STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dedkov, Y.; Voloshina, E. Graphene growth and properties on metal substrates. J. Phys. Condens. Matter 2015, 27, 303002. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, N.C.; McCarty, K.F. Graphene growth on metal surfaces. MRS Bull. 2012, 37, 1158–1166. [Google Scholar] [CrossRef]
- Wintterlin, J.; Bocquet, M. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852. [Google Scholar] [CrossRef]
- Vanin, M.; Mortensen, J.J.; Kelkkanen, A.K.; Thygesen, K.S.; Jacobsen, K.W. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408. [Google Scholar] [CrossRef]
- Tesch, J.; Leicht, P.; Blumenschein, F.; Gragnaniello, L.; Fonin, M.; Steinkasserer, L.E.M.; Paulus, B.; Voloshina, E.; Dedkov, Y. Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111). Sci. Rep. 2016, 6, 23439. [Google Scholar] [CrossRef]
- Sutter, P.; Sadowski, J.T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411. [Google Scholar] [CrossRef]
- Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Graphene on Ni(111): Strong interaction and weak adsorption. Phys. Rev. B 2011, 84, 201401. [Google Scholar] [CrossRef]
- Voloshina, N.; Dedkov, Y.S.; Torbrügge, S.; Thissen, A.; Fonin, M.; Voloshina, E.N.; Dedkov, Y.S.; Torbru, S. Graphene on Rh(111): Scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 2014, 100, 241606. [Google Scholar] [CrossRef]
- Marchini, S.; Günther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 75429. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef]
- Daukiya, L.; Nair, M.N.; Cranney, M.; Vonau, F.; Hajjar-Garreau, S.; Aubel, D.; Simon, L. Functionalization of 2D materials by intercalation. Prog. Surf. Sci. 2019, 94, 1–20. [Google Scholar] [CrossRef]
- Starodubov, A.G.; Medvetskii, M.A.; Shikin, A.M.; Adamchuk, V.K. Intercalation of Silver Atoms under a Graphite Monolayer on Ni(111). Phys. Sol. State 2004, 46, 1340–1348. [Google Scholar] [CrossRef]
- Vita, H.; Böttcher, S.; Horn, K.; Voloshina, E.N.; Ovcharenko, R.E.; Kampen, T.; Thissen, A. Understanding the origin of band gap formation in graphene on metals: Graphene on Cu/Ir(111). Sci. Rep. 2014, 4, 5704. [Google Scholar] [CrossRef] [PubMed]
- Shikin, A.M.; Adamchuk, V.K.; Rieder, K.H. Formation of quasi free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 2009, 51, 2390–2400. [Google Scholar] [CrossRef]
- Silva, C.C.; Cai, J.; Jolie, W.; Dombrowski, D.; Hagen, F.H.F.Z.; Martínez-Galera, A.J.; Schlueter, C.; Lee, T.-L.; Busse, C. Lifting Epitaxial Graphene by Intercalation of Alkali Metals. J. Phys. Chem. C 2019, 123, 13712–13719. [Google Scholar] [CrossRef]
- Alattas, M.; Schwingenschlögl, U. Quasi-freestanding graphene on Ni(111) by Cs intercalation. Sci. Rep. 2016, 6, 26753. [Google Scholar] [CrossRef]
- Varykhalov, A.; Scholz, M.R.; Kim, T.K.; Rader, O. Effect of noble-metal contacts on doping and band gap of graphene. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 121101. [Google Scholar] [CrossRef]
- Wofford, J.M.; Starodub, E.; Walter, A.L.; Nie, S.; Bostwick, A.; Bartelt, N.C.; Thürmer, K.; Rotenberg, E.; McCarty, K.F.; Dubon, O.D. Extraordinary epitaxial alignment of graphene islands on Au(111). New J. Phys. 2012, 14, 053008. [Google Scholar] [CrossRef]
- Shikin, A.M.; Prudnikova, G.V.; Adamchuk, V.K. Surface intercalation of gold underneath a graphite monolayer on Ni(111) studied by angle-resolved photoemission and high-resolution electron-energy-loss spectroscopy. Phys. Rev. B 2000, 62, 13202. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Zhou, T.; Ling, C.; Wang, S.; Geng, B. Role of Au in graphene growth on a ni surface. ACS Catal. 2014, 4, 892–902. [Google Scholar] [CrossRef]
- Praveen, C.S.; Piccinin, S.; Fabris, S. Adsorption of alkali adatoms on graphene supported by the Au/Ni(111) surface. Phys. Rev. B 2015, 92, 75403. [Google Scholar] [CrossRef]
- Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A.M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601. [Google Scholar] [CrossRef] [PubMed]
- Leicht, P.; Zielke, L.; Bouvron, S.; Moroni, R.; Voloshina, E.; Hammerschmidt, L.; Dedkov, Y.S.; Fonin, M. In Situ Fabrication Of Quasi- Free-Standing Epitaxial Graphene. ACS Nano 2014, 8, 3735–3742. [Google Scholar] [CrossRef] [PubMed]
- Van Hove, M.A.; Koestner, R.J.; Stair, P.C.; Bibérian, J.P.; Kesmodel, L.L.; Bartoš, I.; Somorjai, G.A. The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. Surf. Sci. 1981, 103, 189–217. [Google Scholar] [CrossRef]
- Hattab, H.; N’Diaye, A.T.; Wall, D.; Jnawali, G.; Coraux, J.; Busse, C.; Van Gastel, R.; Poelsema, B.; Michely, T.; Heringdorf, F.J.M.Z.; et al. Growth temperature dependent graphene alignment on Ir(111). Appl. Phys. Lett. 2011, 98, 2013–2016. [Google Scholar] [CrossRef]
- Ogura, S.; Fukutani, K. Terrace diffusion of Au atoms on Ir(111). J. Phys. Conf. Ser. 2008, 100, 072003. [Google Scholar] [CrossRef]
- Ogura, S.; Fukutani, K.; Okada, M. Structure of gold thin films grown on Ir(111). Top. Catal. 2007, 44, 65–71. [Google Scholar] [CrossRef]
- Bott, M.; Michely, T.; Comsa, G. The homoepitaxial growth of Pt on Pt(111) studied with STM. Surf. Sci. 1992, 272, 161–166. [Google Scholar] [CrossRef]
- Kalff, M.; Comsa, G.; Michely, T. How Sensitive is Epitaxial Growth to Adsorbates? Phys. Rev. Lett. 1998, 81, 1255–1258. [Google Scholar] [CrossRef]
- Varykhalov, A.; Marchenko, D.; Scholz, M.R.; Rienks, E.D.L.; Kim, T.K.; Bihlmayer, G.; Sánchez-Barriga, J.; Rader, O. Ir(111) surface state with giant Rashba splitting persists under graphene in air. Phys. Rev. Lett. 2012, 108, 066804. [Google Scholar] [CrossRef]
- Barth, J.V.V.; Brune, H.; Ertl, G.; Behm, R.J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, lon-range superstructure, rotational domains, and surface defects. Phys. Rev. B 1990, 42, 9307–9318. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.-X.; Huang, Z.-F.; Xu, X. Influence of reconstruction on the structure of self-assembled normal-alkane monolayers on Au(111) surfaces. Phys. Chem. Chem. Phys. 2002, 4, 1486–1489. [Google Scholar] [CrossRef]
- Narasimhan, S.; Vanderbilt, D. Elastic Stress Domains and the Herringbone Reconstruction on Au (111 ). Phys. Rev. Lett. 1992, 69, 1564. [Google Scholar] [CrossRef] [PubMed]
- Jolie, W.; Craes, F.; Busse, C. Graphene on weakly interacting metals: Dirac states versus surface states. Phys. Rev. B 2015, 91, 115419. [Google Scholar] [CrossRef]
- Halle, J.; Neel, N.; Kröger, J. Tailoring Intercalant Assemblies at the Graphene–Metal Interface. Langmuir 2019, 35, 2554–2560. [Google Scholar] [CrossRef]
- Vlaic, S.; Rougemaille, N.; Artaud, A.; Renard, V.; Huder, L.; Rouvière, J.-L.; Kimouche, A.; Santos, B.; Locatelli, A.; Guisset, V.; et al. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant. J. Phys. Chem. Lett. 2018, 9, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Šrut Rakić, I.; Runte, S.; Busse, C.; Sadowski, J.T.; Lazić, P.; Pletikosić, I.; Pan, Z.-H.; Milun, M.; Pervan, P.; et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772. [Google Scholar] [CrossRef]
- Kimouche, A.; Renault, O.; Samaddar, S.; Winkelmann, C.; Courtois, H.; Fruchart, O.; Coraux, J. Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles. Carbon 2014, 68, 73–79. [Google Scholar] [CrossRef]
- Ulstrup, S.; Andersen, M.; Bianchi, M.; Barreto, L.; Hammer, B.; Hornekær, L.; Hofmann, P. Sequential oxygen and alkali intercalation of epitaxial graphene on Ir(111): Enhanced manybody effects and formation of pn-interfaces. 2D Mater. 2014, 1, 025002. [Google Scholar] [CrossRef]
- Schumacher, S.; Huttmann, F.; Petrović, M.; Witt, C.; Förster, D.F.; Vo-Van, C.; Coraux, J.; Martínez-Galera, A.J.; Sessi, V.; Vergara, I.; et al. Europium Underneath Graphene on Ir(111): Intercalation Mechanism, Magnetism, and Band Structure. Phys. Rev. B 2014, 90, 235437. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikšić Trontl, V.; Jedovnicki, I.; Pervan, P. STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials 2023, 16, 3833. https://doi.org/10.3390/ma16103833
Mikšić Trontl V, Jedovnicki I, Pervan P. STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials. 2023; 16(10):3833. https://doi.org/10.3390/ma16103833
Chicago/Turabian StyleMikšić Trontl, Vesna, Ivan Jedovnicki, and Petar Pervan. 2023. "STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111)" Materials 16, no. 10: 3833. https://doi.org/10.3390/ma16103833
APA StyleMikšić Trontl, V., Jedovnicki, I., & Pervan, P. (2023). STM Study of the Initial Stage of Gold Intercalation of Graphene on Ir(111). Materials, 16(10), 3833. https://doi.org/10.3390/ma16103833