantage compared to only hot rolling. High par-
ticle distribution homogeneity resulted in a uniform grain structure during superplastic
deformation and better superplasticity.

The additional parameter that controlled the superplastic behavior was cavitation.
The microstructural study of the samples subjected to the superplastic deformation and
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superplastic forming revealed the predominate nucleation of cavities on the particles of
the Mg2Si phase. The samples processed with low temperature homogenization and
with a higher fraction and a lower aspect ratio of the Mg2Si particles demonstrated a
higher residual cavitation and weaker superplasticity. Thus, appropriate treatment regimes
should decrease the fraction of the Mg2Si phase for the better superplasticity of aluminum-
based alloys. Cavities were not observed near similarly coarse particles of the Al9FeNi
phase; therefore, this phase helped with grain refinement, did not initiate cavitation, and
improved superplasticity. It is well known that Mg2Si initiates cracking growth and
decreases the processing properties and ductility of Al-based alloys [61,62]. Alloys with a
eutectic-originated Al9FeNi phase, including industrial AA2618 [63,64], are successfully
processed with thermomechanical treatments and demonstrate good ductility and cracking
resistance [27,65]. The difference in the particle effect can be explained by the difference in
the interphase energy of (Al)/Mg2Si and (Al)/Al9FeNi couples.

The components were successfully processed by SPF from the studied alloy with both
low and high strain rates without failure. For the presented sample geometry after the
superplastic forming, large strains were realized between points 4 and 5 and between points
6 and 7. In these critical areas, the thickness distribution was usually less homogeneous [45].
A significant difference in the fraction of the residual cavitation was observed in the formed
parts. The increase in strain rate from 2 × 10−3 to 1 × 10−2 s−1 reduced the cavitation
significantly, from 8.5 to 2.1%. Lower cavitation was a reason for stable flow and a more
uniform thickness distribution in the critical zones for the high strain rate. The effect can be
explained by finer grains that formed during the superplastic deformation at higher strain
rates for the alloys with initially non-recrystallized grain structure in the studied alloy [32].

There are many studies that developed hyperbolic sine-typed Arrhenius models [46,66–74]
and Johnson-Cook type models [75–77] for the successful prediction of the hot deformation
behavior of different materials, including superplastic Al and Ti alloys. The simple power
law function, with a smaller number of constants, was successfully used for predicting the
flow behavior of Ti-based alloys [66]. For comparatively narrow temperature–strain rate
ranges of superplastic conditions, the developed model that was based on the simple power
equation (Beckofen) also demonstrated a low error level. The disadvantage of the model
is the application of the polynomial function with many coefficients, and the effective
activation energy (Q) and strain rate exponent (n) demonstrated a complicated dependency
from strain with the maximum strain value of about 0.4 due to significant changes in
the microstructure, with the cooperation of dynamic recrystallization and dynamic grain
growth. Further efforts should focus on considering particular microstructural parameters
and their strain-induced evolution during modeling process, which are required to improve
model predictability and effectiveness.

5. Conclusions

The increase in proportion of hot/cold rolling degrees increased the uniformity of
the distribution of the eutectic-originated particles of the Al9FeNi and Mg2Si phases and
improved the superplastic properties of the studied Al-Mg-Si-Fe-Ni-Zr-Sc alloy. Homog-
enization at 480 ◦C and a hot rolling reduction of 70–90% were required to form the
homogeneous distribution of the eutectic-originated particles. Due to a high number
density of nanoscale-sized Al3(Sc,Zr) and coarse eutectic-originated particles, a fine grain
structure of the studied alloys formed during superplastic deformation, and a high degree
of cold rolling, such as that used for many superplastic alloys, was not required.

The superplastic properties were studied, and the deformation behavior was described
by the Arrhenius model based on the power equation of the stress dependences vs. strain
rate (Beckofen equation) for the alloy studied. The maximum elongation-to-failure of
~470–500% was observed at (0.5 − 1) × 10−2 s−1 and at a temperature of 460–480 ◦C for
the samples processed with a high hot rolling reduction.

The superplastic forming of the complex-shaped thin-wall components was success-
fully modeled and processed at low 2 × 10−3 and high 1 × 10−2 s−1 strain rates. The



Materials 2023, 16, 445 15 of 18

modeling and experimental results demonstrated better formability of the alloy studied at a
higher strain rate, with 1.5-times lower residual cavitation and 1.3-times higher uniformity
of the thickness distribution. Cavities were observed near particles of the eutectic-originated
Mg2Si phase, whereas Al9FeNi phase particles did not initiate cavitsation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16010445/s1, Figure S1. The material constants, Q, n, A, dependance
on the strain of the investigated alloy at studied range of strain rate and temperature. It is noted that,
in this work, the polynomial of degree 5 provides minimum level of errors, the higher order, as 6,
insignificantly decreases the errors while increases the number of constants (correct to 1.0); Figure S2.
The grain structure of the mechanically treated samples in (a) 1HR, (b) 2HR, (c) CR50, and (d) CR80
regimes and annealed at 480 ◦C for 20 min (OM); Table S1. Constants for Equation (8).
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