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Abstract: (1) Background: Aesthetic dentistry has become one of the most dynamic fields in modern
dental medicine. Ceramic veneers represent the most appropriate prosthetic restorations for smile
enhancement, due to their minimal invasiveness and highly natural appearance. For long-term
clinical success, accurate design of both tooth preparation and ceramic veneers is of paramount
importance. The aims of this in vitro study were to assess the stress in anterior teeth restored with
Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) ceramic veneers and
compare the resistance to detachment and the fracture of ceramic veneers prepared using two different
designs. (2) Methods: Sixteen lithium disilicate ceramic veneers were designed and milled using the
CAD-CAM technology and divided into two groups according to the preparations (n = 8): Group 1,
conventional (CO), with linear marginal contour and Group 2, crenelated (CR), the latter with our
novel (patented) sinusoidal marginal design. All samples were bonded to anterior natural teeth. The
mechanical resistance to detachment and fracture was investigated by applying bending forces on
the incisal margin of the veneers in order to determine which type of preparation leads to better
adhesion. An analytic method was employed, as well, and the results of the two approaches were
compared. (3) Results: The mean values of the maximum force recorded at the veneer detachment
were 78.82 ± 16.55 N for the CO group and 90.20 ± 29.81 N for the CR group. The relative increase,
equal to 14.43%, demonstrated that the novel CR tooth preparation provided higher adhesive joints.
In order to determine the stress distribution within the adhesive layer, a finite element analysis
(FEA) was performed. The statistical t-test showed that the mean value of the maximum normal
stresses is higher for the CR-type preparations. (4) Conclusions: The patented CR veneers represent
a practical solution to augment the adhesion and mechanical properties of ceramic veneers. The
obtained results demonstrated that CR adhesive joints triggered higher mechanical and adhesive
forces, which subsequently led to a higher resistance to detachment and fracture.

Keywords: ceramic veneers; computer-aided design; computer-aided manufacturing; lithium disili-
cate; crenelated tooth preparation; sinusoidal design; adhesive forces; mechanical resistance; finite
element analysis; aesthetic dentistry
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1. Introduction

The overall aesthetics of a person’s smile greatly depend on the teeth in the aesthetic
zone. Major caries lesions, large unsuccessful previous restorations, and trauma are the
most frequent causes of anterior teeth abnormalities. Therefore, various direct and indirect
restorative strategies must be employed in order to correct such issues. In this respect, for
many patients, direct filling-based restorations provide a rapid and affordable treatment
option. However, in addition to the high risk of recurrent caries, direct restorations have
several drawbacks, such as long-term discoloration due to the composite aging process.
Another popular treatment method for the previously mentioned diagnoses is based on
full-crown restorations that encompass the entire tooth structure. As they require complete
tooth coverage and may provide superior retention and aesthetics compared to direct
fillings, crown restorations have historically been the first treatment option for numerous
cosmetic issues. However, the process of teeth preparation for these restorations can be
considered invasive because it frequently requires a major removal of a part of the healthy
tooth structure. In order to overcome the aforementioned disadvantages, ceramic veneers
were introduced in the early 1980s with the aim of providing both conservativeness and a
highly natural appearance [1].

The long-term clinical success of ceramic veneers has been closely linked to several
factors, such as tooth surface and morphology, ceramic thickness, type of luting agent and
adhesive system, marginal and internal fit of the veneers to tooth surface, functional and
parafunctional activities, as well as geometry of the preparation [2]. Numerous experi-
mental studies have been conducted with the aim of improving both the mechanical and
cosmetic properties of such veneers. The directions of research in this respect have been
focused on topics such as materials and technological processes to fabricate veneers, luting
agents and protocols of the veneers to the dental surface, as well as distinct tooth prepara-
tion for prospective ceramic veneers [3–6]. The choice between indirect composites and
ceramic for veneer fabrication has been controversial as far as mechanical properties and
cost-effectiveness issues are concerned. However, a systematic review recently indicated
that a higher risk of failure was observed for indirect composites in comparison to ceramic
veneer restorations [7].

Traditional feldspathic porcelain systems have been preferred due to their optical
properties and the conservativeness of the dental structure. However, they display low me-
chanical properties; hence, the development of novel all-ceramic materials with increased
fracture toughness was encouraged. A widely-utilized glass-ceramic system (both milled
or pressed) is lithium disilicate, which can be utilized as a monolithic material for manu-
facturing various parts, from porcelain veneers to fixed dental prostheses in the posterior
region. This area of application is based on the material’s good mechanical properties,
biocompatibility, high flexural strength, and chemical stability [8–11].

Regarding tooth preparation, ceramic veneers are usually cemented by utilizing light-
activated resin cements because they provide longer working time, color stability, as well
as proper physical and biomechanical properties [12]. Alternatively, flowable composites
can be utilized for the luting procedure because they have good color stability [12], with
similar polymerization shrinkage and film thickness as compared to resin cements [13].
However, the absence of try-in pastes is a disadvantage [14,15].

Referring to the tooth preparation design for veneers, there are four types described
in the literature: window, feather, bevel, and incisal overlap [5]. While there are minor
differences between them, all these designs have in common the linear proximal contour
that outlines the extent of the prospective veneer. The issue is that many cases of clinical
failure due to veneer detachment from the dental support have been reported, and most
have been caused by an inappropriate tooth preparation technique. This is caused by the
fact that the conventional (CO) design, characterized by the linear marginal contour, has
the drawbacks of a small contact surface with the adjacent enamel and a large amount of
sound tooth removal [16,17]. This justified our approach of introducing a novel design,
with a sinusoidal proximal design of the preparation, in order to enhance the interfacial
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adhesive forces and mechanical resistance to veneer detachment from subjacent enamel.
This new type of dental veneer, which we have called “crenelated” (CR), is the subject of a
patent of our group [18].

Another important aspect that must be considered is that extending the preparation
into the dentin severely affects the long-term clinical success [19]. Therefore, all samples
were bonded to enamel in our works. In order to diminish the failure rate due to veneer
detachment, a lot of efforts have been made to develop adhesives and luting systems
with higher physical and mechanical properties [4]. However, one should not rely on
the adhesive mechanisms exclusively, but focus on exploring other possible conservative
designs for tooth preparation, and we approached this in our previous studies [18,20,21].

Taking the aforementioned aspects into consideration, the main purpose of our di-
rection of research was to develop such novel CR veneers. We introduced this concept
in a preliminary experimental study that comparatively evaluated the adhesive forces
between CO and CR veneers and resin models, by applying bending forces on the incisal
margins [20]. Moreover, we assessed the marginal and internal fit of CR versus CO veneers
to enamel tooth preparations by using optical microscopy and micro-computed tomog-
raphy in a follow-up work [21]. The results of both studies revealed several advantages
of CR veneers, namely: increased adhesive forces by more than 60%, which decrease the
probability of restoration detachment; higher retention forces, due to the peripheral micro-
retentions that form an intricate joint between the veneer and the substrate [20]; a higher
marginal adaptation (60 µm) of the CR compared to the CO veneers (230 µm); considerably
better internal adaptation for CR veneers in comparison to CO, as the clinically accepted
cement thickness/width of up to 120 µm covered 81.5% of the tooth surface for CR com-
pared to 64.5% for CO; better contact between the surface of the veneer and the tooth, thus
combining both adhesive and mechanical forces in order to prevent the veneer detachment;
a more accurate positioning of the veneers in situ during the luting procedure [21].

The aim of the present study is to assess the influence that such a CR design has on
the interfacial adhesive forces and on the mechanical resistance to detachment of veneers
in comparison to the CO design. As the veneer detachment from the dental structure
occurs frequently in daily practice, mainly because of inappropriate tooth preparation
and geometry, the novel patented CR design that we have proposed may provide better
interfacial adhesive forces and higher mechanical resistance to detachment than the CO
design. The sinusoidal marginal contour of the CR preparation creates micro-retentions
into the enamel; therefore, it should be capable of augmenting both the contact surface for
adhesion and the mechanical retention to the subjacent tooth.

2. Materials and Methods

The present study was conducted according to the guidelines of the Declaration of
Helsinki. It was approved by the CECS no. 5/19.01.2021 of the Ethical Committee of the
“Victor Babes” University of Medicine and Pharmacy of Timisoara, Romania.

2.1. Tooth Surface Preparation

Sample size was determined based on Altman’s nomogram, as pointed out in the
literature [2]. For a power of 80% and a standardized difference of approximately 1.18,
a sample size N equal to 22 was obtained; therefore, N/2 for each group. During the
testing, three specimens from each group failed in an inappropriate manner (i.e., by teeth
fracturing), and were consequently excluded from study. Hence, sixteen human maxillary
teeth (canines, central incisors, and lateral incisors), extracted for periodontal reasons,
displaying no restorations or decays were finally utilized in the investigations. Calculus,
dental plaque, and periodontal fibers were removed. Depending on the type of tooth
preparation, the samples were divided into two experimental groups, each one consisting
of three upper right central incisors, three upper right lateral incisors, and two upper right
canines: Group 1, with CO veneers (Figure 1a) and Group 2, with CR veneers (Figure 1b),
similar to [20]. In order to minimize the influence of the shape and size of the considered
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teeth on the results, the mesial-distal and facial-palatal dimensions of each sample were
measured with a Digimatic Caliper 4 with a 0.1 mm accuracy (BEI Technologies Inc.,
Duncan Electronics Division, Irvine, CA, USA). Thus, only similar teeth, with less than
0.1 mm linear differences, were selected for and utilized in the study.
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Figure 1. The two types of veneer design included in the experimental study: (a) conventional (CO),
with linear proximal margins; (b) crenelated (CR), with sinusoidal proximal margins. Notations:
1, external surface of the veneer; 2, internal surface of the veneer; 3, proximal margins; 4, internal
surface of the veneer, placed towards the tooth surface.

During all the stages of this work, the samples were stored in a 0.9% sodium-chloride
physiologically sterile solution at 25 ◦C, and dehydration was avoided. To standardize the
teeth preparation process, they were performed by the same author, using the same type of
burs and the same 4× magnification system (Univet, Rezzato, Italy).

The CO dental preparation specific for Group 1 consisted of reducing the incisal
margin by 1 mm and the buccal surface by 0.5 to 0.8 mm, tracing a linear proximal contour,
with its limits positioned buccally to the interdental contact (Figure 1a).

The novel CR preparation specific for Group 2 displays sinusoidal proximal lines
that outline the contour of the facial dental veneer (Figure 1b). The proximal limits were
positioned buccally to the interdental contact. The height of the crenelated lines was
correlated with the type of tooth, namely: 2 to 2.5 mm for lateral and inferior central
incisors and 2.5 to 3 mm for central upper incisors and canines. The depth of the sinusoidal
proximal margins decreased progressively from 0.6 to 0.8 mm in the gingival third, down
to 0.4–0.6 mm in the middle third, and further down to 0.3–0.4 mm in the incisal third [18].
The buccal face of the tooth was reduced by 0.5 to 0.8 mm, and the incisal margin by 1 mm.

Thus, the CR dental veneers had a particular design that fits with the preparation of
the tooth (Figure 1b): three sinusoidal proximal margins with different heights and depths,
0.5 to 0.8 mm facial thickness, and 1 mm incisal thickness. Even though the “dog-leg
preparation” [5] describes the lingual extension of the proximal margin between the contact
area and the gingival papilla (therefore creating a slightly convex aspect of the proximal
tooth reduction), the novel patented crenelated preparation is characterized by two or three
proximal sinusoidal lines (with specific characteristics depending on the tooth type and
clinical case). This provides a more fluid substrate for the further luting procedure. The
aim of these sinusoidal margins is to enhance the adhesion surface between enamel and
ceramic, thus triggering higher debonding strength.

Both groups were characterized by a butt joint finish line situated at the incisal margin
and a chamfer finish line along the cervical and proximal contour. The kit of diamond burs
(Komet Dental, Lemgo, Germany) utilized for the tooth preparation design had coarse-
grained cylindrical burs (0.8 mm and 1 mm in diameter), fine-grained cylindrical burs
(0.8 mm and 1 mm in diameter), rounded-tip Arkansas stone burs, and super-fine polishing
discs. The sequences of the tooth reduction and finishing protocols were the same for both
types of veneers. First, the reduction of the incisal margin was performed. Second, the
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preparation of the buccal face was completed, while outlining the marginal contour. The
proximal finishing lines were commonly extended just buccally to the interdental contact,
except for clinical situations when the form and color of the tooth had to be changed or
when there was a diastema that required closure. In these clinical contexts, the proximal
lines were extended orally to the interdental contacts. The finishing and polishing of the
preparations were finally performed with the above-mentioned burs and discs.

2.2. Manufacturing of the Dental Veneers

All sixteen veneers were manufactured using lithium disilicate ceramic (IPS e.max,
Ivoclar Vivadent, Liechtenstein) by employing CAD/CAM technology. The chairside
Planmeca FIT® system (Planmeca OY, Helsinki, Finland) was used for all of the steps of the
restorative workflow, from scanning the preparations to designing, and finally to milling
the ceramic veneers. Thus, the scanning procedure, also known as digital impression, was
performed with a Planmeca PlanScan Intraoral Scanner (Planmeca OY, Helsinki, Finland).
Then, the captured 3D images were built together, and 3D models of the CO and CR
preparations were generated. Further on, designing the prospective veneers consisted of
outlining the linear or sinusoidal marginal contour and creating the anatomical morphology
that simulated the substituted natural teeth (Figure 2).
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Figure 2. The main steps of designing CR veneers using the Planmeca Romexis Software 4.6.2R:
(a) tracing the outline of the preparation; (b) establishing the design of the veneer; (c) final analysis
before commanding the milling process.

The milling sequence was the final step of the technological process; it was performed
with the Planmeca PlanMill 40S machine (Planmeca OY, Helsinki, Finland). The selected
milling characteristics were: two spindles for enhanced milling speeds, 4 axes, 80 krpm
milling speed, and wet processing. The average milling time was 8 to 10 min. The
lithium disilicate glass-ceramic blocks utilized for the milling process (IPS e.max CAD
HT Monolithic, Ivoclar Vivadent, Schaan, Lichtenstein) streamlined the fabrication of
full-contour restorations, with durability, proven clinical properties, as well as excellent
esthetics and a high strength of 530 MPa [22]. The final step was the crystallization of the
veneers in the PRO-GRAMAT P510 oven (Ivoclar Vivadent, Schaan, Lichtenstein), using
the P161 program. The crystallization and glazing procedures were performed according
to the manufacturer’s specifications (Figure 3).

All sixteen ceramic veneers were luted to the enamel surface of the preparations. Prior
to the luting procedure, the enamel surface and the inner side of the ceramic veneers
were conditioned. Thus, the dental structure was etched with 37% orthophosphoric acid
(Eco-Etch, Ivoclar Vivadent, Schaan, Lichtenstein) for 20 s, then abundantly washed for 10 s
and gently dried without desiccation for another 10 s. The inner side of the veneers was
conditioned by applying 9% hydrofluoric acid (IPS ceramic etching gel, Ivoclar Vivadent,
Schaan, Lichtenstein) for 20 s, then thoroughly washed for 10 s, and air-dried for another
10 s. In order to promote the bond between the adhesive cement and the ceramic restoration,
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a primer (Monobond Plus, Ivoclar Vivadent, Schaan, Lichtenstein) was applied on the
etched ceramic surface for 1 min and then air dried. Having both the enamel and the
ceramic appropriately conditioned for the luting procedure, the bonding agent (Adhese
Universal, Ivoclar Vivadent, Schaan, Lichtenstein) was brushed onto both surfaces and then
smoothly air-dried. The luting composite (Variolink Esthetic LC, Ivoclar Vivadent, Schaan,
Lichtenstein) was carefully applied on the inner side of the veneer, and the restoration
was accurately placed on the dental preparation (Figure 3). Cement excess removal was
facilitated via a short initial light activation of 3 s, using Bluephase Style curing light (Ivoclar
Vivadent, Schaan, Lichtenstein).
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The entire light-curing process was then performed for 40 s on the palatal and
buccal surfaces of the restored tooth. The polymerization unit had a light intensity of
1000 mW/cm2, and its tip was in contact with the surface of the specimens during the
entire process of light curing.

2.3. The Debonding Tests

Before performing the debonding test, each sample was stored in a 0.9% sodium-
chloride physiologically sterile solution at 25 ◦C so dehydration was avoided.

Considering the specific geometry of the teeth, a dedicated setup was prepared.
Thus, each tooth was fixed using a commercial adhesive based on epoxy resin, Epoxyd-
Minutenkleber (Weicon, Münster, Germany), in a mold that ensured the parallelism of the
fixed surfaces. The adhesive was chosen so that the temperature rise during its exothermic
reaction was as low as possible, while its rigidity was not too high. The entire assembly
(i.e., tooth and mold) was then fixed using a precision vise (Figure 4). The load was applied
on the incisal margin of the palatal surface, perpendicular to the long axis of the tooth
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and respecting its symmetry axis, using a punch coated in a ceramic material, in order to
simulate the real contact conditions.
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Figure 4. Performing the debonding test: (a) the force is applied in the middle of the incisal edge;
(b) the ceramic veneer is (finally) completely detached.

In the literature, we identified two types of such tests: a shear-flexural test published by
Zarone et al. [2] and a test consisting of the application of a compression load on the incisal
edge until fracture (load-to-failure test), utilized by Gresnigt et al. [4]. These tests were not
standardized, and their settings were not regulated—the first one used a loading speed
equal to 0.5 mm/min, and the second one used 1 mm/min. In particular, we considered the
failure of the preparation through detachment/debonding of the veneer, without fracture.
Thus, we decided to adopt the loading configuration used in [2], which corresponds to our
purpose, and a loading speed equal to 1 mm/min. In this configuration, the load is applied
on the incisal margin, normal to the palatal surface. Such a force is not one of compression,
looking at the assembly of veneer–adhesive–tooth in a global way. Thus, our test is not a
regular peel test, considering the complexity of the assembly geometry. It can be named a
failure test by debonding of the veneer. Referring to the adhesive joints, throughout the study,
we use the term peeling tension from the considerations presented by Dillard [23].

The tests were performed under the same environmental conditions of temperature,
relative humidity, and air pressure in order to avoid the risk of bias error. A Zwick/Roell
Z005 testing machine with a 5 kN maximum load was utilized. A loading rate of 1 mm/min
and a preload of 5 N were applied. The test was considered completed when the ceramic
veneers were completely detached. The values of the force and of the corresponding
displacements were recorded throughout all the performed tests.

The geometry of the veneer-tooth assembly varies depending on different parameters
(i.e., morphology and dimensions of both tooth and veneer, as well as adhesive surface
area) and may impact the recorded values. As a consequence, the normal distribution
hypothesis was applied in order to obtain relevant results.

The adhesive surfaces, represented by the vestibular face of the teeth and by the inner
surface of the ceramic veneers, were photographed after performing the mechanical tests in
order to determine the type of debonding and whether it was cohesive, adhesive, or mixed.
Thus, a DSLR camera (Nikon D5500, Tokyo, Japan) and a compact tele macro lens (Tokina
ATX M100 f/2.8 PRO D Macro 1:1, Tokyo, Japan) were utilized. Due to its performant
features, the macro lens is capable of life-size (1:1) reproduction at a 300 mm distance. As
this experimental study was focused on the biomechanical properties determined by two
different tooth preparations and not on the imagistic evaluation of the adhesive surfaces,
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photographing the areas of interest was enough to draw conclusions regarding the type of
veneer debonding.

2.4. Analytical Evaluation of the Mechanical Strength

The geometry of the tooth-adhesive layer-veneer assembly is complex. Therefore, it is
difficult to analytically assess the stress at failure. Such an attempt implies the acceptance of
certain simplifying assumptions. Thus, Zarone et al. considered the assembly as a clamped
beam [2], with a rectangular cross-section loaded in bending and shear (Figure 5). The
maximum values of the shear and flexural strength were calculated in this study using
formulas from the mechanics of materials.
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Figure 5. Assumptions made regarding loaded teeth: (a) clamped beam loaded in bending with
shear force (own sketch adapted from [2]); (b) adherent loaded by applied force (own sketch adapted
from [23]).

In this paper, the solution proposed by Dillard for the stress distribution of a beam
on an elastic foundation was adopted [23]. The relationship in Equation (1) is directly
applicable to adhesive bonds. It has a good accuracy when the adhesive is relatively flexible
compared to the adherent, as in the case of tooth preparation (Figure 5). For a concentrated
force F applied at the end of a long-bonded strip (with a length > 5/β), the distribution of
the peeling stress σp on the symmetry axis x of the beam is

σp(x) =
Ea

2·ha·Ev·I·β3 ·e
−βx·F·cos(βx) (1)

where

β = 4

√
Ea·w

4·Ev·I·ha
(2)

In Equations (1) and (2), Ea is the Young’s modulus of the adhesive, which is assumed
to be linearly elastic, while Ev and I are the Young’s modulus and the centroidal moment of
inertia of the veneer, respectively. The x coordinate represents the distance along the height
of the preparation, measured from the incisal edge.

The thickness ha of the adhesive layer and the width w of the preparation were
considered constant. These two dimensions were determined as means of the values
measured at cervical and incisal levels for the adhesive thickness and for the mesial–distal
diameter of the tooth, with a 0.01 mm accuracy, as presented in Table 1.

From Equation (1), for x = 0, the maximum stress σp max is obtained as:

σpmax =
Ea

2·ha·Ev·I·β3 ·F (3)

The elastic properties of the materials, Young’s modulus E, and Poisson’s ratio ν were
imported from the literature [23]. They are listed in Table 2. The obtained results, in terms
of maximum stress σp max, are provided in the next section.
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Table 1. Dimensions of the teeth preparations—for each of the considered sample.

Type ha (mm) w (mm) Type ha (mm) w (mm)

CO1 (LI 1) 0.54 5.88 CR1 (LI) 0.615 5.91
CO2 (LI) 0.63 5.89 CR2 (LI) 0.765 6.12
CO3 (LI) 0.69 6.55 CR3 (CI) 0.655 8.48

CO4 (Ca 2) 0.875 8.88 CR4 (CI) 0.69 8.45
CO5 (CI 3) 0.70 8.11 CR5 (Ca) 0.61 9.44
CO6 (CI) 0.715 8.24 CR6 (LI) 0.58 5.82
CO7 (LI) 0.69 5.96 CR7 (LI) 0.81 5.02
CO8 (Ca) 0.88 9.72 CR8 (LI) 0.735 6.24

1 LI, lateral incisor; 2 Ca, canine; 3 CI, central incisor.

Table 2. Elastic properties of the considered materials for the analytical study.

Material E (MPa) ν (unitless)

Veneer 115,000 0.20
Dentine 18,600 0.31

Adhesive 5000 0.35

2.5. Finite Element Analysis (FEA)

In order to validate the adopted analytical solution, numerical analyses were per-
formed using the finite element method for two of the investigated preparations, previ-
ously pointed out in Table 1, randomly selected from each study group: CO3 and CR1.
The geometric models for veneers and teeth were obtained by converting into solids the
meshes obtained from the 3D scanning. The geometric models were positioned accordingly,
leaving 0.5 to 0.6 mm gaps between the veneer and teeth models. These gaps correspond
to the maximum values determined in our previous study [21], performed using optical
microscopy (for marginal widths of the dental adhesive) and micro-CT (for internal widths
of the adhesive). Thus, the most disadvantageous situation was considered for the FEA,
as the peak values of the adhesive widths were considered constant throughout the entire
surface of the veneer. Furthermore, this width was chosen in order to avoid the penetration
between veneer and tooth in the numerical model.

The gaps were filled with solid bodies using Boolean operations; the resulting models
corresponded to the adhesive layers (Figure 6).
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Further on, the models were imported in the commercial software Simulia Abaqus
2019 (Dassault Systèmes SE, Vélizy-Villacoublay, France) and meshed using first-order
tetrahedral elements C3D4 (which represents the label of the tetrahedral finite element type
utilized in the performed numerical analyses). For the veneers, the average element size
was set to 1 mm. The meshes consisted of 28,531 finite elements for the CO3 model and of
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25,804 finite elements for the CR1 model. The adhesive layers used an average element size
of 0.2 mm. This resulted in 12,160 elements for the CO3 preparation and in 15,715 elements
for the CR1 version. The incisors were meshed using an average finite element size of
1 mm. This determined 58,065 elements for the CO3 preparation and 68,591 for the CR1.
As an example, the meshes for the CR1 preparation are presented in Figure 6.

In order to replicate the experimental procedure, the simulated load was applied
using a spherical indenter with a radius of 1 mm, which was meshed using 656 first-order
triangular rigid elements R3D3. The indenter was positioned in the median plane of the
models, in contact with the incisal edge of the veneer. The contact between the indenter
and the veneer used a surface-to-surface interaction with “hard contact” normal properties
and “penalty” tangential properties, using a friction coefficient of 0.2.

As far as boundary conditions were concerned, the bottom surface of the incisors was
fixed, and the indenter was subjected to a force equal to the value recorded experimentally
(Figure 7): 93.90 N for the CO3 preparation and 68.71 N for the CR1 preparation.
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The numerical analyses were performed in static conditions, using an implicit solution
procedure. As output data, nodal reactions and displacements were recorded for the entire
model. The components of the stress were recorded only for the adhesive layer, which was
the area of interest. In Figure 8, the distributions of the maximum principal normal stress
σ1 are plotted, displaying the distribution and intensities of the stress both in color coding
and in numerical values.
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3. Results

The results of the debonding test in terms of values of the maximum force Fmax are
presented in Table 3. The Shapiro–Wilk test demonstrated that the highest force values
of the two groups have an approximately normal distribution, as long as the p-values are
higher than 0.05. In this respect, for the CO preparation, the p-value was 0.162, while for the
CR preparation, it was 0.728. Furthermore, Table 3 presents the mean values, the standard
deviations, and the confidence interval for the means of both study groups.

Table 3. The values of the maximum force recorded during the debonding tests for the two study groups.

Type Fmax (N) Type Fmax (N)

CO1 (LI 1) 48.94 CR1 (LI) 68.71
CO2 (LI) 57.29 CR2 (LI) 89.71
CO3 (LI) 93.90 CR3 (CI) 120.94

CO4 (Ca 2) 86.34 CR4 (CI) 100.89
CO5 (CI 3) 82.34 CR5 (Ca) 143.36
CO6 (CI) 88.51 CR6 (LI) 54.52
CO7 (LI) 78.49 CR7 (LI) 51.64
CO8 (Ca) 96.75 CR8 (LI) 91.81

Mean value 79.07 Mean value 90.20
Standard deviation 16.08 Standard deviation 29.81

Interval for the mean 4 79.07 ± 13.44 Interval for the mean 90.20 ± 24.92
1 LI, lateral incisor; 2 Ca, canine; 3 CI, central incisor; 4 95% confidence.

The experimental data demonstrated that the recorded maximum force increased
by 14.07% for the CR preparation. However, the maximum force represents an absolute
value, which depends on the type and geometry of the teeth. In conclusion, an approach in
specific terms, such as the maximum principal normal stress σ1 is more appropriate [2].

The analysis of the macroscopic photographs demonstrated that the debonding was
100% adhesive for both the CO and the CR Groups, as the failure occurred within the
interfacial areas, with the adhesive layer remaining either on the tooth surface or on the
ceramic veneer. However, there were few differences between the two groups as far as
the localization of the remnant adhesive layer was concerned. For the CO samples, the
remnant adhesive layer on the tooth surface was mainly observed along its cervical area
and its medial and distal third of the buccal face (Figure 9).
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On the other hand, the tooth surface was almost entirely covered with the adhesive
layer after veneer debonding for all CR samples (Figure 10a). In addition to this, a CR
veneer fracture was registered, with the ceramic fragment remaining luted to the tooth
surface in the immediate proximity of the distal marginal preparation (Figure 10b).
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preparations, displaying the remnant adhesive layer and a fragment of the fractured ceramic veneer
(pointed out with a red arrow) along the sinusoidal distal margin.

The results of the experimental testing, in terms of maximum stress σp max, are listed
in Table 4. The Shapiro–Wilk test demonstrated that the maximum stress σp max of the
two groups have an approximately normal distribution, as long as the p-values are higher
than 0.05. In this respect, for the CO preparation, the p-value was 0.302, while for the CR
preparation, it was 0.867. Furthermore, Table 4 presents the mean values, the standard
deviations, and the confidence interval for the mean for both study groups.

Table 4. The values of the maximum stress for the two groups.

Type σp max (MPa) Type σp max (MPa)

CO1 (LI) 11.36 CR1 (LI) 18.80
CO2 (LI) 15.27 CR2 (LI) 19.89
CO3 (LI) 21.06 CR3 (CI) 20.21
CO4 (Ca) 11.49 CR4 (CI) 15.51
CO5 (CI) 13.41 CR5 (Ca) 23.68
CO6 (CI) 14.48 CR6 (LI) 16.06
CO7 (LI) 18.29 CR7 (LI) 13.54
CO8 (Ca) 13.41 CR8 (LI) 20.84

Mean value 14.85 Mean value 18.57
Standard deviation 3.13 Standard deviation 3.10

Interval for the mean 1 14.85 ± 2.62 Interval for the mean 18.57 ± 2.59
1 95% confidence.

The results demonstrate that the maximum stress increased with 25.06% for the CR
preparation. By expressing the results in terms of stress, the scattering of data decreases
and the values of the standard deviation are approximately equal.

Figure 11 presents the stress distributions obtained for the CO3 and CR1 preparations
by using the analytical solution, expressed by Equation (1), as well as by performing
the numerical analysis. For the analytical solution, the results are presented in terms of
stress σp, while for the numerical analysis, the results are presented in terms of maximum
principal normal stress σ1, i.e., the highest value of the normal stress produced in the
adhesive preparations.
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Figure 11. The normal stress distributions for: (a) the CO3 preparation; (b) the CR1 preparation.

It can be noted that the normal stress distributions were similar over the distance of
1 mm, starting from the incisal edge. This was precisely the region of the failure initiation.
In addition to this, the determined maximum stress values were approximately equal by
using the two methods:

• For the CO3 preparation, the relative error was equal to 5.13% (the maximum stress
σp max was equal to 21.06 MPa, while the maximum normal principal stress σ1 reached
19.98 MPa);

• For the CR1 preparation, the relative error was equal to 2.46% (the maximum stress
σp max was equal to 19.44 MPa, while the maximum normal principal stress σ1 reached
18.96 MPa).

Therefore, even if the analytical solution slightly overestimates the maximum stress
values, it is validated by the numerical analysis. Moreover, it has the advantage of being
easily applicable.

Finally, the maximum debonding stress values presented in Table 4 were analyzed
statistically. Since both groups had an approximately normal distribution (verified through
the Shapiro–Wilk test, Section 2.4) and equal variances are assumed (the Levene’s test
for equality of variances provided a significance equal to 0.893 for an F value of 0.019), a
t-Test of the difference of the means was performed, according to [24]. In this case, the null
hypothesis stated that the means of the maximum normal stress values of the two groups
were equal. The summary of the t-Test is presented in Table 5, for a confidence level of 0.95.

Table 5. t-Test summary for the two types of veneers: CO (Group 1) and CR (Group 2).

Type Mean Variance n Pooled Variance df 1 t 2 p (T ≤ t) tcritic

CO 14.85 11.19 8
11.074 14 −2.236 0.042 2.145

CR 18.57 10.96 8
1 degrees of freedom for the two groups; 2 t-Test statistic value.

Since the absolute value of −2.236 was higher than the critical t of 2.145, the null
hypothesis was rejected, and the research hypothesis was accepted; therefore, the means are
different. The probability of rejecting was equal to 0.042, when in fact, the null hypothesis
was true. Thus, the mean of the maximum normal stress value was 18.57 ± 2.59 (MPa) for
the CR tooth preparation and 14.85 ± 2.62 (MPa) for the CO tooth preparation (Figure 12),
which demonstrated a significant increase of 25.06% for the CR samples.
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4. Discussions

Several experimental studies have focused on the correlation between the type of tooth
preparation, luting materials, and failure mode of ceramic veneers in order to identify clini-
cal and technical solutions to veneer debonding [25–34]. However, there are no studies that
analyzed the influence that a novel sinusoidal marginal contour, such as the one we have
proposed [18], may have on the adhesive interfacial forces. The CO design of the veneers is
always characterized by a linear proximal contour that has the advantages of simplicity
and reproducibility. However, according to the literature [31,32], this type of design has
not improved the debonding strength during mechanical loading and, consequently, the
adhesive properties of the luting systems have not been improved over time.

Therefore, the novel CR veneers have been designed as a practical solution aiming to
enhance the resistance to the mechanical stress that occurs during functional loading. Their
sinusoidal marginal contour provide an interlocking joint between enamel and ceramic,
which is deemed to enlarge the contact surface and, subsequently, to determine higher
adhesive forces. Moreover, the resulting micro-retentions assure a higher retention of the
veneers on the dental substrate and a more accurate positioning of the prosthetic restoration
during the luting procedure [21]. In addition to this, the sinusoidal line of the adhesive
interface is expected to ensure a higher aesthetic result than the CO linear contour. This is
of paramount importance in cosmetic dentistry.

As far as the tooth morphology is concerned, the palatal concavity and the incisal
areas of maxillary anterior teeth are considered to be high-stress concentration areas during
tooth functioning [33,34]. Whenever the enamel is reduced during the tooth preparation,
it should be substituted by a material that has enamel-like properties in order to restore
the original biomechanical behavior of a tooth [35]. The long-term success of a prosthetic
restoration closely depends on the preparation design and geometry.

High-quality adhesion can be obtained when at least 50% to 70% of the enamel surface
is available for the etching procedure [36]. The luting procedure creates two interfaces:
the first one is between the ceramic veneer and the composite resin luting agent and the
second one is between the composite resin luting agent and the enamel. In order to obtain a
long-lasting adhesive joint, an accurate conditioning of both the enamel and the veneer is of
paramount importance. Enamel is a dry substrate without vital structures, which contains
92% of the volume of mineral phase (hydroxyapatite); therefore, it is considered the ideal
substrate to form a tight adhesive joint. The acid-etch technique is still the gold standard for
bonding resin-based materials to the tooth structure. The diffusion and interlocking of resin
monomers into the array of micro-porosities left by the acid dissolution of enamel represent
the fundamental process of the micromechanical interaction between adhesives and enamel.
Bonding to enamel after etching with phosphoric acid is certainly the foundation for the
durability of the adhesive restorative procedure [37].
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The development of dental adhesive systems has had a significantly positive impact in
restorative dentistry. Minimally invasive dentistry focuses on the application of systematic
preservation of the original tooth substrates, with the aim to utilize as much enamel as
possible. The subsequent restorative procedure often relies on bonding to the remaining
tooth structures using an adhesive system with a resin composite [38].

However, the adhesive interfaces have their own issues. Thus, they are prone to
microleakage, staining, and secondary decays, as a consequence of inappropriate tooth
preparation, veneer fabrication, internal and marginal adaptation of the restoration to
dental structure, or of functional and parafunctional forces [24,39,40]. Tribst et al. [41], as
well as Andermatt et al. [42] studied the adhesive strength of the composite resin bound to
both etched enamel and etched ceramic. The results displayed proper adhesive properties
of the tooth/composite and resin cement/enamel interfaces, even if the stress distribution
was not uniform because of the combination of plastic and elastic deformation of adhesive,
composite resin cement, and enamel [43]. According to other authors, the fracture energy
mostly concentrates between the resin cement and the enamel. Consequently, the shearing
stress impacts the veneer slide, concentrating compression stress in the weakest areas (i.e.,
incisal or gingival margins) [44]. This leads to micro-cracks within the adhesive layer,
which is responsible for the veneer detachment or fracture. Thus, it must be noted that
most fractures are caused by adhesive failure at the porcelain/cement interface [45].

In order to assess the influence that the novel CR design has on the debonding strength,
debonding tests were performed in the present work using a Zwick/Roell Z005 universal
testing machine. By applying the load on the incisal margin of the palatal surface, perpen-
dicular to the long axis of the tooth, sixteen veneers (divided into two equal groups, CO
and CR) have been detached from the enamel surface. The experimental data demonstrated
that the recorded maximum force increased by 14.07% for the CR preparation. Therefore,
the novel design achieved a significant increase of the adhesive interfacial forces, which is a
favorable premise for a long-term prognosis of prosthetic treatments with ceramic veneers.

Imagistic assessments of the debonding surfaces after veneer detachment provided
valuable information about the fracture mode. Adhesive failures between the luting cement
and ceramic (with the remnant adhesive layer covering the entire tooth surface) were
observed for all CR samples. On the other hand, as far as the CO group was concerned, the
fracture type was adhesive as well. However, the localization of the remnant adhesive layer
was either on the tooth (i.e., mainly along the cervical area and the proximal thirds of the
buccal surface) or on the inner side of the ceramic veneer. The adhesive type of interfacial
fracture that occurred in both experimental groups highlights the importance of accurate
conditioning of the enamel during the luting procedures. This is due to the fact that the
quality of the micromechanical interlocking of the resin tags within the micro-porosities in
acid-etched enamel has a major impact on the interfacial adhesive forces. Higher bonding
forces between the enamel and the adhesive layer were observed in the CR samples, as
the remnant adhesive layer covered the entire surface of the tooth. In one of the cases, a
fragment of the fractured CR veneer remained bonded along the sinusoidal adhesive joint.

The tooth-adhesive layer-veneer assembly is complex, because it combines different
biomechanical properties and surface characteristics of the components. Moreover, there is
a large variety of tooth dimensions and shapes that may significantly impact the results
of the mechanical tests. In order to perform the analytical evaluation of the mechanical
strength, the solution proposed by Dillard for the stress distribution of a beam on an
elastic foundation was adopted in the current work [23]. The results of the Shapiro–Wilk
test demonstrated that the maximum stress increased by 25.06% for the CR preparation,
considering the fact that the maximum debonding stress σp max of the two groups has an
approximately normal distribution, as long as the p-values are higher than 0.05 (for the
CO preparation the p-value is 0.302, while for the CR preparation it is 0.867). The results
triggered by the debonding test demonstrated higher adhesive forces for the CR samples.
Thus, this novel variant proves to be a feasible premise for better clinical performance in
oral prosthetic rehabilitation.
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The characterization of the mechanical properties and of the stress distribution were
important aspects in the FEA, which is a numerical study that shows stress distribution
patterns and, consequently, potential fracture areas. Ceramic veneers represent the most
appropriate prosthetic solution for aesthetic and functional rehabilitation of anterior teeth.
The proper morphology and length of incisal edges facilitate correct anterior guidance and,
therefore, the determining factors for enhancing the mechanical behavior of veneers are
significant, particularly the preparation design [34,46,47].

The load was applied in the present study by using a spherical indenter on the
palatal side of the incisal edge of the veneers, in the middle plane of the teeth. Thus,
the experimental procedure during the debonding test was simulated. Its comparative
effect on the resulting stresses in CR vs. CO adhesive layers has not been evaluated in
previous studies that utilized FEA [34,46–49]. As is well-known, ceramic has a higher
modulus of elasticity than dental tissues and resin composite cement. In contrast, the
cement layer behaves similar to a stress absorber. As the aim of this investigation was to
determine the influence of the novel preparation design on the stress distribution within
the adhesive layer (which was the area of interest), the FEA determined that the normal
stress distributions were similar over the distance of 1 mm. The fracture line started from
the incisal edge to the cervical margin and along the middle plane, for both the CR and CO
exemplified samples. A good match was obtained for this distance between numerical (i.e.,
FEA) and analytical results.

After analyzing the results, the following conclusions were drawn:

• An accurate adhesive protocol of bonding ceramic veneers to enamel triggers a
resistant micromechanical interlocking of the resin tags within the array of micro-
porosities in acid-etched enamel. This leads to higher adhesive forces within the
enamel–adhesive interface than within the ceramic veneer–adhesive interface.

• In the CR group, the remnant adhesive layer was dispersed over the entire surface
of the tooth. This demonstrated that the CR preparation generated higher bonding
forces within the enamel–adhesive interface than the CO preparation. Moreover,
the fragment of the fractured CR veneer that remained bonded along the sinusoidal
adhesive joint displayed valuable information about the influence that the peripheral
micro-retentions had over the bonding strength (Figure 10).

A disadvantage of the novel, crenelated design that we have proposed [18] and
analyzed in previous studies [20,21], as well as in the present one includes the fact that the
dental preparation technique can be quite difficult for unexperienced doctors. Therefore,
further research activities must be focused on elaborating a kit of burs specially designed
for CR preparations. This is deemed to make the process of dental preparation predictable
and repeatable. Furthermore, regarding both CO and CR designs, inappropriate marginal
and internal adaptation of the ceramic veneers to enamel may cause microleakage and,
thus, a susceptibility to tooth sensitivity, secondary decays, marginal discoloration, and
eventually, treatment failure. Hence, investigations such as those carried out on in our
previous study are necessary to assess these issues [21]. Contraindications of the proposed
crenelated veneers are related to microdontia or severely used teeth due to bruxism or other
pathologies; they may cause an insufficient height for properly preparing the sinusoidal
proximal margins. Moreover, rotated teeth with one of the proximal margins localized
orally to the adjacent tooth trigger difficulties in preparing sinusoidal proximal margins.

Regarding other aspects that could be seen as disadvantages, we must point out that
the proximal reduction for CR veneers follows the same steps as for the CO ones; namely, the
access to the proximal zone is facilitated by placing a wedge and a metallic matrix between
the prepared and the adjacent tooth. Additionally, the CR preparation is as conservative as
the CO one because a mock-up is used as a guide for tooth preparation, thus respecting
the same preparation steps and techniques available for CO veneers. The only difference
between the two types of preparations is the design of the proximal contour. As far as
the stress concentrating area is concerned, the FEA analysis in this study demonstrated
that the normal stress distributions are similar for CR and CO veneers. Furthermore, the
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propagation of the adhesive layer fracture was initiated at the incisal edge and continued
along the middle line of the facial surface.

Furthermore, the sinusoidal peripheral contour is deemed to provide more accurate in
situ positioning of the veneers during the luting procedure, as well as a more appropriate
color adaptation along the adhesive interfaces. All these aspects are the subject of future
work. Additionally, further in vivo studies are considered to assess the clinical performance
of the CAD-CAM of CR veneers, such as adhesive properties and subsequent resistance
to debonding and fracture of prosthetic restorations. Finally, all-ceramic systems utilized
in dentistry are extremely versatile, various, and comprehensive. The same goes for the
technological tools and protocols that are continuously evolving in order to trigger better
functional and mechanical properties of the veneers. As a result, further clinical research
is planned, with the aim to obtain relevant information for the dentists to apply in their
clinical practice.

5. Conclusions

Within the limitations of this study (and of the novel proposed design) pointed out
above, the following conclusions were drawn:

(i) Crenelated (CR) ceramic veneers, with their proximal sinusoidal contour, provided
peripheral micro-retentions that form precise intricate joints between the ceramic
veneers and the subjacent enamel. These joints considerably augment the bonding
strength and the mechanical properties of the restorations. Thus, CR veneers displayed
a higher bonding strength, as the recorded maximum force increased by 14.07%;

(ii) In addition to this, the sinusoidal marginal contour assures a better dental support for
the adhesive layer, although the type of fracture was adhesive for both experimental
groups. The fact that all CR and CO veneers were detached from the dental prepa-
rations due to the interfacial adhesive type of fracture enhanced the importance of
accurate conditioning of ceramic and enamel during the luting procedure;

(iii) The maximum peeling stress increased by 25.06% for the CR preparation, which
demonstrated the higher adhesive strength of this solution. The remnant adhesive
layer covering almost the entire surface of the CR samples after veneer debonding
underlines the superiority of the novel, sinusoidal preparation. However, the FEA
analysis demonstrated that the preparation design has no influence on the propagation
of the adhesive layer fracture;

(iv) Thus, the FEA displayed a similar propagation of the adhesive layer fracture for both
study groups. Moreover, the normal stress distributions were similar over the distance
of approximately 1 mm starting from the incisal edge, and the determined values of
the maximum stress were approximately equal;

(v) An analytical solution for the stress distribution of a beam on elastic foundation was
adopted and applied, evaluating the maximum normal stress at failure. Furthermore,
it was validated in the case of veneers debonding through the FEA.

6. Patents

The novel concept of crenelated veneers is the subject of the Patent No. 131840 B1,
with the title Crenelated dental facets (in Romanian), released by OSIM Bucharest, Romania
on 30.12.2020.
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