Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions
Abstract
:1. Introduction
2. Materials
2.1. Type of Material Tested
2.2. Type of Samples Used in the Tests
3. Test Method
3.1. Compressive Strength Test after 1, 2, 7, and 28 Days of Maturation
3.2. Determination of the Depth of Penetration of Pressurized Water
3.3. Tests Open Porosity of Hardened Concrete
3.4. Use of X-Ray Computed Microtomography to Determine the Porosity of Concrete
3.5. Examination of the Rate of Penetration of Chloride Ions into Concrete
3.5.1. Testing the Diffusion of Chloride Ions through a Concrete Sample, in Accordance with the Norwegian Standard NT BUILD443 [32] and the American Standard ASTM1556 [33]
3.5.2. Testing the Permeability of Chloride Ions through a Concrete Sample, in Accordance with American Standards AASHTO T 277 [34] and ASTM C1202-97 [35]
3.5.3. Testing the Permeability of Chloride Ions through a Concrete Sample, in Accordance with the Norwegian Standard NT BUILD492 [36]
3.5.4. Migration Studies and Determination of Diffusion Coefficient Values Based on the Thermodynamic Migration Model
3.5.5. Diffusion Tests
3.6. Measurements of Linear Polarization Resistance LPR
3.7. EIS Measurements for Steel in Concrete
3.8. Phase Identification and Quantitative Analysis of Corrosion Products, Using the Rietveld Method
4. Results
4.1. Compressive Strength Test Results after 1, 2, 7, and 28 Days of Maturation
4.2. Results of Pressurized Water Penetration Depth Tests
4.3. Results of Testing the Open Porosity of Hardened Concrete
4.4. Results of Porosity Analysis of Concrete Cores using X-ray Computed Microtomography
4.5. Determination of the Rate of Penetration of Chloride Ions into Water-Saturated Concretes
4.6. Determination of Corrosion Rate of Reinforcing Steel Using the Linear Polarization Method (LPR)
4.7. Analysis of EIS Spectra for Steel in Concrete
4.8. Results of Phase Identification and Quantitative Analysis of Corrosion Products on Reinforcing Steel, using the Rietveld Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Test Date [Day] | Compressive Force [kN] | Compressive Strength [MPa] | Average Compressive Strength [Mpa] |
---|---|---|---|
1 | 456.3 | 20.3 | 20.3 |
441.7 | 19.6 | ||
470.2 | 20.9 | ||
2 | 834.7 | 37.1 | 38.6 |
896.54 | 39.8 | ||
875.23 | 38.9 | ||
7 | 1303.7 | 57,9 | 59.1 |
1328.2 | 59,0 | ||
1356.4 | 60,3 | ||
28 | 1452.2 | 64.5 | 62.4 |
1422.7 | 63.2 | ||
1339.5 | 59.5 |
Test Date [Day] | Compressive Force [kN] | Compressive Strength [Mpa] | Average Compressive Strength [Mpa] |
---|---|---|---|
1 | 384.0 | 17.1 | 17.8 |
397.4 | 17.7 | ||
418.2 | 18.6 | ||
2 | 713.0 | 31.7 | 31.4 |
719.4 | 32.0 | ||
683.9 | 30.4 | ||
7 | 1008.3 | 44.8 | 46.0 |
1027.5 | 45.7 | ||
1069.0 | 47.5 | ||
28 | 1413.7 | 62.8 | 63.9 |
1454.0 | 64.6 | ||
1445.3 | 64.2 |
Test Date [Day] | Compressive Force [kN] | Compressive Strength [Mpa] | Average Compressive Strength [Mpa] |
---|---|---|---|
1 | 335.8 | 14.9 | 14.7 |
327.1 | 14.5 | ||
330.7 | 14.7 | ||
2 | 523.7 | 23.3 | 38.6 |
514.6 | 22.9 | ||
522.0 | 23.2 | ||
7 | 861.7 | 38.3 | 59.1 |
983.2 | 43.7 | ||
861.3 | 38.3 | ||
28 | 1228.5 | 54.6 | 62.4 |
1304.7 | 58.0 | ||
1309.4 | 58.2 |
Appendix B
Measure No. | Time Days | Ecorr mV | ba mV | bc mV | Rp kΩ | RpA kΩcm2 | Icorr μA/cm2 | Vr mm/year |
---|---|---|---|---|---|---|---|---|
B1.1 | 0 | −95 | 399 | 25 | 3.01 | 68.33 | 0.15 | 0.002 |
B1.2 | 0 | −2 | 345 | 12 | 4.79 | 108.73 | 0.05 | 0.001 |
B1.1 | 14 | −333 | 394 | 72 | 0.82 | 18.70 | 1.41 | 0.016 |
B1.2 | 14 | −92 | 622 | 30 | 2.93 | 66.51 | 0.19 | 0.002 |
B1.1 | 28 | −694 | 61 | 710 | 0,03 | 0.75 | 32.56 | 0.378 |
B1.2 | 28 | −781 | 447 | 49 | 0.03 | 0.57 | 33.79 | 0.392 |
Measure No. | Time Days | Ecorr mV | ba mV | bc mV | Rp kΩ | RpA kΩcm2 | Icorr μA/cm2 | Vr mm/year |
---|---|---|---|---|---|---|---|---|
B2.1 | 0 | −10 | 701 | 54 | 4.57 | 103.74 | 0.21 | 0.002 |
B2.2 | 0 | −170 | 239 | 52 | 5.71 | 129.59 | 0.14 | 0.002 |
B2.1 | 14 | −161 | 500 | 59 | 1.52 | 34.50 | 0.66 | 0.008 |
B2.2 | 14 | −155 | 265 | 109 | 2.52 | 57.11 | 0.59 | 0.007 |
B2.1 | 28 | −237 | 480 | 23 | 1.01 | 22.93 | 0.42 | 0.005 |
B2.2 | 28 | −214 | 440 | 82 | 1.33 | 30.21 | 0.99 | 0.012 |
B2.1 | 42 | −357 | 78 | 92 | 0.51 | 11.49 | 1.60 | 0.019 |
B2.2 | 42 | −619 | 85 | 70 | 0.11 | 2.54 | 6.56 | 0.076 |
B2.1 | 56 | −328 | 96 | 84 | 0.61 | 13.87 | 1.40 | 0.016 |
B2.2 | 56 | −429 | 368 | 69 | 0.16 | 3.54 | 7.12 | 0.083 |
Measure No. | Time Days | Ecorr mV | ba mV | bc mV | Rp kΩ | RpA kΩcm2 | Icorr μA/cm2 | Vr mm/Year |
---|---|---|---|---|---|---|---|---|
B3.1 | 0 | −242 | 172 | 94 | 0.16 | 3.52 | 7.50 | 0.087 |
B3.2 | 0 | −23 | 200 | 119 | 0.93 | 21.11 | 1.53 | 0.018 |
B3.1 | 14 | −320 | 210 | 127 | 0.06 | 1.34 | 25.66 | 0.298 |
B3.2 | 14 | −49 | 566 | 90 | 1.00 | 22.70 | 1.49 | 0.017 |
B3.1 | 28 | −534 | 579 | 80 | 0.08 | 1.75 | 17.46 | 0.203 |
B3.2 | 28 | −268 | 315 | 107 | 0.70 | 15.89 | 2.18 | 0.025 |
B3.1 | 42 | −618 | 476 | 78 | 0.06 | 1.34 | 21.73 | 0.252 |
B3.2 | 42 | −568 | 590 | 34 | 0.11 | 2.47 | 5.64 | 0.065 |
Sample | t Days | Re + Rc kΩ/cm2 | CPEc | CPEpas | Rpit kΩ/cm2 | CPEct | Rct kΩ/cm2 | W µF·sn−1/cm2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Y01 nF·sn−1/cm2 | n1 | Y02 µF·sn−1/cm2 | n2 | Y03 µF·sn−1/cm2 | n3 | ||||||
B1.1 | 0 | 5.2 | 0.019 | 1.00 | 54 | 0.79 | 0.71 | 131 | 0.77 | 60.5 | 0.000 |
B1.2 | 0 | 6.2 | 0.383 | 0.82 | 56 | 0.80 | 1.97 | 91 | 0.83 | 146 | 0.002 |
B1.1 | 14 | 3.7 | 0.014 | 1.00 | 114 | 0.32 | 0.31 | 262 | 0.76 | 17.1 | 0.000 |
B1.2 | 14 | 3.5 | 0.393 | 0.80 | 91 | 0.53 | 0.20 | 312 | 0.72 | 49.1 | 0.221 |
B1.1 | 28 | 3.6 | 0.120 | 0.96 | 80 | 0.30 | 0.42 | 3216 | 0.43 | 0.48 | 0.099 |
B1.2 | 28 | 3.4 | 0.048 | 1.00 | 2 | 0.73 | 0.16 | 1164 | 0.31 | 0.33 | 7040 |
Sample | t Days | Re + Rc kΩ/cm2 | CPEc | CPEpas | Rpit kΩ/cm2 | CPEct | Rct kΩ/cm2 | W µF·sn−1/cm2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Y01 nF·sn−1/cm2 | n1 | Y02 µF·sn−1/cm2 | n2 | Y03 µF·sn−1/cm2 | n3 | ||||||
B2.1 | 0 | 11.1 | 0.023 | 1.00 | 44 | 0.49 | 0.5 | 198 | 0.69 | 84.1 | 0.001 |
B2.2 | 0 | 10.8 | 0.082 | 0.90 | 25 | 0.64 | 0.6 | 125 | 0.72 | 84.2 | 0.006 |
B2.1 | 14 | 12.2 | 0.073 | 0.91 | 31 | 0.30 | 1.4 | 136 | 0.63 | 48.8 | 1.759 |
B2.1 | 28 | 11.0 | 0.098 | 0.88 | 12 | 0.40 | 1.2 | 335 | 0.56 | 34.5 | 0.060 |
B2.2 | 28 | 10.3 | 0.087 | 0.90 | 34 | 0.30 | 1.3 | 216 | 0.60 | 30.6 | 0.000 |
B2.2 | 42 | 10.2 | 0.186 | 0.84 | 28 | 0.32 | 1.4 | 1189 | 0.38 | 2.04 | 647 |
B2.2 | 56 | 9.8 | 0.205 | 0.83 | 31 | 0.32 | 1.2 | 846 | 0.50 | 2.27 | 0.000 |
Sample | t Days | Re + Rc kΩ/cm2 | CPEc | CPEpas | Rpit kΩ/cm2 | CPEct | Rct kΩ/cm2 | W µF·sn−1/cm2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Y01 nF·sn−1/cm2 | n1 | Y02 µF·sn−1/cm2 | n2 | Y03 µF·sn−1/cm2 | n3 | ||||||
B3.1 | 0 | 13.3 | 0.017 | 1.00 | 215 | 0.74 | 2.6 | 70 | 0.55 | 12.18 | 56.00 |
B3.2 | 0 | 13.2 | 0.094 | 0.86 | 43 | 0.70 | 0.6 | 313 | 0.63 | 18.7 | 0.000 |
B3.1 | 14 | 11.6 | 0.049 | 0.94 | 17 | 0.46 | 0.7 | 264 | 0.59 | 42.15 | 7.181 |
B3.2 | 14 | 11.5 | 0.301 | 0.80 | 81 | 0.61 | 0.9 | 250 | 0.73 | 17.3 | 0.000 |
B3.1 | 28 | 7.7 | 0.069 | 0.92 | 9 | 0.42 | 0.9 | 2194 | 0.33 | 1.15 | 0.000 |
B3.2 | 28 | 7.6 | 0.323 | 0.82 | 193 | 0.32 | 1.1 | 2043 | 0.53 | 2.23 | 0.097 |
B3.1 | 42 | 6.9 | 0.243 | 0.85 | 0.4 | 0.81 | 0.3 | 346 | 0.30 | 0.88 | 7546 |
References
- Fuhaid, A.F.A.; Niaz, A. Carbonation and Corrosion Problems in Reinforced Concrete Structures. Buildings 2022, 12, 586. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wu, C.; Jiao, Y. Experimental and Simulation Study on Diffusion Behavior of Chloride Ion in Cracking Concrete and Reinforcement Corrosion. Adv. Mater. Sci. Eng. 2018, 2018, 8475384. [Google Scholar] [CrossRef]
- Rqlü, R.; Dylgrylü, G.; Savi, J. Damage of Concrete and Reinforcement of Reinforced-Concrete Foundations Caused by Environmental Effects. Procedia Eng. 2015, 117, 411–418. [Google Scholar] [CrossRef]
- Millán Ramírez, G.P.; Byliński, H.; Niedostatkiewicz, M. Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. Materials 2021, 14, 3253. [Google Scholar] [CrossRef] [PubMed]
- Szyszkiewicz, K.; Jasielec, J.J.; Królikowska, A.; Filipek, R. Determination of Chloride Diffusion Coeffi cient in Cement-Based Materials—A Review of Experimental and Modeling Methods: Part I—Diffusion Methods. Cem. Wapno Beton 2017, 2017, 52–66. [Google Scholar]
- Jasielec, J.; Szyszkiewicz, K.; Filipek, R. Determination of Chloride Diffusion Coeffi cient in Cement-Based Materials—A Review of Experimental and Modeling Methods: Part II—Migration Methods. Cem. Wapno Beton 2017, 2017, 154–167. [Google Scholar]
- Roberto, J.; Junior, H.; Balestra, C.E.T.; Medeiros-junior, R.A. Comparison of test methods to determine resistance to chloride penetration in concrete: Sensitivity to the effect of fly ash. Constr. Build. Mater. 2021, 277, 122265. [Google Scholar] [CrossRef]
- Szweda, Z.; Gołaszewski, J.; Ghosh, P.; Lehner., P.; Konečný, P. Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration. Materials 2023, 16, 637. [Google Scholar] [CrossRef]
- Szweda, Z.; Zybura, A. Theoretical model and experimental tests on chloride diffusion and migration processes in concrete. Procedia Eng. 2013, 57, 1121–1130. [Google Scholar] [CrossRef]
- Moon, H.Y.; Kim, H.S.; Choi, D.S. Relationship between average pore diameter and chloride diffusivity in various concretes. Constr. Build. Mater. 2006, 20, 725–732. [Google Scholar] [CrossRef]
- De Schutter, G.; Audenaert, K. Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration. Mat. Struct. 2004, 37, 591–596. [Google Scholar] [CrossRef]
- Sherman, M.R.; Mcdonald, D.B.; Pfeifer, D.W. Durability aspects of precast prestressed concrete. Part 2: Chloride permeability study. PCI J. 1996, 41, 76–95. [Google Scholar] [CrossRef]
- Ruixing, C.; Song, M.; Jiaping, L. Relationship between chloride migration coefficient and pore structures of long-term water curing concrete. Constr. Build. Mater. 2022, 341, 127741. [Google Scholar] [CrossRef]
- Kaufmann, J.; Loser, R.; Leemann, A. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. J. Colloid Interface Sci. 2009, 336, 730–737. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Yang, Z.; Ye, G. Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization–Depressurization Cycling Mercury Intrusion Porosimetry. Materials 2019, 12, 1454. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Pinto, S.A.; Amorim, N.S.; Júnior, A.J.S.; Neto, S.I.H.L.; Marques, S.L.; França, M.J.S. Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient. Cem. Concr. Compos. 2021, 122, 104114. [Google Scholar] [CrossRef]
- Batista, Í. X-ray Computed Microtomography technique applied for cementitious materials: A review. Micron 2018, 107, 1–8. [Google Scholar] [CrossRef]
- Estadual, U.; Cruz, D.S.; Sanchez, J.; De Assis, J.T. Obtaining Porosity of Concrete Using X-ray Microtomography or Digital Scanner. J. Chem. Chem. Eng. 2014, 8, 371–377. [Google Scholar] [CrossRef]
- Dong, B.; Shi, G.; Dong, P.; Ding, W.; Teng, X.; Qin, S.; Liu, Y.; Xing, F.; Hong, S. Visualized tracing of rebar corrosion evolution in concrete with x-ray micro- computed tomography method. Cem. Concr. Compos. 2018, 92, 102–109. [Google Scholar] [CrossRef]
- Dong, B.; Fang, G.; Liu, Y.; Dong, P.; Zhang, J.; Xing, F.; Hong, S. Monitoring reinforcement corrosion and corrosion-induced cracking by X- ray microcomputed tomography method. Cem. Concr. Compos. 2017, 100, 311–321. [Google Scholar] [CrossRef]
- Itty, P.; Serdar, M.; Meral, C.; Parkinson, D.; Macdowell, A.A.; Monteiro, P.J.M. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste. Corros. Sci. 2014, 83, 409–418. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoǧlu, M.; Karaboǧa, F.; Mermerdaş, K. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos. Part B Eng. 2013, 45, 1288–1295. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Abrantes, J.C.C. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Constr. Build Mater. 2016, 111, 98–104. [Google Scholar] [CrossRef]
- Szweda, Z.; Jaśniok, T.; Jaśniok, M. Evaluation of the effectiveness of electrochemical chloride extraction from concrete on the basis of testing reinforcement polarization and chloride concentration. Ochr. Przed. Korozją 2018, 61, 3–9. [Google Scholar] [CrossRef]
- Szweda, Z. Evaluating the Impact of Concrete Design on the Effectiveness of the Electrochemical Chloride Extraction Process. Materials 2023, 16, 666. [Google Scholar] [CrossRef]
- Antunes, R.A.; Ichikawa, R.U.; Martinez, L.G.; Costa, I. Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. Int. J. Corros. 2014, 2014, 419570. [Google Scholar] [CrossRef]
- Vera, R.; Villarroel, M.; Carvajal, A.M.; Vera, E.; Ortiz, C. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater. Chem. Phys. 2009, 114, 467–474. [Google Scholar] [CrossRef]
- Pan, T.; Wang, L. Finite-Element Analysis of Chemical Transport and Reinforcement Corrosion-Induced Cracking in Variably Saturated Heterogeneous Concrete. J. Eng. Mech. 2011, 137, 334–345. [Google Scholar] [CrossRef]
- PN EN 12620:2013-08; Aggregates for Concrete. Polish Committee for Standardization: Warszawa, Poland, 2013.
- PN EN 12390-3:2019-07; Concrete Research—Part 3: Compressive Strength of Test Specimens. Polish Committee for Standardization: Warszawa, Poland, 2019.
- PN-EN 12390-8; Concrete Research—Part 8: Depth of Water Penetration under Pressure. Polish Committee for Standardization: Warszawa, Poland, 2019.
- NT BUILD-443; Concrete Hardened: Accelerated Chloride Penetration. Nordtest: Espoo, Finland, 1995; pp. 1–5.
- ASTM C1556; Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM C1202; Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2000.
- ASTM C1202; ASTM I American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 1997; pp. 1–6.
- NT Build 492; Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experi-Ments. NORDTEST: Espoo, Finland, 1999; pp. 1–8.
- Szweda, Z.; Ponikiewski, T.; Katzer, J. A study on replacement of sand by granulated ISP slag in SCC as a factor formatting its durability against chloride ions. J. Clean. Prod. 2017, 156, 569–576. [Google Scholar] [CrossRef]
- PN-EN 206-1; Beton Część 1: Wymagania, Właściwości i Zgodność. Polish Committee for Standardization: Warszawa, Poland, 2004; pp. 1–70. (In Polish)
- ASTM-C 867–91; Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete C 876–91 (Reapproved 1999). ASTM Int: West Conshohocken, PA, USA, 1999.
- Raczkiewicz, W. Use of polypropylene fi bres to increase the resistance of reinforcement to chloride corrosion in concretes. Sci. Eng. Compos. Mater. 2021, 22, 555–567. [Google Scholar] [CrossRef]
- Brandt, F.; Bosbach, D. Bassanite (CaSO4·0.5H2O) dissolution and gypsum (CaSO4·2H2O) precipitation in the presence of cellulose ethers. J. Cryst. Growth 2001, 233, 837–845. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Koteš, P.; Konečný, P. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. Materials 2021, 14, 4657. [Google Scholar] [CrossRef]
Constituent | B | B2 | B3 |
---|---|---|---|
Cement | 368 | ||
Aggregate | 1915 | ||
Water | 147 | ||
w/c | 0.4 | ||
Plasticizer (0.5% m.c.) | |||
Sealing admixture (0.8% m. c.) | |||
Compressive strength fcm MPa | 62.4 | 63.9 | 56.9 |
Volume weight kg/m3 | 2271 | 2241 | 2269 |
Concrete | B1.1 | B1.2 | B1.3 | B2.1 | B2.2 | B2.3 | B3.1 | B3.2 | B3.3 |
---|---|---|---|---|---|---|---|---|---|
Depth of penetration [mm] | 23 | 20 | 25 | 14 | 6 | 14 | 18 | 18 | 22 |
Average depth [mm] | 23 | 11 | 19 |
Concrete | Dry Mass g | Water Saturation Mass g | Floating Mass g | Open Porosity % |
---|---|---|---|---|
B1 | 216.85 | 225.3 | 131.4 | 9 |
B2 | 121.36 | 126.2 | 72.8 | 9 |
B3 | 148.37 | 153.4 | 87.9 | 8 |
Mix ID | Diffusion Coefficient Calculated (10−12 m2/s) | |||||||
---|---|---|---|---|---|---|---|---|
B1 | 3.67; (0.28) | 0.48; (±0.06) | 12.5; (0.69) | 12.5; (0.69) | 1.20; (0.85) | 4.84; (0.34) | 2.42; (0.61) | 4.84 |
B2 | 1.34; (0.05) | 2.0; (±0.06) | 16; (0.74) | 16; (0.74) | 2.96; (0.21) | 3.84; (0.25) | 1.92; (0.62) | 1.48 |
B3 | 1.86; (0.05) | 1.41; (±0.06) | 130; (0.48) | 130; (0.48) | 2.32; (0.67) | 5.88; (0.54) | 4.52; (0.33) | 2.27 |
Identified Phase Components Share [mass %] | B1 | B2 | B3 |
---|---|---|---|
Magnetite Fe3O4 | 34.7 ± 2.1 | - | - |
Lepidocrocite γ-FeO(OH) | 36.2 ± 1.8 | 10.0 ± 1.1 | 35.9 ± 1.7 |
Akaganeite Fe4Cl0.44O3.55(OH)4.44 (H2O)0.2 | 28.7 ± 2.0 | 24.0 ± 1.7 | 10.9 ± 0.7 |
Bassanite CaSO4(H 2 O)0.5 | <1.0 | - | - |
Feroxyhyte δ-FeOOH | - | 59.0 ± 2.1 | - |
Goethite α-FeO(OH) | - | - | 48.7 ± 2.0 |
CaCl2 | - | - | 3.3 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szweda, Z.; Kuziak, J.; Sozańska-Jędrasik, L.; Czachura, D. Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions. Materials 2023, 16, 3889. https://doi.org/10.3390/ma16103889
Szweda Z, Kuziak J, Sozańska-Jędrasik L, Czachura D. Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions. Materials. 2023; 16(10):3889. https://doi.org/10.3390/ma16103889
Chicago/Turabian StyleSzweda, Zofia, Justyna Kuziak, Liwia Sozańska-Jędrasik, and Dominik Czachura. 2023. "Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions" Materials 16, no. 10: 3889. https://doi.org/10.3390/ma16103889
APA StyleSzweda, Z., Kuziak, J., Sozańska-Jędrasik, L., & Czachura, D. (2023). Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions. Materials, 16(10), 3889. https://doi.org/10.3390/ma16103889