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Abstract: In this paper, creep at room temperature is studied using a mechanical double−spring
steering−gear load table, and the results are used to determine the accuracy of theoretical and
simulated data. A creep equation at room temperature, based on the parameters obtained by a new
macroscopic tensile experiment method, is used to analyze the creep strain and creep angle of a
spring under force. The correctness of the theoretical analysis is verified by a finite−element method.
Finally, a creep strain experiment of a torsion spring is carried out. The experimental results are 4.3%
lower than the theoretical calculation results, which demonstrates the accuracy of the measurement,
with an error of <5% achieved. The results shows that the equation used for the theoretical calculation
is highly accurate and can meet the requirements of engineering measurement.

Keywords: load simulator; double spring; pre-compression; creep effect; prototype experiment

1. Introduction

During flight, a missile control system gives instructions to control the wing of the
steering gear to rotate at a certain Angle, which changes the direction and magnitude of the
gas force acting on the missile, thus changing the missile’s flight trajectory [1]. Therefore,
the performance of its steering gear greatly influences the performance of a missile [2].
As steering gear is an integral component of an aircraft system, it is impossible to carry
out a steering gear test after the design and manufacture of the system [3]. Therefore, it is
necessary to test the performance of steering gear during its manufacture. A simulation
load table is mainly used to simulate the force of steering gear during actual use in the
environment [4].

At present, large-scale servos are mainly tested using electric and electro-hydraulic
servo load simulators [1], while mechanical load simulators are widely used in small servo
testing because of their high loading accuracy, small residual torque [5,6], small size, low
manufacturing cost, simple structure, and easy maintenance.

For a mechanical load table, a spring torsion bar is generally used as the core com-
ponent to provide load force. A spring torsion bar has the advantages of small error and
high reliability [7]. In order to eliminate the non-linearity of spring reverse loading and
the change of stiffness, and to reduce the zero balance range of a spring due to residual
stress, friction, zero hysteresis, and other factors, Zhang [8] has proposed a mechanical load
table with a structure of a double-spring coaxial reverse arrangement and pre-compression,
which can effectively reduce the zero balance range. Because of the moment produced by
the pre-compression of a spring, the spring will creep.

Zhu [9] studied the creep process of a precision helical tensile spring, which provided
a method for measuring the creep of a tensile spring at room temperature. T. H. Alden [10]
studied the strain hardening of 304 stainless steel during low temperature creep and pro-
posed a theory that can be used to predict the creep curve and the hardening effect caused
by creep. A. Oehlert [11] studied the room-temperature creep of high strength steel and
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found that creep can occur at lower stresses and that creep strain increases with creep
time and stress, but decreases with an increase of number of cycles. B. Alfredsson [12]
conducted low-temperature creep experiments on martensite and bainite microstructures
of high-strength rolling bearing steel, and found that the two exhibited different primary
creep behaviors. The research results have certain guiding significance for the design and
application of high-strength steel. Paul R. Barrett [13] developed a modified Coble creep
model to describe the experimental low-stress creep rates in alloys with thermally stable
precipitate structures. Brian K. Milligan [14] has studied the creep behavior of Al-Cu alloys
at certain temperatures, and found that increasing the thermal stability of the precipitates
in Al-Cu alloys can significantly improve their creep properties. Hu [15] explained how
the evolution of microstructure affects the creep properties of a material physically, and
evaluated several secondary phenomena in the curve of creep rate versus time of 316H
stainless steel, which is vital to the realistic life assessment of critical engineering compo-
nents. Wu [16] established the creep constitutive equation of a stainless steel spring to
study the creep of a spring, and found that the higher the ambient temperature, the greater
the creep strain of a stainless steel spring. When the service temperature increases from
25 ◦C to 320 ◦C, the 24h creep strain increases by five times.

At present, the research on creep mainly focuses on the creep behavior of materials, or
the establishment of creep models under high temperature, but the research on creep at
room temperature is relatively scarce. Most of the research on the creep behavior of springs
has been carried out at high temperature and mainly focus on the stress relaxation of a
spring [17–22]. In this paper, the influence of creep effect of a spring due to pre-compression
is studied. The specific research contents are as follows: Through deconstruction and
reorganization, using the original room-temperature creep constitutive equation as a basis, a
room-temperature creep constitutive equation of a torsion spring with relevant parameters
is obtained based on a macro-tensile test, which is then compared and verified by a
finite-element simulation. The stress and strain of a spring are analyzed, and an accurate
stress expression of the spring is obtained. Experiments are designed to verify the creep
performance of a spring, and the error between the theoretical calculation results of spring
creep strain and experimental data is obtained.

2. Creep Equation and Experimental Method of a Spring at Room Temperature
2.1. Creep Equation of a Spring at Room Temperature

In room-temperature creep, the creep deformation increases logarithmically with time,
which is consistent with the first stage of typical creep. Strain hardening and fatigue models
are usually used in creep theory at room temperature. The fatigue model is more accurate
in fast loading, while the strain hardening model can be used in room-temperature creep
under arbitrary loading [23].

According to the microscopic situation of room-temperature creep, Schoeck [24] pro-
posed the constitutive equation of room-temperature creep:

.
εc = NAVν exp

(
− U

KT

)
, (1)

where:
.

εc—room-temperature creep rate; N—dislocation density; A—the area of disloca-
tions swept after passing an obstacle; V—activation volume; ν—vibration frequency of the
dislocation line; U—thermal activation energy required to pass obstacles; K—Boltzmann
constant; T—experimental temperature.

U can be expressed as the product of the thermal activation energy, U0, minus the
effective stress, σeff, acting on the dislocation line and the activation volume, V, namely:

U = U0 − σeffV. (2)
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In the strain hardening model, the external stress, σ, is constant, but due to the
hardening effect, the effective stress, σeff, decreases with the increase of creep value, εc,
namely:

σeff = σ − θεc, (3)

where: θ—hardening coefficient at room-temperature creep; εc—creep value.
The relationship between room-temperature creep and creep time can be obtained by

introducing Equations (2) and (3) into Equation (1), namely:

εc = α ln
(

tc

τ
+ 1
)

, (4)

where:
α =

KT
θV

, τ =
KT
θV

1
NABν

exp
U0 − σV

KT
, (5)

where: B—Burgers vector; θ—strain hardening coefficient.
Derived from Equation (4), the relationship between creep rate,

.
εc, and creep time, tc,

at room temperature can be obtained as follows:

.
εc =

α

tc + τ
. (6)

After the end of loading, creep just appears. At this time, tc = 0 and
.

εc = α/τ =
.

εc0,
which can be substituted into Equation (6) to obtain the following relationship:

.
εc =

(
tc

α
+

1
.
εc0

)−1
. (7)

It can be seen from Equation (7) that the main influencing factors of creep rate are α
and

.
εc0, which can be directly obtained by experiment. By fitting the experimental data

with Equation (7), the creep rate equation can be obtained.
According to Equation (6), the room-temperature creep rate,

.
εc, can be obtained

only after obtaining the influencing factors α and τ. However, these two factors are
a measure of micro performance, which are difficult to obtain and not suitable for the
situation of large individual differences. Therefore, Xiao [24] adopted a method to calculate
room-temperature creep only with macro parameters, and the relevant parameters can be
obtained through routine experiments, which is a more simple and convenient method in
engineering applications.

The initial creep rate,
.

εc = α/τ =
.

εc0, at the beginning of creep can be combined with
Equation (4) to obtain Equation (8):

εc = α ln
(

t
α

.
εc0 + 1

)
. (8)

Therefore, the parameter τ is transformed into the initial creep rate,
.

εc0. There is no
difference between creep loading at room temperature and tensile-test loading. Therefore,
the strain rate at the moment when the room-temperature creep loading is completed is
equal to the rate when the creep is just carried out, and the creep stress is equal to the stress
at the end of the loading.

The Ramberg–Osgood model [25] is usually used to describe the stress–strain curve of
steel. This model was put forward in 1943. The main idea is that the strain of a material is
composed of elastic deformation and plastic deformation. The nominal flow limit, σ0.2, of
a material is selected by the classical method, and the corresponding deformation ε0.2 =
0.002, then the equation for the Ramberg–Osgood model is:

ε =
σ

E
+ 0.002

(
σ

σ0.2

)n
, (9)
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where: σ0.2—nominal flow limit; n—strain hardening coefficient.
The strain hardening coefficient can be selected by the classical method. If σ= σ0.1 is

used [26], the strain hardening coefficient is:

n =
ln(ε0.2/ε0.1)

ln(σ0.2/σ0.1)
(10)

The above equation is accurate when the stress is less than the nominal flow limit, σ0.2,
but when the stress exceeds the nominal flow limit the calculated result of this model is
larger than the actual result.

On the basis of the Ramberg–Osgood model [25], Kim J. R. Rasmussen [27] put forward
the method of subsection fitting through experimental research. The boundary point is the
nominal flow limit, σ0.2. When the stress is less than the nominal flow limit, the Ramberg–
Osgood model is used. After σ0.2 is exceeded, the Ramberg–Osgood model is calculated in
the translation coordinate system. Through a large number of experimental calculations
and statistical analysis, an improved Ramberg–Osgood model is obtained:

ε =


σ
E + 0.002

(
σ

σ0.2

)n
, σ ≤ σ0.2

σ−σ0.2
E0.2

+ εu

(
σ−σ0.2
σu−σ0.2

)m
+ ε0.2, σ ≥ σ0.2

. (11)

(1) When σ ≤ σ0.2, n is the strain hardening coefficient, which can be calculated by
Equation (10).

(2) When σ ≥ σ0.2, E0.2 is the initial Young’s modulus at this stage, that is, the tangent
modulus at 0.2% yield strength. Its value can be calculated by Equation (12):

E0.2 =
E

1 + 0.002n/e
, (12)

where: e—parameter, e = σ0.2/E; εu—total strain at final fracture; σu—stress at final
fracture, i.e., tensile strength; m—index, m = 1 + 3.5σ0.2/σu; ε0.2—σ0.2 corresponding total
engineering strain, ε0.2 = σ0.2/E + 0.002.

The strain rate at the loading stage can be obtained by deriving the time t from both
sides of Equation (11) at the same time.

dε

dt
=

{
[ 1

E + 0.002n( σ
σ0.2

)n−1]dσ
dt , σ ≤ σ0.2

[ 1
E0.2

+ εum( σ−σ0.2
σu−σ0.2

)m−1 1
σ−σ0.2

]dσ
dt , σ ≥ σ0.2

. (13)

It is known that the state at the end of loading is the initial state at the beginning

of creep, that is,
.

εc0− =
.

εc0+ =
.

ε(T1), and
.

εc0 = α/τ. By substituting Equation (8),
Equation (14) can be obtained:

εc = α(σc) ln[1 +
t

α(σc)

.
ε1(σc)], (14)

where σc is the constant stress in the creep stage of the material and its value is equal

to the material stress at the completion of loading. Therefore,
.

ε(σc) =
.

ε(T1). By using
Equations (12) and (13), the creep value increases with the increase of creep time.

2.2. Spring Material and Size Parameters

The spring material is 65 Mn, and its specific performance parameters are shown in
Table 1.
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Table 1. Mechanical properties of 65 Mn Steel.

Elastic modulus/(MPa) 211,000
Poisson’s ratio 0.288

Density/(t/mm3) 7.83 × 10−9

Tensile strength σb/(MPa) 1420
Yield strength σs/(MPa) 1136
Fatigue limit σ−1/(MPa) 639

The spring calculation process has been mentioned in another article [8], and the
spring size parameters are shown in Table 2 below.

Table 2. Main parameters of a torsion spring bearing the torque of 300 N·mm.

Torsion spring wire diameter/(mm) 1.8
Mean diameter of coil/(mm) 11

Total number of coils 4
Free angle/(◦ ) 120

Torsion spring force arm/(mm) 15
Torsion spring pitch/(mm) 2.5

Torsion spring helix angle/(◦ ) 4.14

2.3. Calculation of Temperature Creep in Spring Chamber

According to article [28], the maximum stress of a cylindrical helical torsional spring
when it only withstands external torque T is:

σbb = −cos3 a
zmC

T[0.154 + (0.246 cos2 a − 0.096 sin2 a)
1
C
], (15)

σtt = −cos α

zm
T[1 + 0.871

cos2 α

C
+ (0.032 sin2 α + 0.642 cos2 α)

cos2 α

C
], (16)

and

τtb = τbt =
sin α

zt
T[1 + 0.635

cos2 α

C
+ 0.163

cos4 α

C2 ], (17)

where: a—torsion spring mounting Angle; zm—flexural section coefficient; C—spring
index; zt—torsion section coefficient; α—helical angle.

According to Mohr’s strength theory, the equivalent stress at the danger point of the
spring is:

σ∗ =
1 − m

2
(σtt + σbb) +

1 + m
2

√
(σtt − σbb)

2 + 4τ2
t (18)

and
m =

σst

σsc
≤ 1 (19)

where: σst—tensile yield point; σsc—compressive yield point.
When the spring is compressed by 30◦, the moment of a single spring is 300 N·mm.

By substituting the relevant values in Table 2 into Equations (15)–(17), σbb = 16.869 MPa,
σtt = 539.33 MPa, and τbt = 20.99 MPa can be obtained. By substituting these three values
into Equation (18) (where m = 0.9231), the equivalent stress, σ* = 525.38 MPa, of the spring
danger point can be obtained.

Since the equivalent stress σ∗ = 525.38 MPa is ≤ σ0.2 at the spring danger point, the
strain rate at the spring danger point under constant external load can be obtained by
substituting the parameter into Equation (13).

dε

dt
= [

1
E0

+
0.002n

σ0.2
(

σ

σ0.2
)n−1]

dσ

dt
(20)
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When the equivalent stress σ ≤ σ0.2, in the loading stage, the relationship between
stress and strain rate is given by Equation (20). Assuming that the loading rate is 1, the
relationship between them is shown in Figure 1.
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Upon substitution of the equivalent stress of the spring danger point into Equation (20),
and applying the result to Equation (14), the calculation formula for creep strain under
external load T = 300 N·mm is:

εc = α(σc) ln[1 +
t

α(σc)
(

1
E0

+
0.002n

σ0.2
(

σ

σ0.2
)n−1)

dσ

dt
]. (21)

In Equation (21), n and α(σc) can be obtained by fitting the data obtained from tensile
and creep tests, where n = 1.113 and α(σc) is:

α(σc) = 8.1427 × 10−9σc. (22)

According to the relevant experiment experience of loading rate, in the tensile test, the
value of loading rate is generally set at 5~40 MPa/min. According to relevant literature [29],
the magnitude of strain in the first stage of the material obtained from loading rates
within the range of 5~40 MPa/min remains basically unchanged, with slight differences in
subsequent stages, but the difference is not significant. Therefore, to simplify the calculation,
the loading rate is selected as 20 MPa/min, that is, dσ/dt = 0.333 MPa/s.

By integrating Equations (14), (20) and (22), and taking the loading rate as 0.333 MPa/s,
the expression formula of creep stress can be obtained as follows:

εc = α(σc) ln[1 +
t

α(σc)
(

1
3E

+
0.002n
3σ0.2

(
σc

σ0.2
)n−1)]. (23)

It can be seen from the above formula that creep strain is mainly related to time and
stress, and the relationship between the three is shown in Figure 2.

As can be seen in Figure 2, the room-temperature creep of a cylindrical helical torsion
spring shows a typical creep curve trend when the stress is determined. In the case of low
stress, the creep of the torsion spring enters the second stage of stable creep in a short time.
In the stable creep stage, the creep strain rate is small, and there is little increase in creep
strain with time. In the condition of high stress, the first stage of creep of a torsion spring
ends after a longer time, and the creep of the torsion spring enters the second stage of
stable creep after a longer time. It can be seen that, in the same case, the greater the stress
produced by a torsion spring, the longer the time it experiences in the first creep stage. In
the stable creep stage, compared with the lower stress condition, the creep strain rate is
larger, and the increase of creep strain is larger for a long time.

After derivation of time t on both sides of Equation (23), the relationship between
creep rate of a cylindrical helical torsional spring, stress, and time can be obtained, as
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shown in Figure 3. As can be seen from Figure 3, the creep rate decreases significantly with
the increase of time. Compared with a state of low stress, the time of torsional spring creep
in the first stage of creep increases obviously in a state of high stress, and the creep rate in
the second stage of creep also increases obviously.
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Figure 3. Relation of creep rate to stress and time.

Since the stress values in each part of the spring are not equal and cannot be calculated
in detail, it is not practical to calculate the creep strain. In order to simplify the calculation
and improve the safety margin, the creep strain values at the spring danger points are
chosen to replace the creep strain values at each part of the spring. It can be seen from the
above that the equivalent stress of the spring danger point is σ∗ = 525.38 MPa, and the
relationship between creep strain value and time can be obtained by substituting it into
Equation (23), as shown in Figure 4.

It can be seen from Figure 4 that the creep strain curve after the torsional spring
loading is in line with the first and second stages of the theoretical creep curve. With the
increase of time, the creep strain continues to increase and the rate decreases to a fixed
value. The creep strain of the torsional spring will not enter the third stage because it is at
room temperature and the loading stress is not large.

In the elastic deformation stage, according to data [30], the stress–strain relationship
in pure bending can be written as:

εe =
(ρ + y)dθ − ρdθ

ρdθ
=

y
ρ

, (24)

where: y is the distance between the linear strain on the section and the neutral axis, and
assuming that each fiber is only subject to axial tension and compression, it can be obtained
according to Hooke’s law:

σ = Eε = E
y
ρ

(25)
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and
1
ρ
=

M
EIz

. (26)

Therefore, the stress–strain relationship at the lower boundary of the section in the
elastic stage of a torsion spring is:

εe =
yM
EIz

. (27)

According to the relationship between creep strain and elastic strain of a torsion spring,
the change of rotation angle during creep of a torsion spring can be obtained, as shown in
Figure 5.
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In this paper, the creep process of a torsion spring is calculated theoretically, and the
creep strain of a torsion spring at room temperature, and the relationship between creep
angle and time, are obtained. The following uses the finite-element method to simulate the
creep process of a torsion spring.

The simulation was carried out by using Abaqus. One end of the torsion spring was
fixed, and a torque of 300 N·mm was applied to the other end. In the first analysis step, a
torque of 300 N·mm was applied to make the spring undergo elastic deformation, and the
time was 1 s. The second analysis step was creep analysis, which lasted for 54,000 s. The
displacement results obtained are shown in Figure 6.
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Figure 6. Torsion spring deformation diagram: (a) elastic deformation diagram (b) creep deformation
diagram.

The shadow in Figure 6 is the image before the torsion spring is deformed. It can be
seen from the figure that the displacement at the elastic deformation stage is 8.761 mm from
the farthest point of the central axis of the spring. After 54,000 s, its deformation increases
to 8.847 mm. Compared with the elastic stage, the creep deformation is 0.98% of the elastic
deformation and the creep strain is 2.45 × 10−5. In order to display the creep curve more
clearly, the curve at the elastic deformation stage is ignored and only the curve within a
period of time at the beginning of creep is truncated. The point is selected as the lower
endpoint of the torsional spring applying force, and the creep curve is shown in Figure 7.
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It can be seen from Figure 7 that the creep simulation curve of a torsion spring is
similar to the theoretical calculation curve, and a comparison between the simulation curve
and the theoretical curve is shown in Figure 8.

It can be seen from Figure 8 that the theoretical calculation value of torsion spring creep
is slightly less than the simulation value in the early stage, and the theoretical calculation
value is slightly greater than the simulation result as time goes on. In the later period, the
theoretical calculation is smaller than the simulation result. At 54,000 s, the theoretical
calculation value of torsion spring creep is 0.2935◦, while the simulation result is 0.3105◦,
which is 5.79% larger than the theoretical calculation, proving that the theoretical calculation
formula is more accurate. Regarding the error between the theoretical calculation and
simulation results: on the one hand, it may be because the software adopts traditional age-
hardening creep theory in the finite-element simulation process, without considering the
influence of some material properties, such as interaction and microstructure. In addition,
when using this theory, parameters such as creep strain rate, creep activation energy, and
initial hardness of materials need to be determined. If the actual material parameters are
different from those used in the theoretical calculation, the calculation results will be biased.
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On the other hand, it may be because some small quantities are omitted in the derivation of
theoretical formulas, which leads to the change of calculation accuracy. However, on the
whole, the error between the theoretical calculation results and the finite-element simulation
results is within an acceptable error range, which shows that the theoretical calculation
results are more accurate and can accurately predict and estimate the performance and
life of a spring in use, which is of great significance for designing high-performance and
reliable spring components.
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2.4. Experimental Method of Spring Chamber Temperature Creep

The structure of the cylindrical helical torsional spring loading table is shown in
Figure 9, and is mainly composed of two identical unilateral loading mechanisms, a bottom
plate, and a steering gear fixed seat. The unilateral loading mechanisms are fixed onto
the bottom plate through support legs, and the rudder wing is locked by a bolt onto the
gripper. The steering gear is installed on the steering gear seat and is locked by bolts. The
deflection of the rudder wing is driven by the clamping claw to rotate the rotating shaft of
the two unilateral loading mechanisms, and the torque is provided by the torsion springs
in the unilateral loading mechanisms.
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Figure 9. Torsion spring load table overall structure (1—unilateral loading mechanism; 2—gripper;
3—steering gear; 4—steering gear fixed seat; 5—bottom plate).

The internal structure of a unilateral loading mechanism is shown in Figure 10. The
torsional spring loading platform mainly realizes the change of loading torque by replacing
the unilateral loading mechanism. Different torsional springs correspond to different
torque.



Materials 2023, 16, 3763 11 of 15

Materials 2023, 16, x FOR PEER REVIEW 11 of 15 
 

 

2.4. Experimental Method of Spring Chamber Temperature Creep 
The structure of the cylindrical helical torsional spring loading table is shown in Fig-

ure 9, and is mainly composed of two identical unilateral loading mechanisms, a bottom 
plate, and a steering gear fixed seat. The unilateral loading mechanisms are fixed onto the 
bottom plate through support legs, and the rudder wing is locked by a bolt onto the grip-
per. The steering gear is installed on the steering gear seat and is locked by bolts. The 
deflection of the rudder wing is driven by the clamping claw to rotate the rotating shaft 
of the two unilateral loading mechanisms, and the torque is provided by the torsion 
springs in the unilateral loading mechanisms. 

 
Figure 9. Torsion spring load table overall structure (1—unilateral loading mechanism; 2—gripper; 
3—steering gear; 4—steering gear fixed seat; 5—bottom plate). 

The internal structure of a unilateral loading mechanism is shown in Figure 10. The 
torsional spring loading platform mainly realizes the change of loading torque by replac-
ing the unilateral loading mechanism. Different torsional springs correspond to different 
torque. 

 
Figure 10. Unilateral loading structure internal structure (1—Angle sensor; 2—sensor seat; 3—fas-
tening screws; 4—tail bearing seat; 5—stop cover; 6—torsional spring loading block; 7—torsional 
spring; 8—front bearing seat). 

Each unilateral loading mechanism contains two torsion springs that are arranged in 
a coaxial reverse direction, and the rotating ends of the two torsion springs wind in oppo-
site directions. The installation diagram is shown in Figure 11. Both torsion springs are 
pre-compressed by 30°. When the axial rotation is on one side, the force of one torsion 
spring increases and the compression Angle increases, while the compression Angle of 
the other torsion spring decreases. 

Figure 10. Unilateral loading structure internal structure (1—Angle sensor; 2—sensor seat; 3—
fastening screws; 4—tail bearing seat; 5—stop cover; 6—torsional spring loading block; 7—torsional
spring; 8—front bearing seat).

Each unilateral loading mechanism contains two torsion springs that are arranged
in a coaxial reverse direction, and the rotating ends of the two torsion springs wind in
opposite directions. The installation diagram is shown in Figure 11. Both torsion springs
are pre-compressed by 30◦. When the axial rotation is on one side, the force of one torsion
spring increases and the compression Angle increases, while the compression Angle of the
other torsion spring decreases.
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Figure 11. Double torsion spring installation diagram.

The rotation of the steering gear is transmitted to the torsion springs through the
clamping claw, which provides the corresponding torque. The change of the output voltage
of the rotary potentiometer is measured by a multimeter, and the rotation angle can be
obtained by a certain conversion formula.

The specific experimental process is shown in Figure 12.
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After loading the weight, the output voltage value of the Angle sensor can be measured
by keeping the weight unchanged. After converting the voltage value into Angle, the
relationship of the spring shape variable with time and the spring creep curve can be
obtained.

3. Experimental Data and Analysis

After loading the weight, the angle change value can be obtained through the voltage
change value of the voltmeter, and the experimental data are show in Table 3:

Table 3. Creep strain data sheet of torsion spring.

Time (s) Angle (◦) Time (s) Angle (◦)

0 0 7500 0.174726
60 0.011457 8400 0.177591

210 0.054423 9600 0.180455
780 0.105982 12,420 0.211963
960 0.108846 12,600 0.214828

1080 0.11171 14,700 0.218987
1800 0.114575 18,700 0.226679
2100 0.126032 21,800 0.233096
2220 0.128897 24,900 0.245713
2280 0.131761 28,000 0.245677
3300 0.134625 32,100 0.2519
3600 0.13749 36,120 0.264493
3900 0.140354 40,120 0.265124
5200 0.15754 44,120 0.271456
5300 0.163269 49,000 0.277328
5340 0.166133 50,800 0.279596
5520 0.171862 54,000 0.281319

In order to facilitate direct observation, the data in the table were fitted and plotted, as
shown in Figure 13.
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It can be seen from Figure 13 that the creep test data and its fitting to a curve of
a torsion spring conform to a typical creep curve. In the early stage of creep, the data
fluctuate greatly, but in the later stage, the data tend to be stable. It is possible that, in the
process of spring creep, after the sliding dislocation moves to barriers such as the grain
boundary or second phase particles, the movement of dislocation stops gradually under
the obstruction, and the phenomenon of accumulation appears. At this time, the number
of moving dislocations decreases, which is reflected in the decrease of creep rate, or even
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stagnation. As more and more accretion occurs, the dislocation will climb and slide over
the barrier, which may be the reason for the step phenomenon in the creep experiment.

Figure 8, in the previous section, shows a comparison between a theoretical and
simulated curve of torsion spring creep Angle. A comparison between theory, simulation,
and experimental results is shown in Figure 14.
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As can be seen from Figure 14, the trend in creep strain for the theoretical calculation
and finite-element simulation is the same as that of the experiment, and they all enter the
stable creep stage at about 15,000 s. The theoretical calculation curve is highly consistent
with the experimental fitting curve. At the initial stage of creep, the theoretical calculation
curve basically coincides with the experimental data, and at the later stage of creep, the
theoretical calculation creep rate is not much different from the experimental fitting curve.
On the one hand, the source of error is the loss of precision caused by omitting some tiny
quantities in the derivation of the theoretical calculation formula, on the other hand, it may
be due to the slightly different properties of spring materials and materials in the data. At
54,000 s, the theoretical calculation is 4.3% larger than the experimental data creep value,
and the error is acceptable in practical engineering application, which shows the accuracy
of the theoretical calculation of torsion spring creep. As such it can be used to predict and
estimate the performance and life of a spring in use, so as to avoid creep failure under high
stress or long-term load conditions, thus ensuring the reliability and safety of mechanical
components.

4. Conclusions

In this paper, the creep effect of a cylindrical helical torsion spring under pre-compression
is studied. Firstly, through deconstruction and reorganization, using the original room-
temperature creep constitutive equation as a basis, a room-temperature creep constitutive
equation of a torsion spring can be obtained based on macroscopic tensile tests. Through
the stress–strain analysis of a spring, the relationship between creep strain and time and
stress of a cylindrical helical torsion spring is obtained, and the correctness of the theoretical
calculation is verified by finite-element simulation.

Finally, in order to determine the influence of spring creep effect, a creep strain
experiment of a torsion spring is carried out. Through experiments, it can be concluded
that the cylindrical helical torsion spring enters a stable creep stage after about 15,000 s, and
the creep strain angle is 0.28◦ after 54,000 s. By comparing the theoretical calculation results
with the experimental results, it can be concluded that the error between the theoretical
formula calculation results and the experimental results of a torsion spring is 4.3%, which
is less than the engineering error range of 5%, which meets the requirements of engineering
measurement and is of great significance for more accurately predicting and estimating
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the performance and life of a spring in use, and designing high-performance and reliable
spring elements.
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