Welding of AA6061-T6 Sheets Using High-Strength 4xxx Fillers: Effect of Mg on Mechanical and Fatigue Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Welding Defect Analysis
3.2. Mechanical Properties
3.2.1. Microhardness
3.2.2. Tensile Strength
Tensile Strength of Standard Samples
Tensile Strength of Notched Samples
3.3. Fatigue Properties
3.3.1. S–N Curves of Welded Samples
3.3.2. Effect of Porosity on Fatigue Life
3.3.3. Fracture Analysis of Weld Joints
3.4. Effect of Mg on Fatigue Properties
4. Conclusions
- Compared to the reference ER4043 filler, increasing the Mg content of the Al-Si-Mg 4xxx filler provided weld joints with higher microhardness and tensile strength under both as-welded and PWHT conditions. An increase in Mg content to 1.4 wt.% resulted in an enhanced tensile strength of 384 MPa in the weld joint in the PWHT condition compared to the tensile strength of 340 MPa in the reference ER4043 joint.
- Joints made with novel fillers with high Mg contents (0.6–1.4 wt.%) displayed higher fatigue strengths and longer fatigue lives than joints made with the reference filler in both the as-welded and PWHT conditions. The filler with 1.4 wt.% Mg provided the highest fatigue strength and best fatigue life among the three fillers studied. At 106 cycles, this high Mg filler improved the fatigue strength by 37% and 30% under the as-welded and PWHT conditions relative to that of the reference ER4043 joint.
- Porosity in the FZ has a detrimental effect on the fatigue life. For small pore sizes, the joints made with the novel fillers had longer fatigue lives than those made with the reference filler owing to the higher mechanical strengths of the joints made with novel fillers. However, for large pore sizes, the porosity was the major influencing factor in the fatigue life.
- In the PWHT condition, slip bands and fatigue striations were clearly observed in the welding zone. The fatigue fracture surface of the joint with 1.4 wt.% Mg filler had a significantly smaller striation width than that of the joint with the reference filler, indicating that the 1.4 wt.% Mg filler reduced the crack propagation rate, resulting in a longer fatigue life.
- The improvement of the mechanical and fatigue strengths of the weld joints made with 4xxx fillers with added Mg was attributed to the enhanced solid-solution strengthening of Mg in the as-welded condition and the increased precipitation strengthening of β″ precipitates in the PWHT condition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, R.; Zhang, X. Problems and issues in laser beam welding of aluminum-lithium alloys. J. Manuf. Process. 2014, 16, 166–175. [Google Scholar] [CrossRef]
- Pérez, J.S.; Ambriz, R.R.; López, F.F.C.; Vigueras, D.J. Recovery of mechanical properties of a 6061-T6 aluminum weld by heat treatment after welding. Metall. Mater. Trans. A 2016, 47, 3412–3422. [Google Scholar] [CrossRef]
- Chiarelli, M.; Lanciotti, A.; Sacchi, M. Fatigue resistance of MAG welded steel elements. Int. J. Fatigue 1999, 21, 1099–1110. [Google Scholar] [CrossRef]
- Anderson, T. A New Development in Aluminum Welding Wire: Alloy 4943. Weld. J. 2013, 92, 32–37. [Google Scholar]
- Bethea, J.F. Gas Tungsten Arc Welding of Aluminum Alloys with Nanocomposite 4943 Filler Material; University of California: Los Angeles, CA, USA, 2019. [Google Scholar]
- Niu, P.; Li, W.; Yang, C.; Chen, Y.; Chen, Y.; Chen, D. Low cycle fatigue properties of friction stir welded dissimilar 2024-to-7075 aluminum alloy joints. Mater. Sci. Eng. A 2022, 832, 142423. [Google Scholar] [CrossRef]
- Fajri, A.; Prabowo, A.R.; Muhayat, N.; Smaradhana, D.F.; Bahatmaka, A. Fatigue analysis of engineering structures: State of development and achievement. Procedia Struct. Integr. 2021, 33, 19–26. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kuriki, R.; Kurihara, J.; Kozawa, T.; Shikama, T.; Noguchi, H. Distinct fatigue limit of a 6XXX series aluminum alloy in relation to crack tip strain-aging. Mater. Sci. Eng. A 2020, 785, 139378. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shikama, T.; Nakamichi, R.; Kawata, Y.; Kasagi, N.; Nishioka, H.; Kita, S.; Takuma, M.; Noguchi, H. Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061-T6 alloy. Mater. Sci. Eng. A 2015, 641, 263–273. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yoshitake, H.; Nakamichi, R.; Wada, T.; Takuma, M.; Shikama, T.; Noguchi, H. Fatigue limit investigation of 6061-T6 aluminum alloy in giga-cycle regime. Mater. Sci. Eng. A 2014, 614, 243–249. [Google Scholar] [CrossRef]
- Shan, Z.; Liu, S.; Ye, L.; Li, Y.; He, C.; Chen, J.; Tang, J.; Deng, Y.; Zhang, X. Mechanism of Precipitate Microstructure Affecting Fatigue Behavior of 7020 Aluminum Alloy. Materials 2020, 13, 3248. [Google Scholar] [CrossRef]
- Jin, Y.; Jiahao, S.; Chenkai, G.; Yixuan, Z.; Hongbing, L.; Oliveira, J.P.; Caiwang, T.; Zhishui, Y. Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser Welding-brazing. Opt. Laser Technol. 2021, 142, 107218. [Google Scholar] [CrossRef]
- Anis, S.F.; Koyama, M.; Hamada, S.; Noguchi, H. Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloys. Theor. Appl. Fract. Mech. 2019, 104, 102340. [Google Scholar] [CrossRef]
- Jiang, X.-S.; He, G.-Q.; Liu, B.; Fan, S.-J.; Zhu, M.-H. Microstructure-based analysis of fatigue behaviour of Al-Si-Mg alloy. Trans. Nonferrous Met. Soc. China 2011, 21, 443–448. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Liang, X.; Huang, L.; Zhang, K.; Chen, Z. Enhanced low-cycle fatigue and crack propagation resistance of an Al-Cu-Mg-Si forging alloy by non-isothermal aging. Mater. Sci. Eng. A 2018, 732, 341–349. [Google Scholar] [CrossRef]
- Wang, B.; Xue, S.; Ma, C.; Wang, J.; Lin, Z. Effects of porosity, heat input and post-weld heat treatment on the microstructure and mechanical properties of TIG welded joints of AA6082-T6. Metals 2017, 7, 463. [Google Scholar] [CrossRef]
- Morton, T.M. Defects in 2021 aluminum alloy welds. Weld. J. 1971, 7, 304–312. [Google Scholar]
- Wang, Q.; Apelian, D.; Lados, D. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J. Light Met. 2001, 1, 73–84. [Google Scholar]
- Gao, Y.X.; Yi, J.Z.; Lee, P.D.; Lindley, T.C. The effect of porosity on the fatigue life of cast aluminium-silicon alloys. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 559–570. [Google Scholar] [CrossRef]
- Caton, M.J. Predicting Fatigue Properties of Cast Aluminum by Characterizing Small-Crack Propagation Behavior; University of Michigan: Michigan, MI, USA, 2001. [Google Scholar]
- Linder, J.; Arvidsson, A.; Kron, J. The influence of porosity on the fatigue strength of high-pressure die cast aluminium. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 357–363. [Google Scholar] [CrossRef]
- Mohamed, A.; Javidani, M.; Mirakhorli, F.; Maltais; Chen, X.-G. Developing High-Strength Al-Si-Mg Filler Metals for Aluminum Fusion Welding. J. Mater. Eng. Perform. 2023, 32, 2218–2227. [Google Scholar]
- Fan, C.; Yang, S.; Zhu, M.; Bai, Y. Microstructure and Fatigue Properties of 6061 Aluminum Alloy Laser-MIG Hybrid Welding Joint. Adv. Mater. Sci. Eng. 2021, 2021, 1933942. [Google Scholar] [CrossRef]
- Salvati, E.; Everaerts, J.; Kageyama, K.; Korsunsky, A.M. Transverse fatigue behaviour and residual stress analyses of double sided FSW aluminium alloy joints. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1980–1990. [Google Scholar] [CrossRef]
- Tagirov, D.L.; Kaibyshev, E.; Kaibyshev, R. Rustam Effect of Liquid Hot Isostatic Pressing on Structure and Mechanical Properties of a Sand-Cast A356.02 Alloy. Metall. Mater. Trans. A 2013, 44, 2369–2381. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Hwang, I.; Jeong, G.; Kang, M.; Kim, D.; Seo, J.; Kim, Y.-M. Effect of Porosity on the Fatigue Behavior of Gas Metal Arc Welding Lap Fillet Joint in GA 590 MPa Steel Sheets. Metals 2018, 8, 241. [Google Scholar] [CrossRef]
- Lashkari, O.; Lu, Y.; Cockcroft, S.; Maijer, D. X-ray microtomographic characterization of porosity in aluminum alloy A356. Metall. Mater. Trans. A 2009, 40, 991–999. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Yang, C.; Gao, M. Study of porosity suppression in oscillating laser-MIG hybrid welding of AA6082 aluminum alloy. J. Mater. Process. Technol. 2021, 292, 117053. [Google Scholar] [CrossRef]
- Vimalraj, C.K. Paul Experimental Review on Friction Stir Welding of Aluminium Alloys with Nanoparticles. Metals 2021, 11, 390. [Google Scholar] [CrossRef]
- Murali, N.; Sokoluk, M.S.; Yao, G.; Pan, S.; Rosa, I.; Li, X. Gas-Tungsten Arc welding of dissimilar aluminum alloys with Nano-Treated filler. J. Manuf. Sci. Eng. 2021, 143, 081001. [Google Scholar] [CrossRef]
- Pedersen, L.; Arnberg, L. The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metall. Mater. Trans. A 2001, 32, 525–532. [Google Scholar] [CrossRef]
- Yıldırım, M.; Özyürek, D. The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Mater. Des. 2013, 51, 767–774. [Google Scholar] [CrossRef]
- Malarvizhi, S.; Raghukandan, K.; Viswanathan, N. Fatigue behaviour of post weld heat treated electron beam welded AA2219 aluminium alloy joints. Mater. Des. 2008, 29, 1562–1567. [Google Scholar] [CrossRef]
- Ambriz, R.R.; Mesmacque, G.; Ruiz, A.; Amrouche, A.; López, V.H. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloy. Mater. Sci. Eng. A 2010, 527, 2057–2064. [Google Scholar] [CrossRef]
- Yarema, S.Y. Formation of the science of fatigue of metals. Part 2. 1870–1940. Mater. Sci. 2006, 42, 814. [Google Scholar] [CrossRef]
- He, C.; Huan, C.; Liu, Y.; Wang, Q. Fatigue damage evaluation of low-alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue. Int. J. Fatigue 2014, 61, 297–303. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Deng, C.; Liu, Y.; Song, Z. The fatigue behaviors of butt welds ground flush in the super-long life regime. Int. J. Fatigue 2012, 36, 1–8. [Google Scholar] [CrossRef]
- Yan, S.; Nie, Y.; Zhu, Z.; Chen, H.; Gou, G.; Yu, J.; Wang, G. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al–Mg alloy joints. Appl. Surf. Sci. 2014, 298, 12–18. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Xie, C.; Zhang, Q.; Cao, Y. Microstructure characterization and mechanism of fatigue crack initiation near pores for 6005A CMT welded joint. Mater. Sci. Eng. A 2017, 707, 22–29. [Google Scholar] [CrossRef]
- Gerbe, S.K. Ulrich Michels, Wilhelm, Influence of secondary dendrite arm spacing (SDAS) on the fatigue properties of different conventional automotive aluminum cast alloys. Frat. Integrita Strutt. 2019, 13, 105–115. [Google Scholar] [CrossRef]
- Davidson, D.; Lankford, J. Fatigue crack growth in metals and alloys: Mechanisms and micromechanics. Int. Mater. Rev. 1992, 37, 45–76. [Google Scholar] [CrossRef]
- Lancaster, R.; Jeffs, S.; Illsley, H.; Argyrakis, C.; Hurst, R.; Baxter, G. Development of a novel methodology to study fatigue properties using the small punch test. Mater. Sci. Eng. A 2019, 748, 21–29. [Google Scholar] [CrossRef]
- Khisheh, S.; Khalili, K.; Azadi, M.; Hendouabadi, V.Z. Influences of roughness and heat treatment on high-cycle bending fatigue properties of A380 aluminum alloy under stress-controlled cyclic loading. Mater. Chem. Phys. 2021, 264, 124475. [Google Scholar] [CrossRef]
ID | Si | Fe | Mn | Mg | Cu |
---|---|---|---|---|---|
BM (base) | 0.52 | 0.18 | 0.11 | 1.05 | 0.25 |
ER4043 | 5.5–6 | <0.8 | <0.05 | <0.05 | <0.3 |
FMg0.6 | 6.23 | 0.14 | 0.23 | 0.6 | 0.001 |
FMg1.4 | 6.4 | 0.18 | 0.28 | 1.4 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Javidani, M.; Maltais, A.; Chen, X.-G. Welding of AA6061-T6 Sheets Using High-Strength 4xxx Fillers: Effect of Mg on Mechanical and Fatigue Properties. Materials 2023, 16, 3832. https://doi.org/10.3390/ma16103832
Ahmed M, Javidani M, Maltais A, Chen X-G. Welding of AA6061-T6 Sheets Using High-Strength 4xxx Fillers: Effect of Mg on Mechanical and Fatigue Properties. Materials. 2023; 16(10):3832. https://doi.org/10.3390/ma16103832
Chicago/Turabian StyleAhmed, Mohamed, Mousa Javidani, Alexandre Maltais, and X.-Grant Chen. 2023. "Welding of AA6061-T6 Sheets Using High-Strength 4xxx Fillers: Effect of Mg on Mechanical and Fatigue Properties" Materials 16, no. 10: 3832. https://doi.org/10.3390/ma16103832
APA StyleAhmed, M., Javidani, M., Maltais, A., & Chen, X. -G. (2023). Welding of AA6061-T6 Sheets Using High-Strength 4xxx Fillers: Effect of Mg on Mechanical and Fatigue Properties. Materials, 16(10), 3832. https://doi.org/10.3390/ma16103832