Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material
Abstract
:1. Introduction
2. Experimental Section
2.1. Starting Material
- cGGBFS: w/b-ratio = 0.3
- mGGBFS: w/b-ratio = 0.35
- fGGBFS: w/b-ratio = 0.45
- Constant proportion of K2O/slag, thus reducing the proportion of solids in [g/L] in the solution by increasing the water content;
- Constant percentage of solids in the solution [g/L], thus increasing the proportion of K2O/slag.
2.2. Investigated Mix Design by Design of Experiments (DoE)
2.3. Analytical Methods
3. Results and Discussion
- (i)
- Determination of setting time and FTIR wavenumber after 24 h of hydration using DoE;
- (ii)
- Definition of significant factors by DoE;
- (iii)
- Correlation of FTIR wavenumber with hydration kinetics and shrinkage behavior;
- (iv)
- Development of a predictive model;
- (v)
- Evaluation of the predictive model.
3.1. DoE Results and Statistical Properties of the Investigated Mixtures
3.1.1. Determination of the Minimum Number of Test Points by DoE
3.1.2. Curing Properties Measured by Ultrasonic Test
3.1.3. Hydration Properties Measured by ATR-FTIR
3.2. Detailed Investigations
3.2.1. Sample Overview
3.2.2. Hydration Kinetics
- The combination of a high K2O content with a low SiO2 content cannot be increased arbitrarily. By using an activator with a modulus < 0.5, the heat of hydration decreases and leads to a negative effect (see small diagram in Figure 8a).
- If too much SiO2 is added compared to K2O, resulting in a modulus > 2.0, the sample approaches the effect in Figure 8a for WG2.2 and no solidification occurs after 24 h.
3.2.3. Time-Dependent Deformation of Mortars
4. Modelling and Evaluation
4.1. Modelling of Curing and Hydration Properties of AAM Systems
- From the determined FTIR results of the Si-O-T peak that is decisive in predicting the performance properties, the wavenumber in the range 900–1000 cm−1 can be predicted. As mentioned before, a high wavenumber stands for a high number of cross-links of the silicate units. Figure 5 shows that the effective areas by using GGBFS with fineness values of 8000 cm2/g and 12,000 cm2/g differ only slightly but show a shift towards lower wavenumbers.
- With increasing silica fume content (decreasing content of GGBFS in the system), more amorphous SiO2 is available, and slightly more cross-linked C-(K)-A-S-H chains are formed in the system.
- ➢
- g(SiO2;K2O) = FTIR value of Si-O bond 900–1000 cm−1
- ➢
- g(350;375) = 965
- ➢
- g(0;475) = 930
- ➢
- g(200;250) = 935.
4.2. Evaluation of the Model Robustness
- g(278;303;8000;8) = 960.4 → measured FTIR wavenumber: 964
- g(093;219;8000;8) = 950.2 → measured FTIR wavenumber: 949
- g(093;395;8000;8) = 939.4 → measured FTIR wavenumber: 944.
- g(278;303;8000;8): FTIR = 960.6 → 24 min → −10.76 [‰]
- g(093;219;8000;8): FTIR = 950.2 → 32 min → −8.86 [‰]
- g(093;395;8000;8): FTIR = 939.2 → 50 min → −2.89 [‰]
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
DoE nr. | WG/PH | PH (K2O) | Silica Fume | GGBFS Fineness | WG Type | End of Setting [min] | FTIR Wavenumber [cm−1] |
---|---|---|---|---|---|---|---|
1 | 0/100 | PH3 | 8 wt% | fGGBFS | WG1.0 | 101.5 | 931.0 |
2 | 50/50 | PH1 | 8 wt% | fGGBFS | WG2.2 | 9.5 | 965.0 |
3 | 100/0 | PH3 | 8 wt% | fGGBFS | WG1.0 | 13.5 | 970.2 |
4 | 50/50 | PH5 | 8 wt% | fGGBFS | WG2.2 | 75.0 | 937.6 |
5 | 50/50 | PH3 | 4 wt% | fGGBFS | WG1.0 | 33.0 | 937.6 |
6 | 50/50 | PH3 | 12 wt% | fGGBFS | WG1.0 | 56.5 | 944.7 |
7 | 50/50 | PH1 | 8 wt% | fGGBFS | WG1.0 | 22.5 | 950.4 |
8 | 50/50 | PH5 | 8 wt% | cGGBFS | WG1.0 | 225.5 | 949.0 |
9 | 50/50 | PH1 | 8 wt% | cGGBFS | WG2.2 | 17.5 | 973.0 |
10 | 0/100 | PH3 | 8 wt% | mGGBFS | WG1.0 | 97.5 | 937.6 |
11 | 100/0 | PH3 | 8 wt% | mGGBFS | WG2.2 | - | 1009.9 |
12 | 100/0 | PH3 | 8 wt% | cGGBFS | WG1.0 | 28.5 | 981.5 |
13 | 0/100 | PH3 | 8 wt% | cGGBFS | WG2.2 | 116.0 | 936.2 |
14 | 50/50 | PH3 | 4 wt% | mGGBFS | WG1.0 | 59.0 | 932.0 |
15 | 50/50 | PH3 | 4 wt% | cGGBFS | WG2.2 | 51.0 | 957.5 |
16 | 75/25 | PH4 | 10 wt% | mGGBFS | WG1.0 | 62.5 | 958.9 |
17 | 25/75 | PH2 | 6 wt% | mGGBFS | WG2.2 | 43.5 | 944.7 |
18 | 75/25 | PH4 | 10 wt% | cGGBFS | WG2.2 | 18.5 | 975.9 |
19 | 25/75 | PH2 | 6 wt% | cGGBFS | WG1.0 | 61.5 | 947.6 |
20 | 25/75 | PH4 | 6 wt% | mGGBFS | WG2.2 | 100.5 | 930.6 |
21 | 25/75 | PH2 | 10 wt% | mGGBFS | WG2.2 | 40.0 | 942.5 |
22 | 75/25 | PH2 | 10 wt% | mGGBFS | WG1.0 | 33.5 | 969.5 |
23 | 50/50 | PH3 | 12 wt% | cGGBFS | WG1.0 | 114.0 | 950.4 |
24 | 75/25 | PH2 | 6 wt% | mGGBFS | WG2.2 | 9.0 | 974.5 |
25 | 0/100 | PH3 | 8 wt% | fGGBFS | WG2.2 | 101.5 | 931.0 |
26 | 75/25 | PH4 | 6 wt% | mGGBFS | WG1.0 | 54.5 | 939.0 |
27 | 50/50 | PH5 | 8 wt% | fGGBFS | WG1.0 | 131.5 | 943.3 |
28 | 50/50 | PH1 | 8 wt% | mGGBFS | WG1.0 | 33.0 | 944.7 |
29 | 50/50 | PH3 | 12 wt% | fGGBFS | WG2.2 | 28.0 | 949.0 |
30 | 25/75 | PH4 | 10 wt% | cGGBFS | WG2.2 | 186.0 | 933.4 |
31 | 75/25 | PH2 | 10 wt% | cGGBFS | WG2.2 | 14.0 | 987.2 |
32 | 75/25 | PH4 | 6 wt% | cGGBFS | WG2.2 | 19.5 | 973.0 |
33 | 50/50 | PH3 | 8 wt% | fGGBFS | WG1.0 | 45.5 | 934.8 |
34 | 50/50 | PH3 | 12 wt% | mGGBFS | WG2.2 | 42.0 | 949.0 |
35 | 25/75 | PH2 | 10 wt% | cGGBFS | WG1.0 | 71.0 | 947.6 |
36 | 75/25 | PH2 | 6 wt% | cGGBFS | WG1.0 | 47.0 | 960.3 |
37 | 25/75 | PH4 | 6 wt% | cGGBFS | WG1.0 | 229.0 | 929.1 |
38 | 50/50 | PH5 | 8 wt% | mGGBFS | WG2.2 | 70.0 | 937.6 |
39 | 25/75 | PH4 | 10 wt% | mGGBFS | WG1.0 | 169.0 | 927.7 |
40 | 50/50 | PH3 | 4 wt% | fGGBFS | WG2.2 | 19.0 | 944.7 |
41 | 100/0 | PH3 | 8 wt% | fGGBFS | WG2.2 | - | 1009.9 |
42 | 50/50 | PH3 | 8 wt% | fGGBFS | WG2.2 | 27.0 | 947.5 |
References
- Al-Musawi, H.; Figueiredo, F.P.; Guadagnini, M.; Pilakoutas, K. Shrinkage properties of plain and recycled steel–fibre-reinforced rapid hardening mortars for repairs. Constr. Build. Mater. 2019, 197, 369–384. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Oh, T.; Chun, B. Highly ductile ultra-rapid-hardening mortar containing oxidized polyethylene fiber. Constr. Build. Mater. 2021, 277, 122317. [Google Scholar] [CrossRef]
- Shi, C.; Ma, C.; Yang, Y.; Zou, X. Effects of curing temperature on mechanical properties of polymer-modified OPC-CA-gypsum repair mortar. Cem. Concr. Comp. 2022, 319, 126042. [Google Scholar] [CrossRef]
- Lura, P.; Breugel, K.V.; Maruyama, I. Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete. Cem. Concr. Res. 2001, 12, 1867–1872. [Google Scholar] [CrossRef]
- Huo, J.S.; Wang, P.; Qi, Y.U. Effect of water-cement ratio on mechanical behavior of concrete at elevated temperatures. J. Saf. Environ. 2013, 13, 199–206. [Google Scholar]
- Hong, S. Influence of Curing Conditions on the Strength Properties of Polysulfide Polymer Concrete. Appl. Sci. 2017, 7, 833. [Google Scholar] [CrossRef]
- Rashid, K.; Wang, Y.; Ueda, T. Influence of continuous and cyclic temperature durations on the performance of polymer cement mortar and its composite with concrete. Compos. Struct. 2019, 215, 214–225. [Google Scholar] [CrossRef]
- Ma, H.; Li, Z. Microstructures and mechanical properties of polymer-modified mortars under distinct mechanisms. Constr. Build. Mater. 2013, 47, 579–587. [Google Scholar] [CrossRef]
- Reis, J.; Ferreira, A. Freeze–thaw and thermal degradation influence on the fracture properties of carbon and glass fiber reinforced polymer concrete. Constr. Build. Mater. 2006, 20, 888–892. [Google Scholar] [CrossRef]
- Knapen, E.; Van Gemert, D. Polymer film formation in cement mortars modified with water-soluble polymers. Cem. Concr. Comp. 2015, 58, 23–28. [Google Scholar] [CrossRef]
- Ramezani, M.; Kim, Y.H.; Sun, Z.; Sherif, M.M. Influence of carbon nanotubes on properties of cement mortars subjected to alkali-silica reaction. Cem. Concr. Comp. 2022, 131, 104596. [Google Scholar] [CrossRef]
- Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr. Build. Mater. 2022, 315, 125100. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Alkali Activated Materials—State-Of-The-Art Report; RILEM TC 224-AAM; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Oda, J.; Akimoto, K.; Tomoda, T. Long-term global availability of steel scrap. Resour. Conserv. Recycl. 2013, 81, 81–91. [Google Scholar] [CrossRef]
- U.N. Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodriguez, E.D.; De Gutierrez, R.M.; Provis, J.L. Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem.-Based Mater. 2012, 1, 138–151. [Google Scholar] [CrossRef]
- Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 2012, 45, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Shi, D.; Zhang, W.S.; Ye, J.Y.; Zhang, J.B. Study on the mechanism of alkali activated cementitious materials prepared with calcium silicate slag. Bull. Chin. Ceram. Soc. 2014, 33, 6–20. [Google Scholar]
- Zhang, J.; Shi, C.J.; Zhang, Z.H.; Ou, Z.H. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 2017, 152, 598–613. [Google Scholar] [CrossRef]
- Aiken, T.A.; Kwasny, J.; Sha, W.; Tong, K.T. Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content. Constr. Build. Mater. 2021, 301, 124330. [Google Scholar] [CrossRef]
- Arbi, K.; Nedeljkovic, M.; Zuo, Y.; Ye, G. A review on the durability of alkali-activated fly ash/slag systems: Advances, issues, and perspectives. Ind. Eng. Chem. Res. 2016, 55, 5439–5453. [Google Scholar]
- Wang, A.; Zheng, Y.; Zhang, Z.; Liu, K.; Li, Y.; Shi, L.; Sun, D. The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. Engineering 2020, 6, 695–706. [Google Scholar] [CrossRef]
- Aydin, S.; Baradan, B. High temperature resistance of alkali-activated slag- and Portland cement-based reactive powder concrete. ACI Mater. J. 2012, 109, 463–470. [Google Scholar]
- Chang, J.J. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem. Concr. Res. 2003, 33, 1005–1011. [Google Scholar] [CrossRef]
- Jansson, H.; Tang, L. Parameters influencing the initial setting time of alkali-activated ground granulated blastfurnace slag materials. Nord. Concr. Res. 2015, 52, 63–76. [Google Scholar]
- Dai, X.; Aydin, S.; Yardimci, M.Y.; Lesage, K.; De Schutter, G. Rheology and microstructure of alkali-activated slag cements produced with silica fume activator. Cem. Concr. Comp. 2022, 125, 104303. [Google Scholar] [CrossRef]
- Alanazi, H.; Yang, M.; Zhang, D.; Gao, Z. Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar. Cem. Concr. Compos. 2016, 65, 75–82. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cheng, Y.; Huseien, G.F.; Shah, K.W. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: A critical review. Constr. Build. Mater. 2022, 318, 125993. [Google Scholar]
- Atiş, C.D.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Ye, H.; Radlinska, A. Shrinkage mechanisms of alkali-activated slag. Cem. Concr. Res. 2016, 88, 126–135. [Google Scholar]
- Collins, F.; Sanjayan, J.G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Ou, Z.; Feng, R.; Li, F.; Liu, G.; Li, N. Development of drying shrinkage model for alkali-activated slag concrete. Constr. Build. Mater. 2022, 323, 126556. [Google Scholar] [CrossRef]
- Krizan, D.; Zivanovic, B. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 2002, 32, 1181–1188. [Google Scholar] [CrossRef]
- Chen, W.; Li, B.; Wang, J.; Thom, N. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem. Concr. Res. 2021, 141, 106322. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, G. The shrinkage of alkali activated fly ash. Cem. Concr. Res. 2015, 68, 75–82. [Google Scholar] [CrossRef]
- Sant, G.; Lothenbach, B.; Juilland, P.; Le, G.; Weiss, J.; Scrivener, K. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cem. Concr. Res. 2011, 41, 218–229. [Google Scholar] [CrossRef]
- Fang, G.; Bahrami, H.; Zhang, M. Mechanisms of autogenous shrinkage of alkaliactivated fly ash-slag pastes cured at ambient temperature within 24 h. Constr. Build. Mater. 2018, 171, 377–387. [Google Scholar]
- Palacios, M.; Puertas, F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem. Concr. Res. 2005, 35, 1358–1367. [Google Scholar] [CrossRef]
- Wetzel, A.; Schade, T.; Middendorf, B. Alkali-activated slag with low water/binder-ratio. In 6th International Slag Valorisation Symposium; Malfiet, A., Pyes, A., Di Maria, A., Eds.; Procopia: Leuven, Belgium, 2019; pp. 395–398. [Google Scholar]
- Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. Effect of activator mix on the hydration and strength behavior of alkali-activated slag cements. Adv. Cem. Res. 2003, 15, 129–136. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F. Alkali-activated slag mortars—Mechanical strength behavior. Cem. Concr. Res. 1999, 29, 1313–1321. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. Selectivity of Alkaline Activators for the Activation of Slags. Cem. Concr. Aggreg. J. 1996, 18, 8–14. [Google Scholar]
- Criado, M.; Walkley, B.; Ke, X.; Provis, J.L.; Bernal, S.A. Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability 2018, 10, 4709. [Google Scholar] [CrossRef]
- Schade, T.; Wetzel, A.; Middendorf, B. Vergleichende Untersuchungen zur Analyse des Abbindeprozesses von alkalisch aktivierten Bindemitteln. In GDCh-Tagung Bauchemie; Rohs, M., Weichold, O., Eds.; GDCh-Fachgruppe Bauchemie: Aachen, Germany, 2019; pp. 92–99. [Google Scholar]
- Fernández-Jiménez, A.; Puertas, F.; Arteaga, A. Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J. Therm. Anal. Calorim. 1998, 52, 945–955. [Google Scholar] [CrossRef]
- Juenger, M.; Monteiro, P.; Gartner, E. In situ imaging of ground granulated blast furnace slag hydration. J. Mater. Sci. 2006, 41, 7074–7081. [Google Scholar] [CrossRef]
- Song, S.; Sohn, D.; Jennings, H.; Mason, T. Hydration of alkali-activated ground granulated blast furnace slag. J. Mater. Sci. 2000, 35, 249–257. [Google Scholar] [CrossRef]
- Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg. Chem. 2012, 51, 1827–1836. [Google Scholar] [CrossRef]
- Renaudin, G.; Russias, J.; Leroux, F.; Cau-dit-Coumes, C.; Frizon, F. Structural characterization of C-S-H and C-A-S-H samples—Part II: Local environment investigated by spectroscopic analyses. J. Solid State Chem. 2009, 182, 3320–3329. [Google Scholar] [CrossRef]
- Sun, G.K.; Young, J.F.; Kirkpatrick, R.J. The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 2006, 36, 18–29. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; de Gutierrez, R.M.; Rose, V. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. Alkali-activated slag cements: Kinetic studies. Cem. Concr. Res. 1997, 27, 359–368. [Google Scholar] [CrossRef]
- Hilbig, H.; Buchwald, A. The effect of activator concentration on reaction degree and structure formation of alkali-activated ground granulated blast furnace slag. J. Mater. Sci. 2006, 41, 6488–6491. [Google Scholar] [CrossRef]
- Walkley, B.; Provis, J.L. Solid-state nuclear magnetic resonance spectroscopy of cements. Mater. Today Adv. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Schade, T.; Bellmann, F.; Middendorf, B. Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material. Cem. Concr. Res. 2022, 153, 106706. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part, I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Escalante-Garcia, J.; Fuentes, A.F.; Gorokhovsky, A.; Fraire-Luna, P.E.; Mendoza-Suarez, G. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am. Ceram. Soc. 2003, 86, 2148–2153. [Google Scholar] [CrossRef]
- Richardson, I.G.; Groves, G.W. Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J. Mater. Sci. 1992, 27, 6204–6212. [Google Scholar] [CrossRef]
- Wang, S.D.; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. Alkali-activated slag cement and concrete: A review of properties and problems. Adv. Cem. Res. 1995, 7, 93–102. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, X.; Xu, Z.; Tang, M. Kinetic study on hydration of alkali-activated slag. Cem. Concr. Res. 1993, 23, 1253–1258. [Google Scholar]
- Le Saoût, G.; Ben Haha, M.; Winnefeld, F.; Lothenbach, B. Hydration Degree of Alkali-Activated Slags: A 29Si NMR Study. J. Am. Ceram. Soc. 2003, 33, 769–774. [Google Scholar] [CrossRef]
- Schneider, J.; Cincotto, M.A.; Panepucci, H. 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem. Concr. Res. 2001, 31, 993–1001. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Heikal, M.; Nassar, M.Y.; El-Sayed, G.; Ibrahim, S.M. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Constr. Build. Mater. 2014, 69, 60–72. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodriguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Ravikumar, D.; Neithalath, N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cem. Concr. Compos. 2012, 34, 809–818. [Google Scholar] [CrossRef]
- Santos, R.L.; Horta, R.B.; Pereira, J.; Nunes, T.G.; Rocha, P.; Colaco, R. Alkali activation of a novel calcium-silicate hydraulic binder with CaO/SiO2 = 1.1. J. Am. Ceram. Soc. 2018, 101, 4158–4170. [Google Scholar] [CrossRef]
- Engelhard, G.; Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites; Wiley: Norwich, UK, 1987. [Google Scholar]
- Hanna, R.A.; Barri, P.J.; Cheeseman, C.R.; Hills, C.D.; Buchler, P.M.; Perry, R. Solid state 29Si and 27Al NMR and FTIR study of cement pastes containing industrial wastes and organics. Cem. Concr. Res. 1995, 25, 1435–1444. [Google Scholar] [CrossRef]
- Zhan, J.; Li, H.; Li, H.; Cheng, Z.; Fu, B. Composition design and characterization of alkali-activated Slag-Metakaolin materials. Front. Built Environ. 2022, 8, 1020217. [Google Scholar] [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Napiah, M.B.; Khan, K.; Rafiq, W. Design optimization and statistical modeling of cementitious grout containing irradiated plastic waste and silica fume using response surface methodology. Constr. Build. Mater. 2020, 271, 121504. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, L.; Kong, D.; Peng, D.; Zheng, T. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method. Constr. Build. Mat. 2022, 341, 127874. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, S.; Banthia, N.; Zhang, Y.; Zhang, Z. Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM. Compos. Part B Eng. 2020, 186, 107840. [Google Scholar] [CrossRef]
- DIN ISO 9277:2003-05; Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption nach dem BET-Verfahren. Beuth Verlag GmbH: Berlin, Germany, 2003.
- DIN EN 196-5; Prüfverfahren für Zement—Teil 5: Prüfung der Puzzolanität von Puzzolanzementen. Deutsche Fassung EN 196-5:2011; Beuth Verlag GmbH: Berlin, Germany, 2011.
- DIN EN 196-2; Prüfverfahren für Zement—Teil 2: Chemische Analyse von Zement. Deutsche Fassung EN 196-2:2013; Beuth Verlag GmbH: Berlin, Germany, 2013.
- DIN EN ISO 26845-2008-06; Chemische Analyse feuerfester Erzeugnisse—Allgemeine Anforderungen an die nasschemische Analyse, Atomabsorptionsspektrometrie. Beuth Verlag GmbH: Berlin, Germany, 2008.
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Subulan, K.; Cakmakci, M. A feasibility study using simulation-based optimization and Taguchi experimental design method for materialhandling-Transfer system in the automobile industry. Int. J. Adv. Manuf. Technol. 2011, 59, 433–443. [Google Scholar] [CrossRef]
- Politis, S.N.; Colombo, P.; Colombo, G.; Rekkas, D.M. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.M.; Bellany, F.; Benhamou, L.; Bucar, D.K.; Tabor, A.B.; Sheppard, T.D. The application of design of experiments (DoE) reaction optimization and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 2016, 14, 2373–2384. [Google Scholar] [CrossRef]
- Schade, T.; Middendorf, B. Use of Design of Experiments (DoE) to Model the Sulphate Agent Amount of (Ultra)Finely Ground and Fast Hardening Portland Cement Clinker. Materials 2021, 14, 5573. [Google Scholar] [CrossRef]
- Schade, T.; Middendorf, B.; Eden, W.; Kuhnt, S.; Becker-Emden, E.-C. Raising the quality of calcium silicate units with simultaneous reduction of production costs using Statistical Design of Experiments (DoE). ZKG Int. 2020, 3, 35–42. [Google Scholar]
- Kuhnt, S.; Becker-Emden, E.-C.; Schade, T.; Eden, W.; Middendorf, B. Use of optimal mixture-process designs and response surface models to study properties of calcium silicate units. Qual. Reliab. Eng. Int. 2021, 37, 391–408. [Google Scholar] [CrossRef]
- Coetzer, R.; Haines, L.M. The construction of D- and I-optimal designs for mixture experiments with linear constraints on the components. Chemom. Intell. Lab. Sys. 2017, 171, 112–124. [Google Scholar] [CrossRef]
- Syafitri, U.; Sartono, B.; Goos, P. D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints. J. Qual. Technol. 2015, 3, 220–234. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jimenez, A.; Blanco-Varela, M.T.; Palomo, A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H gel. J. Sol–Gel Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- DIN 52450:1985-08; Prüfung anorganischer nichtmetallischer Baustoffe; Bestimmung des Schwindens und Quellens an kleinen Probekörpern. Beuth Verlag GmbH: Berlin, Germany, 1985.
- Melo Neto, A.; Cincotto, M.A.; Wellington, R. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- ISO 15901-1:2016-04; Bewertung der Porengrößenverteilung und Porosität von Feststoffen mittels Quecksilberporosimetrie und Gasadsorption—Teil 1: Quecksilberporosimetrie. Beuth Verlag GmbH: Berlin, Germany, 2016.
- Lucas, S.; Tognonvi, M.T.; Gelet, J.L.; Soro, J.; Rossignol, S. Interactions between silica sand and sodium silicate solution during consolidation process. J. Non-Cryst. Solids 2011, 357, 1310–1318. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Micropor. Mesopor. Mater. 2005, 86, 207–214. [Google Scholar] [CrossRef]
- Handke, M.; Mozgawa, W. Vibrational spectroscopy of the amorphous silicates. Vib. Spectrosc. 1993, 5, 75–84. [Google Scholar] [CrossRef]
- Fu, Q.; Bu, M.; Zhang, Z.; Xu, W.; Yuan, Q.; Niu, D. Hydration Characteristics and Microstructure of Alkali-Activated Slag Concrete: A Review. Engineering 2023, 20, 162–179. [Google Scholar] [CrossRef]
- Caron, R.; Patel, R.A.; Dehn, F. Activation kinetic model and mechanisms for alkali-activated slag cements. Constr. Build. Mater. 2022, 323, 126577. [Google Scholar] [CrossRef]
- Schmidt, M. Sustainable building with ultra-high performance concrete (UHPC)—Coordinated research program in Germany. In Research and Applications in Structural Engineering, Mechanics and Computation, 1st ed.; Zingoni, A., Ed.; CRC Press: London, UK, 2013; pp. 587–588. [Google Scholar]
- Al Makhadmeh, W.; Soliman, A. Effect of activator nature on property development of alkali-activated slag binders. J. Sustain. Cem.-Based Mater. 2021, 10, 240–256. [Google Scholar] [CrossRef]
- Bilginer, A.; Canbek, O.; Turhan Erdogan, S. Activation of blast furnace slag with soda production waste. J. Mater. Civ. Eng. 2020, 32, 04019316. [Google Scholar] [CrossRef]
- Mohamed, R.; Abd Razak, R.; Mustafa, M.; Abdullah, M.M.A.B.; Abd Abd Rahim, S.Z.; Yuan-Li, L.; Sandu, A.V.; Wysłocki, J.J. Heat evolution of alkali-activated materials: A review on influence factors. Constr. Build. Mater. 2022, 314, 125651. [Google Scholar] [CrossRef]
wt% | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | Cl | Mn2O3 | S | LOI * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
cGGBFS | 38.10 | 9.89 | 0.41 | 40.33 | 5.68 | 2.74 | 0.41 | 0.74 | 0.01 | 0.58 | 1.12 | |
mGGBFS | 38.36 | 9.94 | 0.40 | 39.95 | 5.74 | 2.72 | 0.41 | 0.76 | 0.01 | 0.58 | 1.13 | |
fGGBFS | 38.51 | 10.02 | 0.41 | 39.68 | 5.79 | 2.74 | 0.42 | 0.75 | 0.01 | 0.57 | 1.10 | |
silica fume | 96.57 | 0.06 | 0.06 | 0.51 | 0.25 | <0.04 | 0.16 | 0.73 | 0.02 | 1.41 |
WG2.2 | WG1.0 | PH1 | PH2 | PH3 | PH4 | PH5 | |
---|---|---|---|---|---|---|---|
K2O [g/L] | 169 | 409 | 235 | 353 | 471 | 589 | 706 |
SiO2 [g/L] | 371 | 409 | - | - | - | - | - |
Solid content [%] | 35 | 45 | 23 | 32 | 40 | 47 | 54 |
Modulus [-] | 2.2 | 1.0 | - | - | - | - | - |
Factor | Type | Bottom Star Point | Lower Limit | Centre Point | Higher Limit | Upper Star Point |
---|---|---|---|---|---|---|
WG/PH | steady | 0/100 | 25/75 | 50/50 | 75/25 | 100/0 |
PH (K2O) | steady | PH1 | PH2 | PH3 | PH4 | PH5 |
Silica fume | steady | 4 wt% | 6 wt% | 8 wt% | 10 wt% | 12 wt% |
GGBFS-fineness | categorical | cGGBFS | mGGBFS | fGGBFS | ||
WG type | categorical | WG2.2 | WG1.0 |
Factor | WG/PH | PH (K2O) | Silica Fume | GGBFS Fineness | WG Type | SiO2 [g/L] | K2O [g/L] |
---|---|---|---|---|---|---|---|
S185_K437 | 50/50 | PH5 | 8 wt% | mGGBFS | WG2.2 | 185 | 437 |
S185_K202 | 50/50 | PH1 | WG2.2 | 185 | 202 | ||
S278_K214 | 75/25 | PH2 | WG2.2 | 278 | 214 | ||
S306_K395 | 75/25 | PH2 | WG1.0 | 306 | 395 | ||
S278_K303 | 75/25 | PH5 | 8 wt% | mGGBFS | WG2.2 | 278 | 303 |
S093_K219 | 25/75 | PH1 | WG2.2 | 093 | 219 | ||
S093_K395 | 25/75 | PH3 | WG2.2 | 093 | 395 |
SiO2 | K2O | Initial Period | Induction Period | Acceleration Period |
---|---|---|---|---|
high | high | ↑ | ↑ | ↓ |
high | low | ↑ | ↓ | ↓ |
low | high | ↑ | ↑ | ↑ |
low | low | ↓ | ↓ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schade, T.; Middendorf, B. Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material. Materials 2023, 16, 4104. https://doi.org/10.3390/ma16114104
Schade T, Middendorf B. Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material. Materials. 2023; 16(11):4104. https://doi.org/10.3390/ma16114104
Chicago/Turabian StyleSchade, Tim, and Bernhard Middendorf. 2023. "Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material" Materials 16, no. 11: 4104. https://doi.org/10.3390/ma16114104
APA StyleSchade, T., & Middendorf, B. (2023). Prediction Model Based on DoE and FTIR Data to Control Fast Setting and Early Shrinkage of Alkaline-Activated Slag/Silica Fume Blended Cementitious Material. Materials, 16(11), 4104. https://doi.org/10.3390/ma16114104