
Citation: Bărbulescu, A. Fractal

Characterization of the Mass Loss

of Bronze by Erosion–Corrosion

in Seawater. Materials 2023, 16, 3877.

https://doi.org/10.3390/

ma16103877

Academic Editor: Jose M. Bastidas

Received: 27 April 2023

Revised: 15 May 2023

Accepted: 19 May 2023

Published: 22 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Fractal Characterization of the Mass Loss of Bronze by
Erosion–Corrosion in Seawater
Alina Bărbulescu

Department of Civil Engineering, Transilvania University of Bras, ov, 5, Turnului Street, 900152 Bras, ov, Romania;
alina.barbulescu@unitbv.ro

Abstract: The fractal approach is one of the nondestructive techniques for analyzing corrosion’s
effects on different materials. This article utilizes it to analyze the erosion–corrosion produced by
cavitation on two types of bronze introduced into an ultrasonic cavitation field to investigate the
differences between their behavior in saline water. The aim is to check the hypothesis that the
fractal/multifractal measures significantly differ for the studied materials that belong to the same
class (bronze) as a step in applying fractal techniques to distinguish between two materials. The
study emphasizes the multifractal characteristics of both materials. While the fractal dimensions do
not significantly differ, the highest multifractal dimensions correspond to the sample of bronze with Sn.
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1. Introduction

Copper-based materials are frequently employed in many industries due to their
behavior in different corrosive liquids [1–5]. The most common experimental procedures
for the study of the behavior of such alloys are electrochemical methods [6–8] and synergy
tests [3,9], noise recording [6], and electrochemical impedance spectroscopy [8,10]. The most
used corrosive media are seawater [1], artificial NaCl solutions with different concentrations
(3.5% in [2,10], other concentrations in [10]), NaCl, NaOH, and KOH [10]. Investigations
of copper alloys have aimed at clarifying the unpassivation and corrosion mechanism of
Ni-Al bronzes [1,4], explaining the corrosion–erosion in cavitation fields of Ni-Al bronze
(and duplex stainless steel) utilized for propellers [3], describing crevice formation and
propagation in Ni-Al samples kept for three years in natural seawater [5], and quantifying
the variations in mechanical properties of samples of Cu alloys in various electrolytes [10]. It
was also shown that the mechanical properties of Al-Fe bronzes increase when Sn is added.

After its creation [11] and development, the fractal theory became a valuable tool
to characterize time series in natural sciences, engineering (geology, hydrology, electrical
engineering, etc.) [12–18], for signal or image analysis, and for medicine [18–26]. Related to
specific applications in mechanical engineering and material science, the fractal methodol-
ogy aims at determining the characteristics of different materials during functioning cycles
and the failure of elements built on them [27,28], characterizing the fractures that appeared
in materials and their propagation [29–34], and analyzing the patterns of corrosion ap-
pearing after metal immersion in different media [35–37]. For example, in [30,38], fractal
dimensions were employed to characterize the aspect of reinforced concrete samples after
cracking and test the hypothesis that a correlation exists with the degree of damage suffered
by the reinforcing bars. Spatial data were used in [39] to investigate the roughness of metal
samples. Fractal and multifractal analysis were performed to investigate the results of
corrosion or corrosion–erosion of steel and copper alloys [37,40–44].

Fractal analysis provides a measure of the complexity of an entire studied series or
image. Multifractal analysis investigates the fractality at local zones, emphasizing the
differences between the local dimensions in the global complexity of the study object.
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Despite investigations of the mass loss of copper-based alloys having been per-
formed [18,41–43] and the existence of multifractality applications in engineering, com-
bined investigation (exploring the corroded surfaces of materials in an ultrasonic cavitation
field) has been less reported [41]. Therefore, in this article, we continue the investigation
from [8,41–43], aiming to determine the pattern of the mass loss of copper-based alloys
from the viewpoint of fractal/multifractal theory. The goal is to check the hypothesis that
the fractal/multifractal measures significantly differ for the two materials and compare the
results with those obtained for a brass [41]. Accepting the above hypothesis will open up a
new way to use this technique to distinguish between two classes of materials.

2. Materials and Methods
2.1. Experimental Setup and Materials

The experiments were performed using the setup from Figure 1. It consists of a tank
for liquid (1) containing an experimental tube (2) that has an open end through which
enters the fluid from the tank (1) and one end connected to the submersible pump (3). The
cavitation is produced by a piezoceramic transducer (7) which enters into oscillation as a
response to a high-frequency signal that it receives from the generator (8).
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Figure 1. Setup for the cavitation study [8].

The control unit (9) controls the functioning of the generator (8)—at several levels of
power—and of the cooler (11).

The mobile car (10) is powered and controlled by command block B (12). It is designed
to move along the tank (1) and maintain the samples, in the case of a corrosion–erosion
experiment (the actual case), or the measurement electrodes (13) that capture the electrical
signal produced by cavitation (in the case of signals analysis). The electronic block which
produces the high-frequency signals contains: a command block (9) with controls for access
to the network and power adjustment, a high-frequency generator (8), a power transformer,
radiators, and a cooler. The cavitation is produced by the oscillation of a ceramic transducer
(7) that receives a signal from the high-frequency generator (8) that works at 18 kHz and
different power levels (80, 120, or 180 W). The experiments presented here were performed
without circulating the water, so the pump (3) was not switched on. The generator works
at a voltage of 220 V and a frequency of 18 KHz. The electric powers developed at each
level of the high-frequency generator (8) are 80, 120, and 180 W, which extends the range of
parameters for conducting the experiments.

The materials used in the experime”t ha’ the following composition: Bronze 1 (Bz1):
4.05% Zn, 4.40% Pb, and 6.40% Sn in addition to Cu (83.09%), and Bronze 2 (Bz2): 4.40% Ni,
4.49% Fe and 9.85%, and Cu (80.54%).
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The samples were introduced into the tank (1), which contained seawater kept at a
constant temperature of 20 ◦C (utilizing the cooler (11)) for 1320 min. At each interval
of 20 min, the samples were weighed after being cleaned. The values collected were
used to build the time series of absolute mass variation per surface. It was achieved by
computing the differences between the mass at a specific moment and the initial mass of
the sample and then dividing the results by the sample’s surface area (measured before
starting the experiment).

The seawater parameters were: 22.17 g/L NaCl, pH = 7, 0.31 g/L–SO2+
4 , 0.051 mg/L

Fe, 0.0033 mg/L Ni, and 6.27 meq/L total hardness. For details on the installation’s
functioning, the reader may see [8].

2.2. Methodology

The series we are working on are presented in Figure 2, and we shall refer to them as
the Bz1 and Bz2 series.
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Figure 2. Time series of mass variation per surface.

The investigation was performed by fractal and multifractal analysis of the absolute
mass loss curve. The background of the study is shortly presented in the following.

When introducing the fractal theory, Mandelbrot [11] found that the fractal dimension
is a scale-invariant parameter of any geometrical object. A fractal object has the property
that a part exhibits statistical similarity with other parts or the whole. Therefore, fractal ob-
jects obey scaling laws (power laws) at different scales. If a single-scale law can characterize
an object, one refers to it as monofractal; otherwise, one calls it multifractal [11,44].

Fractal objects are generally characterized by various dimensions. Some of them,
presented in the following, were used in this study.

The box-count dimension of a bi-dimensional object in a plane is calculated by [45]:

DBC = lim
ε→o

N(ε)/log(1/ε) (1)

where N(ε) (ε > 0) is the minimum number of squares having a side of length ε used for
covering the object.

Practically, to estimate DBC, the object is covered by boxes that are divided in each
step into several smaller boxes, keeping only those containing at least a point. DBC is
computed as the slope of the line fitted (by the least squares method, on the log–log
scale) to the number of boxes vs. the side dimension. In our experiments, the boxes were
also rotated by angles of 12 degrees, and the resulting dimensions in all the experiments
were averaged. The dimensions are reported together with the standard deviations, their
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minimum and maximum values, and the dimension with the highest R2 square in a specific
set of experiments.

The Hall–Wood [46] estimator of the fractal dimension, DHW , takes into account at a
certain scale the sum of areas, A(ε), of all boxes intersecting the least squares line fitted
when computing (1). Therefore,

DHW = 2− lim
ε→o

A(ε)/log(ε) (2)

The p-order variogram estimator, proposed in [39] and improved by Genton [47], is
based on the computation of the moment estimators of the structure function of a stochastic
process, at different lags d, V̂d. Therefore, the variogram estimator is the slope of the least
squares regression line of log (V̂d) vs. log(d) [47,48]. Particular cases are the madogram (p =
1) and variogram (p = 2).

Other dimensions used in fractal analysis, derived from the box-count dimension, are
the correlation dimension (dcorr) and capacity dimension (dcap) [49]. The first one is obtained
when the figure is covered by circles or squares, and the mean number of points inside each
circle or square is considered as N(ε) in (1). The second one is computed by:

dcap = − lim
ε→ 0
ε > 0

ln(N(ε))

ln(ε)
, (3)

Utilizing the values of the normalized probability that the ith cell of the cover is not
void ( Pi(ε)), the information dimension (din f ) is given by [49]:

din f = lim
ε→ 0
ε > 0

∑Nε
i=1 Pi(ε)ln(Pi(ε))

ln(ε)
. (4)

Multifractal detrended fluctuation analysis (MFDFA), introduced by Kantelhardt
et al. [50], can demonstrate a time series’ multifractal characteristics. It is used in this article
to analyze the series from Figure 2. The method is shortly described in the following [50–53].

Consider a time series (yt)t=1,n.
1. Compute the centered series by subtracting the mean,y, from each yt, t = 1, n:

zi =
τ

∑
t=1

(yt−y), τ = 1, n (5)

2. Divide zi into ns segments with the same length (s), nonoverlapping, and such
that every two consecutive segments have only a common point—the end of one segment
and the beginning of the next. Because generally n is not divisible by s—the segmentation
length—and some elements at the end of the series (5) are not used, the series partition is
also performed starting from zn to z1. Therefore, 2ns segments are obtained.

3. Compute the least squares polynomial trend (of the first, second, or third degree)
for all the subseries built in the previous step and the corresponding detrended sub-series,
xt(i)(1 < i < s).

4. Compute the variances:

F2(s, t) =
1
s

s

∑
i=1

x2
t (i), t = 1, 2ns (6)
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5. Calculate the q-order fluctuation function as follows:

Fq(s) =


[

1
2ns

2ns
∑

t=1

(
F2(s, t)

)q/2
]1/q

, i f q 6= 0

exp
[

1
4ns

2ns
∑

t=1
ln
(

F2(s, t)
)]

, i f q = 0
(7)

When q = 2, the detrended fluctuation analysis (DFA) [54] is retrieved. To determine
the variation of Fq(s) on s, stages 2–4 must be repeated for different values of s.

6. Analyze the log(Fq(s)) vs. log(s) chart for each q to determine a power law dependence:

Fq(s)∼ shq , (8)

where hq is the generalized Hurst exponent that must be found.
For multifractal series, hq depends on q: when q increases, hq monotonically decreases.

For the monofractal series, there is no dependence of hq on q.
In the case of the stationary series, there is a direct relationship between hq and the

scaling exponents τq defined in standard fluctuation analysis [55] and linked to the partition
function, Zq, by the equation:

Zq(s) =
n/s

∑
k=1
|ps(k)|q ∼ sτq , (9)

where ps(k) is the kth segment box probability [55–57].
Therefore, the following equation linking τq and hq can be derived [58]:

τq = qhq − 1 (10)

In the case of multifractality, there is a nonlinear dependence between τq and q (more
accentuated when the nonlinearity is higher), whereas in the monofractality case, the
dependence is linear [59].

The series multifractality can be also analyzed utilizing the singularity spectrum f (α),
obtained after a Legendre transformation of τq, such as in [57]:

α = dτq/dq and f (α) = qα− τq. (11)

α is named the Hölder exponent.
In the monofractality situation, a unique α characterizes the entire series, so f (α) is

formed by a single point. In a multifractal situation, many α-values characterize the series
(each for a sub-series), giving birth to the f (α)—spectrum.

The spectrum width is computed by:

∆α = αmax − αmin (12)

The higher the value of ∆α, the more accentuated the multifractal character is.
Another measure of multifractality is the generalized multifractal dimension (Renyi’s

dimension) [58,59], Dq, whose dependence on τq is given by:

τq = (q− 1)Dq ⇔ Dq =
1

q− 1
τq. (13)

The monofractality is characterized by a linear (almost horizontal) shape of the plot of
Dq as a function of q. In the multifractal case, the plot’s shape is inverse sigmoid.

The analysis was performed using the R 4.2.3 (https://www.r-project.org/) and
Fractalyse (https://sourcesup.renater.fr/www/fractalyse/, accessed on 26 April 2023)
software. First, the mass loss series was introduced into the first two columns of a .csv

https://www.r-project.org/
https://sourcesup.renater.fr/www/fractalyse/
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file. Then, they were read by R (as data frames). The following libraries were uploaded:
“tseries,” “fractaldim,” and “MFDFA”. The first one permits the transformation of each
series into a time series using the “as.ts()”command. The second one was employed to
determine the box-count and Hall–Wood estimators, variogram, and madogram. The third
one permits multifractal analysis. The information, capacity, and correlation dimensions
were computed using Fractalyse.

3. Results and Discussion
3.1. Models of the Data Series

According to Figure 1, the mass loss variation per surface was the highest for Bz2 at
all experimental stages. The same observation can be extracted from the cumulated sum
(CUSUM) charts (Figure 3). The mass loss (∆mt) per surface (S) in time (t) can be described
by Equation (10) for Bz1 and Equation (11) for Bz2:

∆mt/S = 0.1444 + 0.1126t
(

R2 = 0.9957
)

, (14)

∆mt/S = −0.3068 + 0.1968t− 0.005t2 − 0.00006t3
(

R2 = 0.9936
)

. (15)
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Figure 3. CUSUM diagrams for the samples of (left) Bz1 and (right) Bz2.

A linear model with R2 above 0.99 can also be fitted to the second series without a
significant accuracy loss.

3.2. Fractal Analysis of the Sample Surface after Corrosion

The values of the fractal dimensions computed by the box-count estimator, Hall–Wood
estimator, variogram, and madogram methods are presented in Figures 4 and 5 (obtained
by using the R software). No significant differences between these dimensions are noticed.
The highest difference is between the variograms’ values (Figures 4b and 5b). All the values
are between 1.03 and 1.09. At this stage, no significant difference can be found regarding
the fractal properties of the two series.
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3.3. Multifractal Analysis of the Sample Surface after Corrosion

According to the theory from the previous section, to determine the exponents hq
from (8), one must study the charts of log(Fq(s)) vs. log(s) for different values of q. Such
charts are shown in Figure 6 for three values of q. In Figure 6a, one may notice one obvious
direction, with no significant changes in the slope in all cases. Only a few points have a
slight deviation from the trend lines. So, a very low multifractal character is noticed. In the
plots from Figure 6b, there are some deviations of the computed values—squares—from the
linear trend lines, which are more accentuated for q = 0 and q = 7. For example, for q = −7,
a decreasing trend is noticed for s from 10 to 12, followed by an increasing trend from 12
to 18 and another slope change from 18 to 35. These breakpoints indicate a multifractal
character of the Bz2 series, showing the scaling presence at any q. The linear trend fitted for
Fq(s) has a corresponding R2 above 0.98.
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Figure 7 presents the Hurst exponents in MFDFA. Both hq series monotonically de-
crease when q increases, indicating multifractal behavior for both series. Still, one should
consider all of the information extracted from the analysis before deciding on this character.
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Figure 8 contains the graphical representation of τq with respect to q for q ∈ [−7, 7].
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Figure 8. The charts of the scaling exponent, τq, for (a) Bz1 and (b) Bz2 series.

The first chart (Figure 8a) has a linear shape. The second one (Figure 8b) presents a
slight slope change. The two segments with different slopes are represented with different
colors. Therefore, the first chart indicates a possible monofractal character of the Bz1 series,
whereas the second one indicates the multifractality of the Bz2 series. To sustain or reject
these assertions, the f (α)—spectrum was computed in each case.

Figure 9a shows the f (α)—spectra for the two series, calculated by averaging the
values from all experiments. In the first case, the max f (α) = 1.2412, while in the second one,
it is 1.2625. Comparisons between the aperture lengths are presented in Table 1. Smaller
aperture lengths are determined for the second series. In both cases, the suggested scaling
is multifractal.
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Table 1. Apertures in the MFDA of Bz1 and Bz2 series.

Aperture
Length

Q (1 to 0)

Aperture
Slope

Q(1 to 0)

Aperture
Length

Q (0 to −1)

Aperture
Slope

Q(0 to −1)

Aperture
Length

Q(1 to −1)

Aperture
Slope

Q(1 to −1)

Bz1 0.3061 0.4135 0.5135 −0.4764 0.7536 −0.1392
Bz2 0.2400 0.4134 0.4065 −0.4870 0.5936 −0.1469

The multifractal dimension is 1.1737, with the standard deviation SD = 0.0856. The
minimum multifractal dimension in all experiments is 1.3148, and that with the highest
R2 = 0.9776 is 1.0958; the corresponding SD = 0.1727. The computation of the multifractal
dimension using the f (α)-spectrum results in 1.1558, with R2 = 0.9928 and SE = 0.1027,
for Bz2. The correlation dimension, capacity dimension, and information dimension
were, respectively:

D0 = dcap = 1.2414 for Bz1 (1.2625 for Bz2),
D1 = din f = 1.1244 for Bz1 (1.1709 for Bz2),
D2 = dcor = 1.0664 for Bz1 (1.1262 for Bz2).
The highest dimensions correspond to the second sample.
Comparisons of the previous results with those drawn from the analysis of a brass

sample [41] subjected to the same conditions indicate that:

• The fractal dimensions of all series do not significantly differ.
• The lowest capacity dimension corresponds to the brass series −D0 = 1.22.
• The Bz1 and Bz2 series have a multifractal character that is not evident for the brass

series, for which the f-alpha shape indicates multifractality, whereas that of Dq indicates
a monofractal character of this series.

In this study, the fractal analysis results in a measure of the whole mass loss process,
quantifying its global complexity. The multifractal study investigates the fractal properties
of different subseries of the series. It indicates that the data series has various dimensions
at a local scale, which differs from the global one, so the analyzed process has different
behaviors at local and global scales. The fractality of some copper alloys’ behavior has been
investigated in studies related to electrochemical corrosion [1–7] and signal analysis [18].
Also, multifractal analysis of corroded surface images has been performed for different
materials [38,60–62]. Still, these studies have been performed using a smaller number of
tools, among which are R/S rescaled analysis and MFDFA [50]. Extended analyses on the
mass loss of copper alloys have not been performed using both fractal and multifractal
methods, even if the mass loss in time of copper alloys has not been studied in terms of
its relationship with image analysis [41]. The current study and [41] represent a departure
point for the fractal analysis of these materials’ behavior in a cavitation field in seawater by
fractal and multifractal approaches. Whereas in [38], the multifractality index was utilized
to distinguish the corrosion type, the novelty of the present study is that fractal dimensions
were employed to distinguish the mass loss of different copper alloys.

4. Conclusions

In this paper, we investigated the fractal characteristics of two series of mass loss of
two samples of bronzes subjected to ultrasound cavitation. It was shown that the fractal
dimensions vary between 1.03 and 1.09, with no significant difference between the series.
The values of the multifractal dimensions indicate a multifractal character of both series,
which is more accentuated for the second one. Comparison with the brass sample behavior
shows that the applied technique can be used to characterize the behavior of different
materials in a cavitation field.

This analysis has the advantage of no restrictions on the liquid or material used in
the experiment. Other aspects should be studied, like the dependence between the fractal
variation and different experimental stages or building a multivariate model to reflect the
dependence of the fractal characteristics on the material’s composition and structure.
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The following summarizes the research’s importance:

• Experiments have been conducted using an installation designed by us for the study
of ultrasound influence on materials in different liquids.

• The bronzes used in the study were analyzed only in some of our research from the
viewpoint of their behavior in the cavitation field, but no study has been carried out to
describe the mass loss using fractal techniques.

• The models of mass loss of some materials in general, and in a cavitation field espe-
cially, together with fractal dimensions can distinguish between different
materials’ behavior.

• Investigation of the materials’ mass loss using the multifractal technique leads to de-
termining the pattern process and the changes that appear when the process advances.

• It was proved that the multifractal character of the mass loss of the brass sample
cannot be sustained, whereas the bronzes’ series have no such issue.

The study will be developed with the analysis of some composites (copper materials)
to find a classifier of copper based-alloys using fractal dimensions.

Funding: The publication fee of this article was supported by the Transilvania University of Bras, ov.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel-aluminium bronze in seawater.

Corros. Sci. 2005, 47, 3336–3367. [CrossRef]
2. Basumatary, J.; Wood, R.J.K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in

3.5% NaCl solution. Wear 2017, 376–377, 1286–1297. [CrossRef]
3. Basumatary, J.; Nie, M.; Wood, J.K. The synergistic effects of cavitation erosion-corrosion in ship propeller materials. J. Bio-

Tribo-Corros. 2015, 1, 12. [CrossRef]
4. Schüssler, A.; Exner, H.E. The corrosion of nickel-aluminium bronzes in seawater—I. Protective layer formation and the

passivation mechanism. Corros. Sci. 1993, 3, 1793–1802. [CrossRef]
5. Wharton, J.A.; Stokes, K.R. The influence of nickel–aluminium bronze microstructure and crevice solution on the initiation of

crevice corrosion. Electrochim. Acta 2008, 53, 2463–2473. [CrossRef]
6. Kwok, C.; Cheng, F.; Man, H. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl

solution. Mater. Sci. Eng. A 2000, 290, 145–154. [CrossRef]
7. Peng, S.; Xu, J.; Li, Z.; Jiang, S.; Xie, Z.-H.; Munroe, P. Electrochemical noise analysis of cavitation erosion corrosion resistance of

NbC nanocrystalline coating in a 3.5 wt.% NaCl solution. Surf. Coat. Technol. 2021, 415, 127133. [CrossRef]
8. Dumitriu, C.S.; Bărbulescu, A. Studies on the Copper Based Alloys Used in Naval Constructions-Modeling the Mass Loss in Different

Media; Sitech: Craiova, Romania, 2007. (In Romanian)
9. Bakhshandeh, H.R.; Allahkaram, S.R.; Zabihi, A.H. An investigation on cavitation-corrosion behavior of Ni/β-SiC nanocomposite

coatings under ultrasonic field. Ultrason. Sonochem. 2019, 56, 229–239. [CrossRef]
10. Hamidah, I.; Solehudin, A.; Hamdani, A.; Hasanah, L.; Khairurrijal, K.; Kurniawan, T.; Mamat, R.; Maryanti, R.; Nandiyanto,

A.B.D.; Belkheir, H. Corrosion of copper alloys in KOH, NaOH, NaCl, and HCl electrolyte solutions and its impact to the
mechanical properties. Alexandria Eng. J. 2021, 60, 2235–2243. [CrossRef]

11. Mandelbrot, B.B. Fractals, Form, Chance and Dimension; W. H. Freeman & Co., Ltd.: San Francisco, CA, USA, 1977.
12. Chen, G.; Cheng, Q. Fractal density modeling of crustal heterogeneity from the KTB deep hole. J. Geophys. Res. Solid Earth 2017,

122, 1919–1933. [CrossRef]
13. Burlando, P.; Menduni, G.; Rosso, R. (Eds.) Fractals, scaling and nonlinear variability in hydrology. J. Hydrol. 1996, 187, 1–264.
14. Bărbulescu, A.; S, erban, C. Statistical and multifractal analysis of rainfall of Romania. Int. J. Ecol. Econ. Stat. 2012, 25, 1–11.
15. Bărbulescu, A.; S, erban, C.; Maftei, C. Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation

time series. WSEAS Trans. Math 2010, 9, 791–800.
16. Maftei, C.; Bărbulescu, A.; Carsteanu, A.A. Long-range dependence in the time series of Taiţa River discharges. Hydrol. Sci. J.
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