Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy
Abstract
:1. Introduction
2. Experiment
2.1. Material and Specimen Design
2.2. Tensile Test
2.3. Forming Process
2.4. Hardness Testing and Microstructural Observations
3. Results
3.1. Tensile Properties of PA-State Sheet at Different Parameters
3.2. Formed Parts with Different Wall Angles
3.3. Hardness of Forming Plate
3.4. Microstructure of the Formed Sheet
4. Discussion
4.1. Formability
4.2. Mechanical Behavior before and after PH-SPIF
5. Conclusions
- The proposed pre-aged hardening single-point incremental forming process (PH-SPIF) allows direct sheet forming after pre-aged hardening treatment. The results indicate that the forming limit angle of the AA6061 sheet under this process can reach 62°. The produced component has an average hardness of 120.9 HV, which exceeds the T6 state’s value of 109 HV and does not require additional heat treatment. The final tolerance of the manufactured component is 0.69 mm and −0.81 mm, satisfying the criterion of 1 mm. The PH-SPIF process exhibits high forming limits, high performance of the formed component, good mechanical properties, and geometric accuracy.
- Under the process parameters of 0.5 mm vertical pitch, 5 mm tool radius, 355 rpm rotational speed, and 1500 mm/min feed rate, the sheet temperature gradually increases to 160 °C, leading to a certain amount of dynamic recovery. Moreover, the excellent plasticity of the PA-state sheet and its point contact forming result in a notable increase in the forming limit.
- The dominant microstructural evolution of AA6061 aluminum alloy in the PH-SPIF process is the transformation of GP zones → β” phase. The microstructure of the pre-aged hardening alloy primarily consists of GP zones. During the forming process, a large number of GP zones transform into the sub-stable phase β”. The process characteristics lead to grain size refinement and the formation of high-density dislocation walls and rings within the sheet. Fine-grain strengthening, work-hardening, and transformation strengthening contribute to a substantial increase in the hardness of the formed component.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PH-SPIF | Pre-aged Hardening Single-Point Incremental Forming |
DSC | Differential scanning calorimetry |
TEM | Transmission electron microscopy |
PA | The state of the sheet metal after pre-aged hardening treatment |
T6 | Peak aging state |
W | The state of the sheet metal after solution treatment and quenching |
O | The state of the sheet metal after full annealing. |
PHF state | The state of the sheet metal after forming following pre-aged hardening treatment. |
References
- Nirala, H.K.; Agrawal, A. Reprint of: Residual stress inclusion in the incrementally formed geometry using Fractal Geometry Based Incremental Toolpath (FGBIT). J. Mater. Process. Technol. 2020, 279, 116575. [Google Scholar] [CrossRef]
- Flores, G.; Palomo, D.; Martínez, A.J.; Borrego, M.; A López, J.; Morales, D.; Centeno, G.; Vallellano, C. Design for FDM of flexible tooling for manufacturing aeronautical components by incremental sheet forming. IOP Conf. Series: Mater. Sci. Eng. 2021, 1193, 012042. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Liu, W.; Yuan, S.J. Strength and formability improvement of Al-Cu-Mn aluminum alloy complex parts by thermomechanical treatment with sheet hydroforming. JOM 2015, 67, 938–947. [Google Scholar] [CrossRef]
- Hussain, G.; Gao, L.; Hayat, N.; Dar, N.U. The formability of annealed and pre-aged AA-2024 sheets in single-point incremental forming. Int. J. Adv. Manuf. Technol. 2010, 46, 543–549. [Google Scholar] [CrossRef]
- AL-Obaidi, A.; Kunke, A.; Kräusel, V. Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J. Manuf. Process. 2019, 43, 17–25. [Google Scholar] [CrossRef]
- Duflou, J.R.; Callebaut, B.; Verbert, J.; De Baerdemaeker, H. Laser assisted incremental forming: Formability and accuracy improvement. CIRP Ann. 2007, 56, 273–276. [Google Scholar] [CrossRef]
- Duflou, J.R.; Callebaut, B.; Verbert, J.; De Baerdemaeker, H. Improved SPIF performance through dynamic local heating. Int. J. Mach. Tools Manuf. 2008, 48, 543–549. [Google Scholar] [CrossRef]
- Lehtinen, P.; Väisänen, T.; Salmi, M. The Effect of Local Heating by Laser Irradiation for Aluminum, Deep Drawing Steel and Copper Sheets in Incremental Sheet Forming. Phys. Procedia 2015, 78, 312–319. [Google Scholar] [CrossRef]
- Fan, G.; Sun, F.; Meng, X.; Gao, L.; Tong, G. Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int. J. Adv. Manuf. Technol. 2010, 49, 941–947. [Google Scholar] [CrossRef]
- Ambrogio, G.; Filice, L.; Gagliardi, F. Formability of lightweight alloys by hot incremental sheet forming. Mater. Des. 2012, 34, 501–508. [Google Scholar] [CrossRef]
- Vahdani, M.; Mirnia, M.J.; Bakhshi-Jooybari, M.; Gorji, H. Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int. J. Adv. Manuf. Technol. 2019, 103, 1199–1209. [Google Scholar] [CrossRef]
- Yuhua, C.; Yuqing, M.; Weiwei, L.; Peng, H. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 2017, 91, 197–202. [Google Scholar] [CrossRef]
- Xu, D.; Wu, W.; Malhotra, R.; Chen, J.; Lu, B.; Cao, J. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int. J. Mach. Tools Manuf. 2013, 73, 37–46. [Google Scholar] [CrossRef]
- Otsu, M. Friction Stir Incremental Forming of Aluminum Alloy Sheets. Proc. Met. 2010, 81, 942–945. [Google Scholar]
- Buffa, G.; Campanella, D.; Fratini, L. On the improvement of material formability in SPIF operation through tool stirring action. Int. J. Adv. Manuf. Technol. 2013, 66, 1343–1351. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, Y.L.; Gou, G.Q.; Gao, W.; Chen, J. Effect of heat input on interfacial characterization of the butter joint of hot-rolling CP-Ti/Q235 bimetallic sheets by Laser + CMT. Sci. Rep. 2021, 11, 10022. [Google Scholar] [CrossRef]
- Derpeński, Ł. Ductile fracture behavior of notched aluminum alloy specimens under complex non-proportional load. Materials 2019, 12, 1598. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Martinez, M.; Alfaro-Ponce, M.; Muñoz-Ibañez, C. Design of an Aluminum Alloy Using a Neural Network-Based Model. Metals 2022, 12, 1587. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Chakrabarty, S.; Tewari, A.; Narasimhan, K.; Mishra, S.K. Forming behavior and microstructural evolution during single point incremental forming process of AA-6061 aluminum alloy sheet. Int. J. Adv. Manuf. Technol. 2018, 95, 921–935. [Google Scholar] [CrossRef]
- Zhan, X.; An, D.; Chen, J. A novel two-stage friction stir-assisted incremental sheet forming method for uniform microstructure and enhanced properties in aluminum alloys. Int. J. Mach. Tools Manuf. 2022, 180, 103928. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, S.; Zhang, T.; Zhou, X.; Li, S. Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater. Sci. Eng. A 2020, 771, 138545. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, W.; Zhang, W.; Chen, Y.; Shan, D. Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy. J. Mater. Sci. Technol. 2023, 136, 121–139. [Google Scholar] [CrossRef]
- Mohammadi, A.; Vanhove, H.; Van Bael, A.; Duflou, J.R. Enhanced formability of age-hardenable aluminium alloys by incremental forming of solution-treated blanks. Key Eng. Mater. 2013, 549, 164–171. [Google Scholar] [CrossRef]
- Ghaferi, M.; Mirnia, M.J.; Elyasi, M.; Aval, H.J. Evaluation of different heat treatment cycles on improving single point incremental forming of AA6061 aluminum alloy. Int. J. Adv. Manuf. Technol. 2019, 105, 83–100. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, G.; Ilyas, M.; Rashid, H.; Khan, M.I.; Khan, W.A. Appropriate heat treatment and incremental forming route to produce age-hardened components of Al-2219 alloy with minimized form error and high formability. J. Mater. Process. Technol. 2018, 256, 262–273. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Hu, Z.; Hua, L. Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process. Mater. Sci. Eng. A 2020, 792, 139749. [Google Scholar] [CrossRef]
- Hua, L.; Zhang, W.; Ma, H.; Hu, Z. Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming. Int. J. Mach. Tools Manuf. 2021, 169, 103799. [Google Scholar] [CrossRef]
- Jeswiet, J.; Micari, F.; Hirt, G.; Bramley, A.; Duflou, J.; Allwood, J. Asymmetric Single Point Incremental Forming of Sheet Metal. CIRP Ann. 2005, 54, 623–649. [Google Scholar] [CrossRef]
- Behera, A.K.; de Sousa, R.A.; Ingarao, G.; Oleksik, V. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. J. Manuf. Process. 2017, 27, 37–62. [Google Scholar] [CrossRef] [Green Version]
- Eyckens, P.; He, S.; Van Bael, A.; Van Houtte, P.; Duflou, J. Forming limit predictions for the serrated strain paths in single point incremental sheet forming. AIP Conf. Proc. 2007, 908, 141–146. [Google Scholar]
- Wei, H.; Hussain, G.; Shi, X.; Isidore, B.B.L.; Alkahtani, M.; Abidi, M.H. Formability of Materials with Small Tools in Incremental Forming. Chin. J. Mech. Eng. 2020, 33, 55. [Google Scholar] [CrossRef]
- Bai, L.; Li, Y.; Yang, M.; Yao, Z.; Yao, Z. Analytical Model of Ultrasonic Vibration Single Point Incremental Forming Force. J. Mech. Eng. 2019, 55, 42–50. [Google Scholar] [CrossRef]
- Lu, B.; Fang, Y.; Xu, D.K.; Chen, J.; Ou, H.; Moser, N.H.; Cao, J. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int. J. Mach. Tools Manuf. 2014, 85, 14–29. [Google Scholar] [CrossRef]
- Mahabunphachai, S.; Koç, M. Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater. Des. 2010, 31, 2422–2434. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Raghavan, R.; Tewari, A.; Narasimhan, K.; Mishra, S.K. Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater. Sci. Eng. A 2017, 679, 56–65. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, G.; Zhao, J.Q. Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures. J. Mater. Eng. Perform. 2017, 26, 4626–4637. [Google Scholar] [CrossRef]
- Kumar, M.; Ross, N.G. Influence of temper on the performance of a high-strength Al-Zn-Mg alloy sheet in the warm forming processing chain. J. Mater. Process. Technol. 2016, 231, 189–198. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Hashemi, R.; Tayyebi, M.; Bayati, A. Investigation of mechanical properties, formability, and anisotropy of dual phase Mg-7Li-1Zn. Mater. Res. Express. 2019, 6, 096543. [Google Scholar] [CrossRef]
- Young, D.; Jeswiet, J. Wall thickness variations in single-point incremental forming. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2004, 218, 1453–1459. [Google Scholar] [CrossRef]
- Su, C.; Zhao, Z.; Lv, Y.; Wang, R.; Wang, Q.; Wang, M. Effect of Process Parameters on Plastic Formability and Microstructures of Magnesium Alloy in Single Point Incremental Forming. J. Mater. Eng. Perform. 2019, 28, 7737–7755. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Tayyebi, M.; Najafizadeh, N.; Hashemi, R.; Rajabi, M. The influence of post-annealing and ultrasonic vibration on the formability of multilayered Al5052/MgAZ31B composite. Mater. Sci. Technol. 2021, 37, 78–85. [Google Scholar] [CrossRef]
- Andersen, S.J.; Marioara, C.D.; Friis, J.; Wenner, S.; Holmestad, R. Precipitates in aluminium alloys. Adv. Phys. X 2018, 3, 790–813. [Google Scholar] [CrossRef]
- Ninive, P.H.; Strandlie, A.; Gulbrandsen-Dahl, S.; Lefebvre, W.; Marioara, C.D.; Andersen, S.J.; Friis, J.; Holmestad, R.; Løvvik, O.M. Detailed atomistic insight into the β” phase in Al-Mg-Si alloys. Acta Mater. 2014, 69, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-S.; Zhou, J.; Zhou, J.-F.; Wu, D.-X.; Xiong, Y. Influence of pre-stretching and aging processes on comprehensive performance of aluminum alloy. Mater. Manuf. Process. 2018, 33, 1641–1647. [Google Scholar] [CrossRef]
- Bignon, M.; Shanthraj, P.; Robson, J.D. Modelling dynamic precipitation in pre-aged aluminium alloys under warm forming conditions. Acta Mater. 2022, 234, 118036. [Google Scholar] [CrossRef]
- Österreicher, J.A.; Tunes, M.A.; Grabner, F.; Arnoldt, A.; Kremmer, T.; Pogatscher, S.; Schlögl, C.M. Warm-forming of pre-aged Al-Zn-Mg-Cu alloy sheet. Mater. Des. 2020, 193, 108837. [Google Scholar] [CrossRef]
Composition | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 0.5 | 0.7 | 0.2 | 0.15 | 1.1 | 0.12 | 0.25 | 0.15 | Bal |
Density (Kg/ ) | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
2700 | 292 | 251 | 13.79 | 68.9 | 0.33 |
Parameter | AA6061-PA | AA6061-T6 |
---|---|---|
Tool diameter [mm] | 10 | 10 |
Tool feed rate [mm/min] | 1500 | 1500 |
Tool vertical pitch [mm] | 0.5 | 0.5 |
Tool rotational speed [rpm] | 355 | 355 |
Conical frustum major diameter [mm] | 160 | 160 |
Wall angle () | 55°–65° | 50°–56° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Z.; Li, Y.; Hu, L.; Pang, Q.; Hu, Z. Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy. Materials 2023, 16, 4154. https://doi.org/10.3390/ma16114154
Zhang Y, Zhang Z, Li Y, Hu L, Pang Q, Hu Z. Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy. Materials. 2023; 16(11):4154. https://doi.org/10.3390/ma16114154
Chicago/Turabian StyleZhang, Yao, Zhichao Zhang, Yan Li, Lan Hu, Qiu Pang, and Zhili Hu. 2023. "Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy" Materials 16, no. 11: 4154. https://doi.org/10.3390/ma16114154
APA StyleZhang, Y., Zhang, Z., Li, Y., Hu, L., Pang, Q., & Hu, Z. (2023). Investigation of Pre-Aged Hardening Single-Point Incremental Forming Process and Mechanical Properties of AA6061 Aluminum Alloy. Materials, 16(11), 4154. https://doi.org/10.3390/ma16114154