Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment
Abstract
:1. Introduction
2. Research
2.1. Materials and Scheme
2.2. Corrosion Tests
2.3. Strength Tests
3. Methods
3.1. SEM Electron Microscopy Scan
3.2. X-ray Diffraction
4. Results
4.1. Density and Water Absorption
4.2. Intensity
5. Discussion
6. Conclusions
- (1)
- After organic water solution corrosion, there are a lot of black algae deposits and crystallization on the concrete surface, and there is a sanding phenomenon. The addition of sodium methyl silicate and inorganic aluminum salt water repellent led to an improvement in the concrete surface corrosion. The effect of adding inorganic aluminum salt waterproofing agent is more prominent.
- (2)
- Through microscopic analysis, it is found that there are many pores in ordinary concrete, and the pores of other mix ratios are significantly reduced. Among them, the test block with added inorganic aluminum salt waterproof agent is the most compact.
- (3)
- The compressive strength analysis shows that the addition of inorganic aluminum salt waterproofing agent can increase the strength of the material by about 12% and the strength retention rate by 15%. The combination of basalt fiber and inorganic aluminum salt waterproofing agent has the best effect. It is recommended to be used in preference to normal concrete.
- (4)
- The addition of an inorganic aluminum salt waterproofing agent significantly reduced corrosion and improved the durability of concrete materials in a sewage environment corrosion; the recommended dose of 6 kg/m3.
- (5)
- This new highly durable concrete protection mechanism relies on basalt fiber and inorganic aluminum salt waterproofing agent, the addition of which causes filling of the internal pores, increased density of concrete materials and reduced rate of penetration of harmful substances. Sodium methyl silicate and cement-based materials react to form a specific waterproof layer, blocking ion penetration; however, the inorganic aluminum salt waterproofing agent protection effect is more prominent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, L.J.; Lu, H.R.; Fu, S.F.; Zhang, G.T. Effect of corrosion layer on the deterioration of concrete in gravity sewers. Constr. Build. Mater. 2020, 272, 121663. [Google Scholar] [CrossRef]
- Fytianos, G.; Tsikrikis, A.; Anagnostopoulos, C.A.; Papastergiadis, E.; Samaras, P. The Inclusion of Acidic and Stormwater Flows in Concrete Sewer Corrosion Mitigation Studies. Water 2021, 13, 261. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhang, D.; Zhu, H.; Ma, B.S.; Li Victor, C. Durability and self-healing of engineered cementitious composites exposed to simulated sewage environments. Cem. Concr. Compos. 2022, 129, 104500. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Baldermann, A.; Böttcher, M.E.; Leis, A.; Koraimann, G.; Grunert, P.; Dietzel, M. Microbiologically induced concrete corrosion: A case study from a combined sewer network. Cem. Concr. Res. 2015, 77, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Grengg, C.; Mittermayr, F.; Koraimann, G.; Konrad, F.; Szabó, M.; Demeny, A.; Dietzel, M. The decisive role of acidophilic bacteria in concrete sewer networks: A new model for fast progressing microbial concrete corrosion. Cem. Concr. Res. 2017, 101, 93–101. [Google Scholar] [CrossRef]
- Huber, B.; Herzog, B.; Drewes, J.E.; Koch, K.; Mueller, E. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiol. 2016, 16, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Wang, T.; Wu, K.; Kan, L.L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Li, X.; O’Moore, L.Z.; Song, Y.; Bond, P.L.; Yuan, Z.G.; Wilkie, S.; Hanzic, L.; Jiang, G.M. The rapid chemically induced corrosion of concrete sewers at high H2S concentration. Water Res. 2019, 162, 95–104. [Google Scholar] [CrossRef]
- Jiang, G.M.; Keller, J.; Bond, P.L. Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res. 2014, 65, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Y.; Jiang, G.M.; Bond, P.L.; Keller, J. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads. Water Res. 2015, 81, 84–91. [Google Scholar] [CrossRef]
- Sun, X.Y.; Jiang, G.M.; Bond, P.L.; Keller, J. Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers. Water Res. 2019, 157, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Min, H.G.; Song, Z.G. Investigation on the Sulfuric Acid Corrosion Mechanism for Concrete in Soaking Environment. Adv. Mater. Sci. Eng. 2018, 2018, 3258123. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodian, M.; Alani, A.M. Effect of Temperature and Acidity of Sulfuric Acid on Concrete Properties. J. Mater. Civ. Eng. 2017, 29, 04017154. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.F.; Dangla, P.; Chatellier, P.; Chaussadent, T. Degradation modelling of concrete submitted to sulfuric acid attack. Cem. Concr. Res. 2013, 53, 267–277. [Google Scholar] [CrossRef]
- Xiao, J.; Long, X.; Qu, W.J.; Li, L.; Jiang, H.B.; Zhong, Z.C. Influence of sulfuric acid corrosion on concrete stress–strain relationship under uniaxial compression. Measurement 2022, 187, 110318. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, Z.M.; Murong, Y.K.; Wang, L.; Lei, B.; Chu, L.J.; Jiang, H.B.; Qu, W.J. Effect of Chemical Composition of Fine Aggregate on the Frictional Behavior of Concrete–Soil Interface under Sulfuric Acid Environment. Fractal. Fract. 2021, 6, 22. [Google Scholar] [CrossRef]
- Harilal, M.; Uthaman, S.; George, R.P.; Anandkumar, B.; Thinaharan, C.; Philip, J.; Mudali, U.K. Enhanced anti-microbial activity in green concrete specimens containing fly ash, nanophase modifiers, and corrosion inhibitor. Environ. Prog. Sustain. Energy 2018, 38, 13102. [Google Scholar] [CrossRef]
- Yoon, H.S.; Yang, K.H.; Lee, K.M.; Kwon, S.J. Service Life Evaluation for RC Sewer Structure Repaired with Bacteria Mixed Coating: Through Probabilistic and Deterministic Method. Materials 2021, 14, 5424. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, L.J.; Shen, H.B.; Wu, Z.S. Long-Term Performance of Pultruded Basalt Fiber Reinforced Polymer Profiles under Acidic Conditions. J. Mater. Civ. Eng. 2018, 30, 04018096. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Di Bella, G.; Scalici, T.; Galtieri, G.; Valenza, A.; Proverbio, E. Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties. Compos. Part B Eng. 2016, 93, 35–42. [Google Scholar] [CrossRef]
- Elgabbas, F.; Vincent, P.; Ahmed, E.A.; Benmokrane, B. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams. Compos. Part B Eng. 2016, 91, 205–218. [Google Scholar] [CrossRef]
- Afroz, M.; Patnaikuni, I.; Venkatesan, S. Chemical durability and performance of modified basalt fiber in concrete medium. Constr. Build. Mater. 2017, 154, 191–203. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.H.; Niu, D.T.; Su, L.; Luo, D.M. Strength and chloride ion distribution brought by aggregate of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater. 2020, 234, 117390. [Google Scholar] [CrossRef]
- Wang, Z.S.; Li, Y.K.; Lu, J.L.; Tian, J.B.; Zhao, K. Research on Corrosion Characteristics and Performance Degradation of Basalt Fiber Concrete under Sodium Magnesium Sulfate Corrosion Environment. J. Coast. Res. 2020, 111, 56–62. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.F. Freezing–thawing durability of fly ash concrete composites containing silica fume and polypropylene fiber. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2014, 228, 241–246. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y.L. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaskar, A.; Albidah, A.; Alqarni, A.S.; Alyousef, R.; Mohammadhosseini, H. Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. J. Build. Eng. 2021, 35, 102108. [Google Scholar] [CrossRef]
- Lu, L.M.; Han, F.; Wu, S.H.; Qin, Y.W.; Yuan, G.L.; Doh, J.H. Experimental study on durability of basalt fiber concrete after elevated temperature. Struct. Concr. 2021, 23, 682–693. [Google Scholar] [CrossRef]
- Wang, Y.G.; Li, S.P.; Hughes, P.; Fan, Y.H. Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Constr. Build. Mater. 2020, 247, 118561. [Google Scholar] [CrossRef]
- Deng, Y.G.; Zhao, B.J.; Dai, T.T.; Li, G.Q.; Li, Y. Study on the dispersibility of modified basalt fiber and its influence on the mechanical properties of concrete. Constr. Build. Mater. 2022, 350, 128839. [Google Scholar] [CrossRef]
- Li, M.; Gong, F.; Wu, Z.S. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete. Constr. Build. Mater. 2020, 245, 118424. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bordiuzhenko, O.; Tekle, B.H.; Ribakov, Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021, 11, 8850. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Wang, L.; Lei, Z.K.; Han, X.F.; Shi, J.N. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018, 163, 460–470. [Google Scholar] [CrossRef]
- Kwak, Y.J.; Jung, W.Y. Evaluation of Tensile Bonding Strength of the Concrete-BFRP Interface under Freezing-Thaw Cycling. J. Korean Soc. Adv. Compos. Struct. 2019, 10, 8–15. [Google Scholar] [CrossRef]
- Huang, F.M.; Cao, Z.S.; Guo, J.F.; Jiang, S.H.; Li, S.; Guo, Z.Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Huang, F.M.; Cao, Z.S.; Jiang, S.H.; Zhou, C.B.; Huang, J.S.; Guo, Z.Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Jiang, S.H.; Huang, J.; Huang, F.M.; Yang, J.H.; Yao, C.; Zhou, C.B. Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Appl. Math. Modell. 2018, 63, 374–389. [Google Scholar] [CrossRef]
- Huang, F.M.; Zhang, J.; Zhou, C.B.; Wang, Y.H.; Huang, J.S.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.M.; Chen, J.W.; Li, W.B.; Guo, Z.Z. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef]
Types of Concrete | Cement | Sand | Crushed Stone | Water | Water Reducing Admixture | Basalt Fiber | Mineral Fines |
---|---|---|---|---|---|---|---|
C1 | 400 | 770 | 1155 | 160 | 3.6 | 0 | 0 |
C2 | 336 | 770 | 1155 | 160 | 3.6 | 2.5 | 80 |
C3 | 336 | 770 | 1155 | 160 | 3.6 | 2.5 | 80 |
C4 | 336 | 770 | 1155 | 160 | 3.6 | 2.5 | 80 |
C5 | 336 | 770 | 1155 | 160 | 3.6 | 2.5 | 80 |
Types of concrete | Silica fume | Titanium dioxide | Alum | Quartz sand | Sodium methyl silicate | Inorganic aluminum salt | |
C1 | 0 | 0 | 0 | 0 | 0 | 0 | |
C2 | 20 | 0 | 1 | 5 | 0 | 0 | |
C3 | 20 | 0.5 | 1 | 5 | 1.2 | 0 | |
C4 | 20 | 0.5 | 1 | 5 | 0 | 6 | |
C5 | 20 | 0.5 | 1 | 5 | 1.2 | 6 |
Starch | Glucose | Peptone | Urea | Diammonium Phosphate | MgSO4 | NaCl | Vitamin | Compound Fertilizer |
---|---|---|---|---|---|---|---|---|
368.64 | 201.216 | 55.68 | 24 | 12 | 180 | 180 | 6 | 20 |
Corrosion Time | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
0 d | 54.18 | 54.62 | 61.33 | 60.18 | 64.19 |
60 d | 55.58 | 55.53 | 65.79 | 63.64 | 67.34 |
120 d | 57.49 | 60.41 | 66.29 | 64.74 | 64.51 |
180 d | 53.60 | 58.74 | 62.46 | 64.59 | 62.93 |
240 d | 46.52 | 53.01 | 58.74 | 60.79 | 62.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Wang, Z.; Sun, W.; Yang, R. Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment. Materials 2023, 16, 452. https://doi.org/10.3390/ma16010452
Wei J, Wang Z, Sun W, Yang R. Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment. Materials. 2023; 16(1):452. https://doi.org/10.3390/ma16010452
Chicago/Turabian StyleWei, Jun, Zhenshan Wang, Weidong Sun, and Runan Yang. 2023. "Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment" Materials 16, no. 1: 452. https://doi.org/10.3390/ma16010452
APA StyleWei, J., Wang, Z., Sun, W., & Yang, R. (2023). Durability Performance and Corrosion Mechanism of New Basalt Fiber Concrete under Organic Water Environment. Materials, 16(1), 452. https://doi.org/10.3390/ma16010452