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Abstract: Calcium silicate-based cements (CSCs) are endodontic materials widely used in vital
pulp-capping approaches. Concerning the clinical application, the reduced set time and pre-mixed
formulations are relevant characteristics during the operative management of pulpal exposure,
aiming to optimise the work time and improve cross-infection/asepsis control. Additionally, clinical
success seems to be greatly dependent on the biological performance of the materials that directly
contact the living pulp. As such, this work approaches an integrative biological characterisation
(i.e., antibacterial, irritation, and cytocompatibility assays) of three fast-setting CSCs—BiodentineTM,
TotalFill® BC RRM™ Fast Putty, and Theracal LC®. These cements, after setting for 24 h, presented
the expected topography and elemental composition (assessed by scanning electron microscopy,
coupled with EDS analysis), in accordance with the information of the manufacturer. The set cements
displayed a significant and similar antibiofilm activity against S. mutans, in a direct contact assay.
Twenty-four-hour eluates were not irritant in the standardised CAM assay, but elicited distinct dose-
and time-dependent cytotoxicity profiles on fibroblastic cells—i.e., Biodentine was devoid of toxicity,
TotalFill presented a slight dose-dependent initial toxicity that was easily overcome, and Theracal LC
was deleterious at high concentrations. When compared to long-setting ProRoot MTA cement, which
highlighted the pursued integrative approach, Biodentine presented a similar profile, but TotalFill
and Theracal LC displayed a poorer performance regarding antibiofilm activity/cytocompatibility
features, and Theracal LC suggested eventual safety concerns.

Keywords: fast-setting cements; Biodentine; TotalFill; Theracal; ProRoot MTA; antibacterial activity;
irritation potential; cytocompatibility

1. Introduction

The exposure of dental pulp could occur intraoperatively during an iatrogenic pro-
cedure associated with an overzealous tooth preparation or upon the carious removal
of an affected/infected dentin. Instead of the irreversible and complete pulpal extirpa-
tion preconised by the pulpectomy therapeutic approach, a conservative procedure could
be alternatively performed through the partial removal of the coronal pulp, followed
by hemostasis and pulp capping, achieved with the application of a bioactive dental ce-
ment [1–4]. This procedure, Vital Pulp Therapy (VPT), attempts to maintain pulp vitality
through a biologically based approach, inducing tissue regeneration/mineralisation over
the wounded dentin–pulpal complex, and arresting the development of apical periodonti-
tis [4]. Part of the clinical success relies on the biological properties [5,6] of the materials
that are applied as pulp-capping cements [3,7,8], with reported success even in cases of

Materials 2023, 16, 450. https://doi.org/10.3390/ma16010450 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16010450
https://doi.org/10.3390/ma16010450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3920-4513
https://orcid.org/0000-0001-5365-2123
https://orcid.org/0000-0001-7086-2667
https://orcid.org/0000-0001-9391-9574
https://orcid.org/0000-0001-9476-2839
https://doi.org/10.3390/ma16010450
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16010450?type=check_update&version=1


Materials 2023, 16, 450 2 of 15

irreversible pulpitis [2,4,9]. Hence, a pulp-capping biomaterial should have a low cytotoxi-
city to maintain the vitality of the remaining pulp tissue and also allow the leaching of the
bioactive substances that induce dentin regeneration. Additionally, exposure to carious
pathogens within the oral environment, such as Streptococcus mutans, further demands
effective antibacterial activity from these materials [10].

Calcium hydroxide (Ca(OH)2) is the main component of a range of pulp-capping
cements that intend to stimulate mineralisation with the formation of a dentine barrier
and inhibit bacterial growth in the underlying tissues, due to the high pH level. Never-
theless, calcium hydroxide has a low comprehensive strength and a low elastic modulus,
which limit its independent application [11,12]. Therefore, Calcium Silicate-based Cements
(CSCs), such as Mineral Trioxide Aggregate (MTA), have been developed, becoming clinical
alternatives to the use of Ca(OH)2 alone [13–15] given their reduced solubility and yield of
Ca(OH)2 after hydration [13,16,17].

A clinical limitation of MTA is its long setting time, requiring the application of a
protective provisional restoration that is further replaced by a definitive restoration [18,19].
New formulations and ready-to-use mixtures of CSCs were used to attempt to enhance
physical, biomechanical, and biological properties, as follows. Biodentine™ (Septodont,
Saint-Maur-des-Fossés, France) consists of a CSC that is composed of tricalcium silicate,
calcium carbonate, and zirconium dioxide, in the powder; whereas the liquid component is
composed of water, with the addition of calcium chloride and a water-soluble polymer [20].
In this formulation, the setting time is reduced to around 10–12 minutes due to the addition
of calcium chloride as an accelerator [21,22]. TotalFill® BC RRM™ Fast Putty (FKG Dentaire
SA, La Chaux-de-Fonds, Switzerland), on the other hand, consists of a premixed CSC with
a shortened set time, near to 20 min, and is composed of monobasic calcium phosphate
with tantalum pentoxide and zirconium [23]. Interestingly, alternative light-polymerised
CSC formulations were also developed, which aimed for improved intraoperative control
of the material’s setting. In this frame, Theracal LC® (Bisco Inc., Schaumburg, IL, USA) is an
available light-cure resin-modified tricalcium silicate dispersed in a hydrophilic monomer,
composed of Bis-GMA and type I Portland cement, with the addition of barium sulfate as a
radiopaque agent [24,25].

Of the reported endodontic cements, ProRoot MTA and BiodentineTM are reliable
pulp-capping CSCs able to induce dentin bridge formation and maintain pulp vitality
after direct or indirect pulp-capping procedures [3,9,26]. On the other hand, resin-based
pulp-capping agents were associated with a lack of complete hard bridge formation after
application [6], and conflicting results related to the in vitro cytotoxicity/biocompatibility
with Theracal LC® were reported [9–31].

Calcium silicate-based cements exhibit distinct cytotoxic profiles within eukaryotic
cells, due to diverse factors, i.e., composition, physico-chemical features, setting reaction,
setting time, and the leaching kinetics of the unset and set cements. Adding to this
complexity, the wide variety of experimental protocols that have been used regarding the
cell line, type of assay (direct/indirect contact), exposure time, and assessment parameters,
frequently lead to conflicting results on the establishment of the biological profile of these
endodontic cements [9,32]. There are similar concerns regarding the available data on the
antibacterial activity of CSCs [10,33]. Additionally, studies have usually addressed two
issues—cytotoxicity and antibacterial activity—separately, hampering results comparisons
and the establishment of safety/activity patterns in relation to biological outcomes. Studies
directly comparing the integrated biological response to these cements are, thus, limited.

As such, as a highlight, the present work aims to provide an integrative view of the bio-
logical profile of elected CSCs, namely three currently used fast-setting CSCs—BiodentineTM,
TotalFill® BC RRM™ Fast Putty, and Theracal LC®. The set cements were assessed for
topography and elemental composition. For the biological profile, the set cement was
assessed for its activity against S. mutans—the major causative agent of dental caries (direct
contact assay), and the cements’ eluates were tested for irritation potential (CAM assay)
and cytotoxicity according to ISO 10993 [34]. The results were compared to those observed
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with ProRoot MTA, due to its established clinical success in spite of its long setting time,
and Dycal, an early-generation calcium-based cement, selected as a “historical” control,
which was once recognised as the gold standard for pulp-capping applications, with more
than 50 years of clinical application [3,9].

2. Material and Methods
2.1. Calcium Silicate-Based Cements

The present study evaluated the following dental materials, Biodentine™ (Septodont,
Saint-Maur-des-Fossés, France), TotalFill® BC RRM™ Fast Putty (FKG Dentaire SA, La
Chaux-de-Fonds, Switzerland), and Theracal LC® (BISCO Inc., Schaumburg, IL, USA),
as fast-setting CSCs for pulp capping; ProRoot® MTA (Dentsply Maillefer, Ballaigues,
Switzerland) and Dycal® (Dentsply DeTrey GmbH, Dresden, Germany) were included as
control materials. The chemical compositions, as provided by the manufacturer and batch
number, are detailed in Table 1.

Table 1. Calcium silicate-based cements used and respective compositions, manufacturers, and
batch numbers.

Material Composition Manufacturer Batch No.

Dycal®
Base paste: titanium dioxide, barium sulphate,

glycol disalicylate
Catalyst paste: calcium hydroxide, zinc oxide,

zinc stearate, ethyl toluene sulphonamide

Dentsply DeTrey GmbH,
Dresden, Germany 00071192

ProRoot® MTA
Tricalcium silicate, dicalcium silicate, tricalcium

aluminate and calcium sulfate
Dentsply DeTrey GmbH,

Dresden, Germany 0000301574

BiodentineTM

Powder: tricalcium silicate, dicalcium silicate,
calcium carbonate, iron oxide, zirconium oxide

Liquid: water with calcium chloride and soluble
polymer (polycarboxylate)

Septodont,
Saint-Maur-des-Fossés,

France
B27532

TotalFill® BC RRMTM

Fast Putty
Zirconium oxide, tantalum oxide, calcium

silicate, calcium phosphate monobasic and fillers

FKG Dentaire SA, La
Chaux-de-Fonds,

Switzerland
2100004308

Theracal LC® Portland cement, BisGMA, barium zirconate Bisco, INC., Schaumburg,
IL, USA 2100004308

Set cements. Dental cements were manipulated, in accordance with the instructions
of the manufacturer, under aseptic conditions. The cement samples were established
with 1 mm thickness on a plastic tissue culture coverslip (∅ 13 mm, 1.9 cm2, Sarstedt Inc.,
Newton, NC, USA) and allowed to set overnight at 37 ◦C in a 100% humidified atmosphere
for further characterisation.

Cement extracts. The extracts were prepared according to ISO 10993 part 12 guide-
lines [35]. Briefly, set cements (1 mm thickness circles with ∅ 13 mm, 1.33 cm2) were
placed into sterilised 24-well plates and incubated in cell culture medium (0.6 mL/well),
i.e., α-minimum essential medium (α-MEM) supplemented with 10% (v/v) fetal bovine
serum, 100 IU/mL penicillin, 100 µg/mL streptomycin, and 2.5 µg/mL amphotericin B
(all from Gibco®, Waltham, MA, USA), for 24 h at 37 ◦C in a humidified atmosphere (5%
CO2/air). After incubation, the media, hereinafter extracts, were collected, filtered (0.2 µm),
and diluted in cell culture medium, i.e., 50%, 25%, 15%, 10%, and 1%. The undiluted
extracts showed pH values of ~9.5. For the diluted extracts, the buffering capacity of the
culture medium kept the pH ~7.4 (the intracellular pH).

2.2. Topography and Elemental Analysis of the Set Cements

Material characterisation was performed by scanning electron microscopy (SEM) and
energy dispersive spectroscopy (EDS). Briefly, CSCs, previously established on coverslips
and set overnight, were coated with an Au/Pd thin film (SPI Module Sputter Coater,
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West Chester, PA, USA) and subjected to high-resolution SEM with X-ray microanalysis in
backscatter mode (SEM-BSE), followed by EDS analysis (FEI Quanta 400 FEG ESEM/EDAX
Genesis X4M; Fei Company, Hillsboro, OR, USA). Semi-quantitative elemental composition
of each sample was performed for the viewing area (5 random positions per sample) as
well as for point locations (3 analyses for each area).

2.3. In Vitro Prevention of Antibiofilm Formation by the Set Cements

The prevention of the biofilm formation by CSCs was inferred by the characterisation
of sessile population using quantitative viable counts and SEM visualisation.

A standard bacterial suspension of Streptococcus mutans DSM 20523 (DSMZ, Braun-
schweig, Germany) at a density of 108 cells/mL, in brain heart infusion (BHI; Liofilchem,
Roseto degli Abruzzi, Italy), was seeded over CSC samples (established on coverslips,
1.9 cm2, and set overnight, as described above) and then incubated for 24 h at 37 ◦C and
120 rpm. Coverslips (1.9 cm2) without cement were used as control. After incubation, the
samples were carefully washed with sterile saline solution to remove loosely attached bac-
teria. For viable counts, samples were transferred to tubes with sterile saline solution and
sonicated for 10 min (Sonorex; Bandelin, Berlin, Germany) to dislodge sessile bacteria. The
suspensions were serially diluted and inoculated in BHI agar plates. After 24 h incubation
at 37 ◦C, colony forming units (CFUs)/mL were quantified. Results were expressed as
mean Log10 CFU/mL. CFU data were transformed to logarithmic scale only after statistical
analysis of the raw data.

For SEM visualisation, pre-washed samples were fixed with 1.5% glutaraldehyde in
cacodylate for 30 min. The samples were then dehydrated in sequentially graded ethanol
solutions (50% to 100%) and critical-point-dried (CPD 7501, Polaron Range). Finally, the
samples were coated with an Au/Pd thin film (SPI Module; West Chester, PA, USA)
and visualised by SEM (FEI Quanta 400 FEG ESEM/EDAX Genesis X4M; Fei Company,
Hillsboro, OR, USA).

2.4. In Vivo Irritation Potential of the Undiluted Extracts

The irritation potential of the CSC extracts was tested using the in vivo chorioallantoic
membrane (CAM) assay according to the Interagency Coordinating Committee on the
Validation of Alternative Methods (ICCVAM) guidelines [36]. Accordingly, fertilised
chicken eggs were incubated with hourly scheduled rotation at 37 ◦C in a 60% humidified
atmosphere in an Octagon Advance incubator (Brinsea Products, Inc., Weston-super-Mare,
UK). On day 9 after fertilisation, an eggshell window was created to access the CAM
beneath. Subsequently, the undiluted cement extracts (prepared as described above) were
loaded onto silicon O-rings randomly placed on the CAM to retain the sample and delimit
the area of analysis. For a contact period of up to 5 min, the CAM was imaged for signs
of irritation using a stereomicroscope (Stemi 305, Zeiss, Oberkochen, Germany) and an
attached imaging system (Axiocam 208 color, Zeiss, Oberkochen, Germany).

The irritation potential was scored by the occurrence of specific damages to membranes
and/or vessels, regarding haemorrhage, clotting, and vascular lysis, which were interpreted
in comparison to a negative (0.9% NaCl) and positive (1% SDS) control. Irritation index
was assigned semi-quantitatively using a grading system according to the Luepke method,
from 0 (no reaction) to 3 (strong reaction) [36]. Each test was carried out in quintuplicate.

2.5. In Vitro Cytocompatibility of the Extracts

The cytocompatibility of CSCs was tested by an indirect contact assay according to
the standard cytotoxicity assessment established by the International Organization for
Standardization [34]. L929 mouse fibroblast cells (NCTC clone 929, ATCC) were seeded at a
density of 104 cells/well into 96-well plates and incubated in culture medium (composition
as described above) for 24 h at 37 ◦C, in a humidified atmosphere (5% CO2/air). After incu-
bation, adhered cells were exposed to undiluted (100%) and diluted (50% to 1% dilutions)
extracts for periods up to 3 days, during which the medium remained unchanged. Cell
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culture medium was used as control. The plates were further maintained under standard
incubation conditions.

Cell viability and cell metabolic activity were evaluated by live/dead staining and
MTT assay, respectively. For live/dead staining, cultures exposed for 24 h to the extracts
were incubated with 1 µM Calcein AM (BioLegend®, San Diego, CA, USA) and 50 µL/mL
of propidium iodide (PI; BD Biosciences®, San Jose, CA, USA) solution for 15 min at 37 ◦C,
protected from light. Fluorescent cells were further recorded using Celena S Digital Imaging
System (Logos Biosystems®, Gyeonggi-do, South Korea). For MTT assay, measuring
mitochondrial dehydrogenase activity, cell cultures exposed to the extracts for 24, 48, and
72 h were incubated with 10% of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
(MTT, 1 mg/mL, Sigma-Aldrich, St. Louis, MO, USA) for 3 h at 37 ◦C. The formed
formazan precipitates were solubilised in dimethyl sulfoxide (DMSO, Sigma-Aldrich,
St. Louis, MO, USA) for 15 min, and absorbance was measured at 550 nm on a microplate
reader (Synergy HT, Biotek®, Santa Clara, CA, USA). Results were presented as percentage
(%) of control (cultures performed in cell culture medium). According to the ISO 10993-
5 guidelines [37], which describe methods to assess the in vitro cytotoxicity of medical
devices, 70% viability of the control is considered the “cut-off” value for the device to be
categorised as non-cytotoxic.

2.6. Statistical Analysis

Results are presented as mean ± standard deviation of three independent experiments,
with three replications for each experiment, unless otherwise indicated. Statistical analysis
was performed with IBSS® SPSS Statistics package (v. 28.0, IBM, Armonk, NY, USA),
and graphics were constructed with GraphPad Prism 8.0.1 (GraphPad Software, Inc.; San
Diego, CA, USA). Comparison of the experimental conditions was performed by the t-test
and the comparison of several groups by the one-way analysis of variance (ANOVA).
The Shapiro–Wilk test was used for the assessment of the normality of data. Statistically
significant differences were considered at p-values ≤ 0.05.

3. Results
3.1. Topography and Elemental Composition of the Set Cements

SEM images of the CSCs’ set samples revealed relatively different and heterogeneous
surfaces with the punctual presence of lightened areas, after back-scattered electron (BSE)
imaging (Figure 1). Global elemental analysis by semi-quantitative EDS revealed carbon
(C), oxygen (O), and calcium (Ca) in all the assayed cements. Silicon (Si) was also identified
in all cements, except Dycal. The latter was the only cement to present phosphorus (P)
and titanium (Ti) in its microstructure as well as clear aggregates of zinc (Zn) and tungsten
(W) (Figure 1, Dycal Z2 and Z3). ProRoot MTA presented traces of magnesium (Mg),
aluminium (Al), potassium (K), and fluorine (F) as well as bright aggregates of bismuth
(Bi) (Figure 1, ProRoot MTA Z2). Small aggregates of zirconium (Zr) were detected in the
Biodentine and Theracal LC samples (Figure 1, Z2 of the respective cement). Zr was also
identified in the TotalFill samples but was imbued in the matrix (Figure 1, TotalFill Global
and Z2). This cement also presented large aggregates of tantalum (Ta) (Figure 1, TotalFill
Z1). Lastly, Theracal LC showed traces of Al and accumulations of barium (Ba) and Zr
(Figure 1, Theracal LC Z1 and Z2, respectively).

3.2. Prevention of Antibiofilm Formation

The data showed that the set cements caused a strong and significant reduction in the
sessile population of S. mutans, as compared to the control (Figure 2A). Specifically, ProRoot
MTA showed a 4.6 log reduction in the sessile population, followed by Dycal and Theracal
LC with reductions of 3.9 and 3.8 logs, respectively. Biodentine and TotalFill presented
a 2.9 log reduction. Comparatively, no significant differences were attained between the
assayed cements. These results were further confirmed by SEM analysis. Representative
images showed a small number of aggregates of bacteria scattered along the surface of the
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endodontic cements, with an atypical elongated morphology and a similar organisation
throughout the distinct cement formulations. In contrast, the control samples were heavily
colonised by S. mutans, with its characteristic sphere-shaped morphology (Figure 2B).
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3.3. In Vivo Irritation Potential

Undiluted cement extracts (100% CSCs’ extract concentrations) were evaluated for the
irritation potential by the CAM assay. All cements behaved similarly. In the representative
CAM images (Figure 3), qualitative specific reactions related to hyperaemia, haemorrhage,
vascular lysis, and coagulation were not observed after direct contact with the pure extract
for periods up to 300 s according to the guideline. The CAM appearance was similar
to that of the negative control but substantially different from the positive control. The
irritation index according to the Luepke method was 0 (no reaction) for all the experimental
conditions and the negative control [36].
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Figure 3. In vivo HET-CAM irritation assay. (A) Representative images of CAM and the negative and
positive controls after exposures of 300 s. (B) Representative CAM images after exposure to the undi-
luted cement extracts for periods up to 300 s. Microscopic images were taken at 10× magnification.

3.4. Cytotoxicity to Eukaryotic Cells

Adherent L929 fibroblasts were exposed to the undiluted (100%) and diluted (50%
to 1%) cement extracts for periods of 24 h to assess initial toxicity and for 48 and 72 h to
disclose the effect on cell proliferation.

After 24 h exposure, fluorescence images of the live/dead assay were acquired, and
representative micrographs are depicted in Figure 4A, for the cells exposed to 100% extracts
and to 25% and 10% extract dilutions. Cell viability was affected by the cement and/or the
extract dilution. For Dycal, the undiluted and the 25% dilution extract caused significant



Materials 2023, 16, 450 8 of 15

cell death, with only a few viable cells visible; however, exposure to the 10% dilution
showed a very low number of dead cells. The undiluted Theracal LC extract also presented
a high initial toxicity (though lower than that of Dycal), which was not observed follow-
ing exposure to the diluted extracts. The extracts from the other cements (i.e., ProRoot
MTA, Biodentine, and TotalFill), either undiluted or diluted, did not show signs of initial
toxicity in the live/dead assay. The MTT assay performed on the 24 h exposed cultures
(Figure 4B), assessing the cell metabolic activity, revealed a similar trend to that reported
on the live/dead assay.
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activity measured in the same cultures, expressed at percentage of control, set at 100% (dotted
line); the “cut-off” value of 70% of the control is also shown (dashed line). * Statistically significant
difference from the control, p ≤ 0.05.

The metabolic activity of the cultures was evaluated throughout a 72 h exposure to the
extracts (Figure 5), allowing for the disclosure of cell viability and proliferation.

Cells hardly proliferated in the presence of concentrated Dycal extracts (100% to 25%),
and cell growth was dose-dependent for lower extract concentrations (15% to 1%). The
values were around 70% of the control for the 10% extract and were similar to the control
for the 1% extract. For each extract dilution, the cell proliferation increased with the culture
time (24 to 72 h; this was particularly evident for the 15% extract).

ProRoot MTA (either undiluted or upon dilution) did not disturb cell proliferation
for exposures of 24 and 48 h, but the values decreased at 72 h (~70% of the control; within
100% to 15% dilution range).

With the Biodentine extracts, the cell growth was not affected, and, further, increased
values were observed upon exposure for 24 h for the 50–10% extracts (though without
significant differences).

TotalFill presented some initial toxicity (24 h exposure) for the range of the 100% to
25% extracts, but the cultures fully recovered to values similar to the control for longer
exposures (48 and 72 h). However, across the concentration range tested, proliferation was
never below the “cut-off” value of 70% of the control.

Concerning Theracal LC, cells were unable to proliferate in the presence of the undi-
luted extract, and the values were found to be lower than 70% regarding exposure to the
50% extract (48 and 72 h). Significantly reduced levels, as compared to the control, were
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further verified for the 25% and 15% extracts—at 48 and 72 h. In this range—50%, 25%
and 15% extracts—toxicity increased with the exposure time, i.e., it was higher upon 48
and 72 h exposure (compared to that upon 24 h exposure). No significant differences were
found in the lower dilution range of the Theracal LC extract, i.e., 10% and 1%, as compared
to the control.
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Figure 5. Cell proliferation of L929 fibroblasts exposed to undiluted (100%) and diluted (50%, 25%,
15%, 10%, and 1%) cement extracts for 24, 48, and 72 h. Results are expressed as percentage of
control, set at 100% (dotted line); the “cut-off” value of 70% of the control is also shown (dashed line).
* Statistically significant difference from the control, p ≤ 0.05.

4. Discussion

Pulp-capping materials are placed directly over the exposed pulp, attempting to
ensure pulp vitality and prevent the need for further endodontic treatment, within the VPT
therapeutic approach. As such, materials should present low potential to be irritating, be
cytotoxic, or induce other adverse biological outcomes. Antibacterial activity is also a key
issue for the clinical success of this approach, due to the possibility of secondary infections
caused by remnant bacteria or microleakage.

ProRoot MTA has been extensively studied and, due to its proven biocompatibility
and long-term track record of clinical success, is the most validated material for pulp
capping [9,13]. However, due to its long setting time and difficult handling, other calcium
silicate-based materials, which were introduced later and are faster-setting, are being
used in direct pulp-capping [13]. Compared to those on ProRoot MTA, fewer studies are
dedicated to these cements, and inconsistencies arise from the in vitro, in vivo, and clinical
studies [9]. The present study addressed the biological profile of three fast-setting calcium
silicate-based cements—Biodentine, TotalFill, and Theracal LC, for their irritating potential,
antibiofilm activity, and cytocompatibility. For comparative purposes, ProRoot MTA was
included. Dycal, an early-generation material, was also analysed as a “historical” control.

The CSCs set for 24 h were characterised using a combination of two techniques,
namely SEM, which enabled the assessment of material microstructure, and EDS, which
was used for semi-quantitative elemental analysis. Accordingly, the samples presented a
heterogeneous surface where the presence of C, O, Ca, and Si, typical of calcium silicate-
based cements, was detected (Figure 1), except for Dycal (a non-silicate-based cement). In
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Dycal, the presence of P, Ti, and small aggregates of Zn was also identified, which confirmed
the results of Gong et al. [38]. ProRoot MTA presented traces of Mg and Al, indicating that
the cement is a Portland type [39], and also K and F. On Theracal LC, traces of aluminium
were also detected in the cement phase of the material, as reported by other authors [40].
As expected, all CSCs showed the presence of some sort of radiopacifier, as highlighted
by the BSE-SEM micrographs (Figure 1), as follows. For instance, in Dycal, the presence
of tungsten may be assigned to calcium tungstate (CaO4W) [38]; ProRoot MTA presented
bright aggregates of bismuth, likely assigned to bismuth oxide [15], while Biodentine
displayed zirconium linked to zirconium oxide [41]. TotalFill showed large amounts of
tantalum assigned to tantalum oxide [39], and, on Theracal LC, barium and zirconium
were detected and ascribed to barium zirconate [40,42], which provide radiopacity to
these cements.

Anticariogenic proprieties must be pondered, whereas it is an important issue both to
inhibit caries progression in selective caries removal and to prevent the infection relapse
in the marginal structure of a dental restoration. The antimicrobial properties of pulp-
capping materials have been extensively tested in the literature, though with conflicting or
contradictory results. This has been ascribed to a great heterogeneity in the methodologies
used and a lack of standardisation, with different contact times, material handling, and
evaluation parameters, and a diversity of microorganisms and culture conditions included
in the studies [10,43]. Considering that most of the bacteria are in sessile growth in dental
infections, the current study was devised to comparatively evaluate the cements’ capability
to lessen bacterial adhesion and, consequently, biofilm formation when exposed to the oral
environment. Therefore, the materials were incubated with S. mutans, in a direct contact
test for 24 h, to simulate the contact of the microorganism with the cements, and to allow
bacterial adhesion and biofilm formation. In the literature, there is a paucity of in vitro
studies addressing CSCs’ effects on the prevention of biofilm formation [10,44,45], and
even fewer studies include light-curable tricalcium silicate—Theracal LC [39,46]. Further,
the agar diffusion test, used in most studies, only reflects the diffusion ability of the cement,
not its direct antimicrobial potential, yielding frequently limited effects [47]. The direct
contact test gives more reliable results [10].

In the present work, the results demonstrated that all CSCs tested, including the
fast-setting ones, were able to significantly reduce S. mutans adhesion to the cements’
surface (Figure 2). Sequentially, ProRoot MTA presented the highest inhibition of S. mutans
adhesion, followed by Dycal, Theracal LC, and, lastly, Biodentine and TotalFill, despite
the absence of significant differences between the materials. For all samples, the pH of
the bacterial suspension surrounding the set cement samples was around 9.5. Overall, the
antimicrobial activity of calcium silicate-based cements has been attributed to their surface
of contact and the release of hydroxyl ions in the aqueous environment with the associated
alkalinisation [5,10,48–51]. Hydroxyl ions are able to react with various biomolecules, such
as lipids and proteins, disrupting the microorganisms’ cell membranes, essential structures
to bacterial cell survival [52]. This reactivity appears to be indiscriminate, and the free
ions rarely diffuse away from their site of generation [51]; this is a most relevant issue, as
the induced toxicity seemed to be restricted to the materials’ surface, not influencing the
commensal oral microbiota or adjacent tissues. This favoured bacteria elimination when
in close proximity to the material surface, minimising the chance of biofilm formation.
In addition, the associated alkalinisation of the surrounding fluids [39,46,53,54], exerted
a significant ecological pressure on S. mutans and other cariogenic microorganisms, as
low-pH environments are crucial for their survival and pathogenicity [55,56]. Further, the
composition of the cements and the crystalline phases may also account for the observed
antimicrobial activity, namely due to the ionic release owing to the presence of metal oxides.

The safety profile of pulp-capping cements is a major concern. In the present work, it
was analysed in 24 h extracts prepared according to ISO 10993-12 guidelines. Nonetheless,
the biological response may differ regarding the assessment of freshly prepared or setting
materials, which should be evaluated in future studies. For all set cements, the pure
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extract did not show any irritation potential, as determined by the HET-CAM irritation
assay (Figure 3). Whether or not this assay seems to produce translational data regarding
irritation outcomes, based on ICCVAM guidelines [36], it cannot fully disclose irritation
potential in mammal models, particularly for long-term time points.

Next, cytotoxicity to eukaryotic cells was analysed using an indirect assay involv-
ing the exposure of L929 fibroblasts to the undiluted (pH ~9.5) and diluted (pH ~7.4)
extracts. Due to the cements’ individual compositions and the inclusion of distinct ad-
ditives (reaction and physical modifiers), the set cements yielded extracts with different
compositions, inducing distinct cellular responses [39,42]. The hydraulic calcium silicate-
based cements, i.e., ProRoot MTA, Biodentine, and TotalFill, showed low or no toxicity
(Figures 4 and 5). The three materials have a water-based chemistry and set by reaction
with water, forming calcium hydroxide as a by-product of the hydration reaction, which
raises the pH of the surrounding environment [39]. In the present study, only the undiluted
extracts showed an elevated pH (~9.5). For the diluted extracts, the buffering capacity of
the culture medium kept the pH around 7.4 (the intracellular pH). Biodentine behaved
similarly to the control. ProRoot MTA and TotalFill showed a slightly toxic effect at the
higher extract concentrations, although with a different toxicity pattern, suggesting distinct
toxicity mechanisms. For the ProRoot MTA extracts, the cell viability decreased following
longer exposures (3 days); thus, a cumulative effect from the toxic compounds might be
hypothesised, namely due to the presence of Bi (from the bismuth oxide radiopacifier) [57].
For the TotalFill extracts, toxicity was observed only initially (24 h exposure); thus, the
stabilisation of the culture conditions, i.e., a progressive normalisation of the pH in the
5% CO2 incubation conditions, might contribute to the cells’ recovery [48]. Nevertheless,
for this cement, within the tested dilution range and exposure periods, the cell viability
was never less than 70% of the control, the “cut-off” value for a material to be considered
safe [34]. The low cytotoxicity of these cements is in line with the available information,
especially the proven cytocompatibility of ProRoot MTA and Biodentine [58]. Compar-
atively, the light-cured Theracal LC, a resin-modified calcium hydroxide fortified with
calcium silicate, presented a higher cytotoxicity (Figures 4 and 5). Cell proliferation was
dose- and time-dependent and was observed only with concentrations ≤50%, and toxicity
increased with the exposure time (48 and 72 h). Mostly, the published in vitro cytotoxicity
data also showed the lower cytocompatibility of Theracal LC compared to ProRoot MTA
and Biodentine [9,28,59]. Theracal LC toxicity was mainly attributed to resin monomers,
which may remain unpolymerised upon setting [28]. Further, previous studies showed
that cured Theracal LC released specific toxic additives, camphoroquinone and ethyl-4-
(dimethylamino)benzoate [60], which, probably, as suggested in the present work, showed
a cumulative toxic effect. Dycal, an early-generation calcium-based cement, showed the
highest toxicity among the tested materials, with cell growth occurring only with extract
concentrations ≤15% (Figures 4 and 5).

Overall, the results of the present study are similar to those reported recently by
Manaspon et al. [61], who also performed a study with set cements’ extracts prepared
according to the ISO 10993 protocol. They reported a lower toxicity for ProRoot MTA
and Biodentine compared to that for Theracal LC and Dycal, including the comparatively
higher toxicity of Dycal [61]. Nevertheless, it should be noted that the closed in vitro culture
conditions are far from the dynamic in vivo context of the extracellular fluid flow and
concentration gradient that would contribute to the progressively reduced levels of the
leaching compounds neighbouring the cells/tissues, lowering cytotoxicity. Accordingly,
the three cements are clinically used as pulp-capping materials [9,11,62–65]. Comparative
studies with ProRoot MTA show some inconsistencies in the clinical outcomes, especially
concerning Theracal LC, with an eventually unfavorable performance/safety profile being
suggested by some studies [9,62,66]. The in vitro results reported in the present study follow
the same trend regarding the possible higher cytotoxicity of Theracal LC compared with
the other fast-setting cements. This suggests that in vitro studies, although with inherent
limitations, may provide preliminary guiding information and clarify the underlying
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mechanisms, feeding more complex and integrative approaches to evaluate the cements’
biological profiles.

5. Conclusions

The fast-setting cements Biodentine, TotalFill, and Theracal LC, set for 24 h, presented
the expected elemental composition, in accordance with the listed information of the
manufacturer. The set cements displayed a significant and similar antibiofilm activity
against S. mutans in a direct contact assay. Twenty-four-hour eluates were not irritant in
the standardised CAM assay but elicited distinct dose- and time-dependent cytotoxicity
profiles with fibroblastic populations—i.e., Biodentine was devoid of toxicity, TotalFill
presented a slightly dose-dependent initial toxicity that was easily overcome, and Theracal
LC was deleterious at high concentrations. Highlighting the pursued integrative approach,
compared to the long-setting ProRoot MTA cement, Biodentine presented a similar profile,
but TotalFill and Theracal LC displayed a inferior performance in antibiofilm activity and
cytocompatibility, particularly Theracal LC.
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