Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks
Abstract
:1. Introduction
2. Guided Wave Modes in Beams
2.1. Normal Mode Theory
2.2. Lamé Modes in Rectangular Beams
- Longitudinal L-modes: ux odd on x and even on y, uy even on x and odd on y, uz even on both x and y;
- Bending Bx-modes: ux odd on both x and y, uy even on both x and y, uz even on x and odd on y;
- Bending By-modes: ux even on both x and y, uy odd on both x and y, uz odd on x and even on y;
- Torsional T-modes: ux even on x and odd on y, uy odd on x and even on y, uz odd on both x and y.
3. Guided Wave Scattering by a Through-Thickness Crack
3.1. Frequency Domain Analysis
3.2. Validation in Time Domain
4. Discussion
4.1. Effect of Crack Width
4.2. Effect of Crack Axial Extent
4.3. Effect of Beam Thickness
5. Conclusions
- The incident L(1) mode will pass through the damaged region with negligible mode conversion if its frequency and the size of the part-through or through-thickness vertical crack satisfy a specific relation. However, such a nearly perfect transmission phenomenon is not observed for inclined cracks;
- The nearly perfect transmission frequency originates from the first Lamé frequency, increases with the crack depth, whereas decreases with the crack width. Between them, the crack depth plays a major role in the frequency variation. Besides, the beam thickness has little influence on the nearly perfect transmission frequency;
- The nearly perfect transmission frequency may serve as a potential indicator to evaluate the crack size in a rectangular beam. The results obtained in this study provide guidance for optimizing mode and frequency in the inspection;
- The effect of the long-term phenomena of concrete on the dynamic behavior of prestressed rectangular beams has been studied experimentally and numerically through bending vibrations. In future work, the proposed numerical procedure will be combined with the prestressed analysis module available in commercial finite element software to investigate the mode conversion of guided waves at the crack along prestressed concrete beams.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpinteri, A.; Ronchei, C.; Vantadori, S. Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: Two decades of research work. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 1164–1177. [Google Scholar] [CrossRef]
- Gan, B.-Z.; Chiew, S.-P.; Lu, Y.; Fung, T.-C. The effect of prestressing force on natural frequencies of concrete beams—A numerical validation of existing experiments by modelling shrinkage crack closure. J. Sound Vib. 2019, 455, 20–31. [Google Scholar] [CrossRef]
- Liu, P.; Hu, Y.; Chen, Y.; Geng, B.; Xu, D. Investigation of novel embedded piezoelectric ultrasonic transducers on crack and corrosion monitoring of steel bar. Constr. Build. Mater. 2020, 235, 117495. [Google Scholar] [CrossRef]
- Bonopera, M.; Liao, W.-C.; Perceka, W. Experimental–theoretical investigation of the short-term vibration response of uncracked prestressed concrete members under long-age conditions. Structures 2022, 35, 260–273. [Google Scholar] [CrossRef]
- Zhu, K.; Qing, X.P.; Liu, B. Torsional guided wave-based debonding detection in honeycomb sandwich beams. Smart Mater. Struct. 2016, 25, 115048. [Google Scholar] [CrossRef]
- Combaniere, J.; Cawley, P.; McAughey, K.; Giese, J. Interaction Between SH0 Guided Waves and Tilted Surface-Breaking Cracks in Plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 66, 119–128. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Z.; Zhang, J.; Liu, K.; Jiang, Y.; Zhou, K. Acoustoelastic guided wave propagation in axial stressed arbitrary cross-section. Smart Mater. Struct. 2019, 28, 045013. [Google Scholar] [CrossRef]
- Droz, C.; Bareille, O.; Ichchou, M.N. Generation of long-range, near-cut-on guided resonances in composite panels. J. Appl. Phys. 2019, 125, 175109. [Google Scholar] [CrossRef] [Green Version]
- Du, F.; Zeng, L.; Sha, B.; Huang, L.; Xiao, J. Damage Imaging in Composite Laminates Using Broadband Multipath Lamb Waves. IEEE Trans. Instrum. Meas. 2022, 71, 3217866. [Google Scholar] [CrossRef]
- Krushynska, A.A.; Meleshko, V.V. Normal waves in elastic bars of rectangular cross section. J. Acoust. Soc. Am. 2011, 129, 1324. [Google Scholar] [CrossRef]
- Lesage, J.C.; Bond, J.V.; Sinclair, A.N. Elastic wave propagation in bars of arbitrary cross section: A generalized Fourier expansion collocation method. J. Acoust. Soc. Am. 2014, 136, 985. [Google Scholar] [CrossRef] [PubMed]
- Nolde, E.; Pichugin, A.V.; Kaplunov, J. An asymptotic higher-order theory for rectangular beams. Proc. R. Soc. A 2018, 474, 20180001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakoda, C.; Rose, J.; Shokouhi, P.; Lissenden, C. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides. AIP Conf. Proc. 2018, 1949, 020016. [Google Scholar] [CrossRef]
- Żak, A.; Krawczuk, M.; Redlarski, G.; Doliński, Ł.; Koziel, S. A three-dimensional periodic beam for vibroacoustic isolation purposes. Mech. Syst. Signal Process. 2019, 130, 524–544. [Google Scholar] [CrossRef]
- Doyle, J.F. Wave Propagation in Structures, 3rd ed.; Springer: New York, NY, USA, 2021. [Google Scholar]
- Hafeez, M.B.; Krawczuk, M. A Review: Applications of the Spectral Finite Element Method. Arch. Comput. Methods Eng. 2023, 30, 3453–3465. [Google Scholar] [CrossRef]
- Sun, K.; Meng, G.; Li, F.; Ye, L.; Lu, Y. Damage Identification in Thick Steel Beam Based on Guided Ultrasonic Waves. J. Intell. Mater. Syst. Struct. 2010, 21, 225–232. [Google Scholar] [CrossRef]
- Rucka, M. Experimental and numerical studies of guided wave damage detection in bars with structural discontinuities. Arch. Appl. Mech. 2010, 80, 1371–1390. [Google Scholar] [CrossRef]
- Atashipour, S.A.; Mirdamadi, H.R.; Hemasian-Etefagh, M.H.; Amirfattahi, R.; Ziaei-Rad, S. An effective damage identification approach in thick steel beams based on guided ultrasonic waves for structural health monitoring applications. J. Intell. Mater. Syst. Struct. 2013, 24, 584–597. [Google Scholar] [CrossRef]
- Hosseinabadi, H.Z.; Nazari, B.; Amirfattahi, R.; Mirdamadi, H.R.; Sadri, A.R. Wavelet Network Approach for Structural Damage Identification Using Guided Ultrasonic Waves. IEEE Trans. Instrum. Meas. 2014, 63, 1680–1692. [Google Scholar] [CrossRef]
- Xu, K.; Ta, D.; Su, Z.; Wang, W. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch. Ultrasonics 2014, 54, 395–401. [Google Scholar] [CrossRef]
- Ng, C.-T. Bayesian model updating approach for experimental identification of damage in beams using guided waves. Struct. Health Monit. 2014, 13, 359–373. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Ng, C.-T. Guided wave-based identification of multiple cracks in beams using a Bayesian approach. Mech. Syst. Sig. Process. 2017, 84, 324–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Beam damage uncertainty quantification using guided Lamb wave responses. J. Intell. Mater. Syst. Struct. 2018, 29, 323–334. [Google Scholar] [CrossRef]
- Serey, V.; Quaegebeur, N.; Renier, M.; Micheau, P.; Masson, P.; Castaings, M. Selective generation of ultrasonic guided waves for damage detection in rectangular bars. Struct. Health Monit. 2020, 20, 1156–1168. [Google Scholar] [CrossRef]
- Cheng, L.; Xin, H.; Groves, R.M.; Veljkovic, M. Acoustic emission source location using Lamb wave propagation simulation and artificial neural network for I-shaped steel girder. Constr. Build. Mater. 2021, 273, 121706. [Google Scholar] [CrossRef]
- Lamé, G. Leçons Sur la Théorie Mathématique de L’élasticité des Corps Solides; Mallet-Bachelier: Paris, France, 1852. [Google Scholar]
- Auld, B.A. Acoustic Fields and Waves in Solids; Wiley: New York, NY, USA, 1990; Volume 2. [Google Scholar]
- Graff, K.F. Wave Motion in Elastic Solids; Dover: New York, NY, USA, 1991. [Google Scholar]
- Mindlin, R.D.; Fox, E.A. Vibrations and Waves in Elastic Bars of Rectangular Cross Section. J. Appl. Mech. 1960, 27, 152–158. [Google Scholar] [CrossRef]
- Li, Y.; Thompson, R.B.; Wormley, S.J. Use of Lamé Mode Properties in the Determination of Texture Parameters on AL Plates. Review of Progress in Quantitative Nondestructive Evaluation; Springer: Boston, MA, USA, 1991; Volume 10B, pp. 1991–1998. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Zeng, L.; Lin, J. Scattering of Lamb Waves Near Lamé Point at an Opening Crack. J. Vib. Acoust. 2021, 143, 041007. [Google Scholar] [CrossRef]
- Collin, S.; Vincent, G.; Haïdar, R.; Bardou, N.; Rommeluère, S.; Pelouard, J.-L. Nearly Perfect Fano Transmission Resonances through Nanoslits Drilled in a Metallic Membrane. Phys. Rev. Lett. 2010, 104, 027401. [Google Scholar] [CrossRef]
- Linder, J.; Halterman, K. Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures. Sci. Rep. 2016, 6, 38141. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shen, C.; Díaz-Rubio, A.; Tretyakov, S.A.; Cummer, S.A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 2018, 9, 1342. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhu, X.; Yin, X.; Wang, Y.; Zhang, X. Unidirectional Extraordinary Sound Transmission with Mode-Selective Resonant Materials. Phys. Rev. Appl. 2020, 13, 041001. [Google Scholar] [CrossRef]
- Boulvert, J.; Gabard, G.; Romero-García, V.; Groby, J.-P. Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems. Sci. Rep. 2022, 12, 10013. [Google Scholar] [CrossRef] [PubMed]
- Horodynski, M.; Kühmayer, M.; Ferise, C.; Rotter, S.; Davy, M. Anti-reflection structure for perfect transmission through complex media. Nature 2022, 607, 281–286. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics®®, v. 5.6; COMSOL AB: Stockholm, Sweden, 2020.
- Lamb, H. On waves in an elastic plate. Proc. R. Soc A-Math. Phys. Eng. Sci. 1917, 93, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, P.; Drozdz, M.; Skelton, E.A.; Lowe, M.J.S.; Craster, R.V. On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available Finite Element packages. NDT E Int. 2012, 51, 30–40. [Google Scholar] [CrossRef]
- COMSOL. The Structural Mechanics Module—User’s Guide. Available online: https://doc.comsol.com/5.6/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf (accessed on 30 May 2023).
- Castaings, M.; Bacon, C.; Hosten, B.; Predoi, M.V. Finite element predictions for the dynamic response of thermo-viscoelastic material structures. J. Acoust. Soc. Am. 2004, 115, 1125–1133. [Google Scholar] [CrossRef]
- Chillara, V.K.; Ren, B.; Lissenden, C.J. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach. Ultrasonics 2016, 67, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Dassault Systèmes Simulia Corp. Abaqus/CAE 2018; Dassault Systèmes Simulia Corp.: Johnston, RI, USA, 2018. [Google Scholar]
- SIMULIA. Abaqus/CAE User’s Guide—Section 31.1.2 Creating a Seam. Available online: http://62.108.178.35:2080/v2016/books/usi/default.htm?startat=book01.html#usi (accessed on 30 May 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Ni, J.; Shao, C.; Yang, X.; Lou, C. Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks. Materials 2023, 16, 4164. https://doi.org/10.3390/ma16114164
Cao X, Ni J, Shao C, Yang X, Lou C. Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks. Materials. 2023; 16(11):4164. https://doi.org/10.3390/ma16114164
Chicago/Turabian StyleCao, Xuwei, Jing Ni, Chun Shao, Xiao Yang, and Chenggan Lou. 2023. "Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks" Materials 16, no. 11: 4164. https://doi.org/10.3390/ma16114164
APA StyleCao, X., Ni, J., Shao, C., Yang, X., & Lou, C. (2023). Nearly Perfect Transmission of Lamé Modes in a Rectangular Beam with Part and Through-Thickness Vertical Cracks. Materials, 16(11), 4164. https://doi.org/10.3390/ma16114164