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Abstract: The guided waves in the uniform waveguide of rectangular cross-section exhibit compli-
cated propagation and scattering characteristics due to the diversity of vibration modes. This paper
focuses on the mode conversion of the lowest Lamé mode at a part-through or through-thickness
crack. Firstly, the Floquet periodicity boundary condition is applied to derive the dispersion curves
in the rectangular beam, which relates the axial wavenumber to the frequency. On this basis, the
frequency domain analysis is conducted to investigate the interaction between the fundamental
longitudinal mode in the vicinity of the first Lamé frequency and a part-through or through-thickness
vertical or inclined crack. Finally, the nearly perfect transmission frequency is evaluated by extracting
displacement and stress harmonic fields throughout the cross-section. It is shown that this frequency
originates from the first Lamé frequency, increases with the crack depth, and decreases with the crack
width. Between them, the crack depth plays a major role in the frequency variation. In addition,
the nearly perfect transmission frequency is negligibly affected by the beam thickness, and such a
phenomenon is not observed for inclined cracks. The nearly perfect transmission may have potential
applications in the quantitative evaluation of crack size.

Keywords: guided wave; Lamé mode; rectangular beam; crack; nearly perfect transmission

1. Introduction

The beam structures subjected to complex loadings may initiate cracks, resulting in a
significant reduction in their service life [1–4]. Ultrasonic-guided waves have proven to be
an efficient tool in nondestructive evaluation and structural health monitoring, because
they can propagate over long distances within the waveguide, and their scattering behavior
highly depends on the location and severity of damage [5–9].

Compared with the guided waves in an infinite plate, an additional pair of surfaces
in a rectangular beam introduces more boundary reflections of coupled longitudinal and
shear waves, making the formation of guided modes more complicated. The crosswise
superposition method [10], collocation method [11], approximate theory [12], finite element
method [13], and spectral finite element method [14–16] have been applied to study the
propagation of guided waves, though not all of them work well for all types of modes in a
rectangular beam with arbitrary aspect ratios over a wide frequency range.

On the other hand, a clear view of the interaction between guided waves and various
types of damage is also crucial for damage detection in beam structures. Sun et al. [17]
identified the size of the damage in a thick steel beam using the time-of-flight of the
transmitted wave packet. Rucka [18] investigated the propagation of longitudinal and
flexural waves in an intact bar, as well as in bars with an additional mass, a notch, and a
grooved weld. Atashipour et al. [19] used damage characteristic points together with a
multilayer feedforward artificial neural network supervised by an error-backpropagation
algorithm to identify damage in thick steel beams. Hosseinabadi et al. [20] extracted three
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damage-sensitive features from guided wave signals, then input them to the established
multiple-input multiple-output fixed grid wavelet network for estimating damage location
and severity in a structural beam. Xu et al. [21] determined the depth of a partial-thickness
notch by the mode-converted energy rate based on the finite difference time domain
simulation. Ng et al. [22,23] and Wang [24] utilized the Bayesian approach to identify the
crack parameters and the associated uncertainties by minimizing the discrepancy between
the simulated data of the crack model and the measured data. Serey et al. [25] selectively
generated an antisymmetric mode and inferred the position of a simulated defect in a
rectangular aluminum bar. Cheng et al. [26] located the damage/crack in an I-shaped
steel girder based on guided wave simulation and artificial neural networks. Most of the
aforementioned techniques realized damage detection by extracting the time-of-flight or
amplitude/energy of scattered modes in the beam.

Lamé modes [27–29] and Mindlin–Fox modes [30] are two special classes of exact
solutions that can only be given at certain frequencies and/or aspect ratios. In 1852,
Lamé [27] constructed exact analytical solutions for a rectangular waveguide of longitudinal
and bending types of free vibrations. These solutions solely comprised of shear waves
are specifically known as Lamé equivoluminal modes, which occur at a series of discrete
frequencies for arbitrary aspect ratios. Li et al. [31] applied the Fourier-phase method to
measure the dispersion branches of S0 and SH1 plate modes in the vicinity of the first Lamé
frequency in polycrystalline aluminum plates with weak anisotropy. Then a quantitative
formula was presented to infer the texture parameters based on the amount of crossover or
splitting of these two dispersion branches. Cao et al. [32] employed the mode matching
method to investigate the interaction of S0 plate mode with a shallow crack of various
depths. It was found that the frequency of the non-mode-conversion point originates from
the first Lamé frequency and increases linearly with the crack depth. To the best of our
knowledge, rare literature focuses on the damage evaluation in beam structures using
Lamé modes.

The nearly perfect transmission phenomenon for electromagnetic and acoustic waves
has been extensively researched [33–38], while analogous studies have seldom been re-
ported in the field of ultrasonic guided wave based damage detection. In this paper, the
interaction between the first Lamé mode and a part-through or through-thickness crack
of various sizes is analyzed quantitatively. Based on the normal mode theory for beam
structures of rectangular cross-section, the nearly perfect transmission may be observed
when the crack size and the harmonic frequency satisfy a specific relation. The rest of this
paper is structured as follows. Section 2 introduces the basic theory of normal guided
modes in rectangular beams, especially the Lamé modes. Section 3 presents the method
to search for the nearly perfect transmission frequency based on our defined scattering
conversion ratios. Section 4 discusses the effects of crack width, axial extent and beam
thickness on the nearly perfect transmission frequency. Section 5 draws the conclusions.

2. Guided Wave Modes in Beams
2.1. Normal Mode Theory

Time-harmonic guided waves propagate along the axial direction (+z) of an isotropic
elastic beam of rectangular cross-section (see Figure 1). With the help of Floquet periodicity
boundary conditions in COMSOL Multiphysics 5.6 [13,39], the guided wave dispersion
curves in an aluminum beam (Young’s modulus 69 GPa, Poisson’s ratio 0.33, density
2700 kg/m3, longitudinal wave velocity cL = 6150 m/s, shear wave velocity cT = 3100 m/s,
thickness 2a = 2 mm, height 2b = 20 mm) are obtained.
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Figure 1. Example for guided waves propagating in a rectangular beam with a part-through-thick-
ness inclined crack (not to scale). 

  
(a) (b) 

Figure 2. The (a) wavenumber dispersion curves and (b) phase velocity dispersion curves of guided 
waves in the rectangular beam in Figure 1. 
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Figure 1. Example for guided waves propagating in a rectangular beam with a part-through-thickness
inclined crack (not to scale).
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Figure 2. The (a) wavenumber dispersion curves and (b) phase velocity dispersion curves of guided
waves in the rectangular beam in Figure 1.

For any two solutions “1” and “2” in elastic waveguides without external forces, the
complex reciprocity relation [28] relates the velocity vector v to the stress tensor T by

∇ · (· · · ) = ∂

∂x
(· · · ) · x̂ + ∂

∂y
(· · · ) · ŷ +

∂

∂z
(· · · ) · ẑ = 0 (1)

with
(· · · ) = (v2

∗ · T1 + v1 · T2
∗)

where5 depicts the divergence operator, ∂ denotes the partial derivative, the superscript *
represents the complex conjugate, x̂, ŷ, ẑ are unit vectors in the x, y, z directions, respectively.
The velocity and stress fields resulting from two modes with axial wavenumbers km, kn at
angular frequency ω can be expressed by their velocity/stress mode shapes (independent
of z):

v1 = vm(x, y)ei(kmz−ωt), T1 = Tm(x, y)ei(kmz−ωt)

v2 = vn(x, y)ei(knz−ωt), T2 = Tn(x, y)ei(knz−ωt) (2)

Substituting Equation (2) into the complex reciprocity relation Equation (1), i.e.,

−i(km − kn
∗)(vn

∗ · Tm + vm · Tn
∗) · ẑ

= ∂
∂x (vn

∗ · Tm + vm · Tn
∗) · x̂ + ∂

∂y (vn
∗ · Tm + vm · Tn

∗) · ŷ (3)
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Performing the integral over the entire beam cross section, from x = −a to x = a, from
y = −b to y = b, it follows that

−i(km − kn
∗)
∫ b
−b

∫ a
−a(vn

∗ · Tm + vm · Tn
∗) · ẑdx dy

=
∫ b
−b
[
(vn
∗ · Tm + vm · Tn

∗) · x̂|x=a
x=−a

]
dy +

∫ a
−a

[
(vn
∗ · Tm + vm · Tn

∗) · ŷ|y=b
y=−b

]
dx

(4)

The stress-free boundary conditions for beam surfaces yield T·x̂|x=±a = T·ŷ|y=±b = 0,
and RHS of the above equation is equal to zero. As all field quantities vary as e−iωt, the
velocity mode shape v in Equation (4) is converted to the displacement mode shape u,
that is

i(km − kn
∗)4Pmn = 0 (5)

where
Pmn = − 1

4

∫ b
−b

∫ a
−a(vn

∗ · Tm + vm · Tn
∗) · ẑdx dy

= − iω
4

∫ b
−b

∫ a
−a(un

∗ · Tm − um · Tn
∗) · ẑdx dy

= − iω
4

∫ b
−b

∫ a
−a ∑

j=x,y,z

(
u∗j,n · σjz,m − uj,m · σ∗jz,n

)
dx dy

(6)

Equation (5) indicates that Pmn = 0 unless the axial wavenumbers of two modes satisfy
the complex conjugate condition, i.e., km = k∗n. This establishes the orthogonality relation
for normal modes. On the other hand, Pmm represents the axial power flow of a propagating
mode with real wavenumber km passing through the cross section. By normalizing the axial
power flow of each mode, the scattering coefficient straightly corresponds to the respective
magnitude, thus simplifying the calculation in Section 3.

2.2. Lamé Modes in Rectangular Beams

According to the twofold symmetry of the cross section, the normal modes in a
rectangular beam can be divided into four types [10], i.e.,

• Longitudinal L-modes: ux odd on x and even on y, uy even on x and odd on y, uz even
on both x and y;

• Bending Bx-modes: ux odd on both x and y, uy even on both x and y, uz even on x and
odd on y;

• Bending By-modes: ux even on both x and y, uy odd on both x and y, uz odd on x and
even on y;

• Torsional T-modes: ux even on x and odd on y, uy odd on x and even on y, uz odd on
both x and y.

Referring to [27], Lamé modes in a rectangular beam satisfy the following phase
velocity condition:

cp =
√

2cT (7)

It is worth noting that the phase velocity condition of Lamé modes in a rectangular
beam is consistent with that in an infinite plate [40]. Similarly, Lamé modes in a rectangular
beam are formed by the reflection of shear waves at an angle of 45◦, which exist only for
discrete wavenumbers and frequencies. Especially, there are no Lamé modes for torsional
modes, and the longitudinal and bending Lamé modes associated with height 2b and
thickness 2a have wavenumbers given by

kL = (2p− 1) π
2b , p = 1, 2, 3 · · ·

kL = (2q− 1) π
2a , q = 1, 2, 3 · · ·

kBx = 2m π
2b , m = 1, 2, 3 · · ·

kBy = 2n π
2a , n = 1, 2, 3 · · ·

(8)
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Then, the frequencies of longitudinal and bending Lamé modes could be predicted
according to their wavenumbers and phase velocities,

ω = k·
√

2cT (9)

The first Lamé mode with k = π/2b lies on the L(1) branch, and the second Lamé mode
with k = π/b lies on the B(2)

x branch, as shown in Figure 2. The displacement mode shapes
of 7 normal modes, i.e., B(1)

y , T(1), B(2)
y , T(2), B(1)

x , L(1), and B(2)
x modes at the lowest Lamé

frequency (109.6 kHz), are presented in Figure 3. The type of beam modes could be easily
identified according to the symmetry of their respective displacement fields.

Materials 2023, 16, x FOR PEER REVIEW 5 of 14 
 

 

(2 1) , 1,2,3
2

(2 1) , 1,2,3
2

2 , 1,2,3
2

2 , 1,2,3
2

x

y

L

L

B

B

k p p
b

k q q
a

k m m
b

k n n
a

π

π

π

π

= − =

= − =

= =

= =









 
(8) 

Then, the frequencies of longitudinal and bending Lamé modes could be predicted 
according to their wavenumbers and phase velocities, 

2 Tk cω = ⋅  (9) 

The first Lamé mode with k = π/2b lies on the L(1) branch, and the second Lamé mode 
with k = π/b lies on the Bx

(2) branch, as shown in Figure 2. The displacement mode shapes 
of 7 normal modes, i.e., By

(1), T(1), By
(2), T(2), Bx

(1), L(1), and Bx
(2) modes at the lowest Lamé 

frequency (109.6 kHz), are presented in Figure 3. The type of beam modes could be easily 
identified according to the symmetry of their respective displacement fields. 

 
Figure 3. Mode shapes of 7 normal modes at 109.6 kHz, whereas L(1) mode is the lowest Lamé mode. 
Arrow indicates the vector of in-plane displacement; color indicates the relative amplitude of out-
of-plane displacement (blue: negative to red: positive). 

3. Guided Wave Scattering by a Through-Thickness Crack 
3.1. Frequency Domain Analysis 

The guided wave scattering in a rectangular beam with a through-thickness crack is 
modeled in COMSOL Multiphysics 5.6. As depicted in Figure 1, a cuboid with length l = 
300 mm, thickness 2a = 2 mm and height 2b = 20 mm, is employed to represent the rectan-
gular beam, with the absorbing region located at one end of the beam. The mass-propor-
tional damping coefficient in the z direction varies following a cubic law [41]: 

Figure 3. Mode shapes of 7 normal modes at 109.6 kHz, whereas L(1) mode is the lowest Lamé
mode. Arrow indicates the vector of in-plane displacement; color indicates the relative amplitude of
out-of-plane displacement (blue: negative to red: positive).

3. Guided Wave Scattering by a Through-Thickness Crack
3.1. Frequency Domain Analysis

The guided wave scattering in a rectangular beam with a through-thickness crack
is modeled in COMSOL Multiphysics 5.6. As depicted in Figure 1, a cuboid with length
l = 300 mm, thickness 2a = 2 mm and height 2b = 20 mm, is employed to represent the
rectangular beam, with the absorbing region located at one end of the beam. The mass-
proportional damping coefficient in the z direction varies following a cubic law [41]:

α =

{
0, z ∈ [−l/2, l/2]

αmax

(
|z|−l/2

labs

)3
, z ∈ (l/2, l/2 + labs]

(10)

where the maximum damping coefficient αmax is 10 times the highest frequency to be inves-
tigated. The length of the absorbing region labs is 250 mm, larger than 3 times the longest
wavelength in the waveguide, i.e., B(2)

x mode at the lowest frequency of investigation,
which ensures the elimination of undesired boundary reflections.
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To decouple the displacements of the two sides of the infinitely thin crack, a slit con-
dition is introduced [42]. A typical crack with axial extent acrack of 2 mm, width wcrack of
1 mm, and depth dcrack of 5 mm is given. The axial extent denotes the crack length in the
axial direction, the sign of which depends on the crack orientation. The non-dimensional
crack dimensions are introduced to simplify the problem. The relative crack width W%, is
defined as a percentage of the beam thickness, given by W% = wcrack/2a × 100%, while
the relative crack depth D%, is defined as a percentage of the beam height, given by
D% = dcrack/2b × 100%. The geometry parameters and bulk wave velocities of the model
are presented in Section 2. The incidence plane is located at z = −150 mm, while the reflec-
tion/transmission receiver planes are located at z = ±100 mm, each with 1000 uniformly
distributed nodes. Referring to [41,43,44], the frequency-dependent displacement profile is
input at the incidence plane to selectively generate the desired L(1) mode. Subsequently,
the extracted displacement and stress are used to determine the reflection and transmission
coefficients at the receiver planes. According to the orthogonality and completeness of
guided wave modes, an arbitrary wave field can be expressed as the linear superposition
of various modes, with the amplitude Am of the m-th power-normalized mode given by

Am = − iω
4

∫ b

−b

∫ a

−a
∑

j=x,y,z

(
u∗j,m·σjz,tot − uj,tot·σ∗jz,m

)
dxdy (11)

Harmonic analysis is carried out in the frequency domain to investigate the conversion
behavior of L(1) mode. The frequency ranges from 105 kHz to 125 kHz in steps of 0.2 kHz,
which covers the lowest Lamé mode at 109.6 kHz. Using a stationary solver, the structural
response is computed across all frequencies of interest in the beam. Figure 4 illustrates
the surface displacement fields of the rectangular beam with a 25%-deep vertical crack
resulting from L(1) mode incidence at 105 kHz, 115.8 kHz and 125 kHz, respectively. It can
be observed that the spatial periodicity along the z direction is destroyed, except in the
second case at 115.8 kHz.
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As non-propagating modes cannot transport energy by themselves [28], the conversion
ratio at each receiver plane is defined as the energy ratio of converted propagating modes
(excluding the forward propagating L(1) mode) to all propagating modes:

Cre = 1−
∣∣∣A

L(1)

∣∣∣2
M
∑

m=1
(|A−m |2+|Am |2)

, at reflection receiver plane

Ctr = 1−
∣∣∣A

L(1)

∣∣∣2
M
∑

m=1
(|A−m |2+|Am |2)

, at transmission receiver plane

(12)

where M is the number of propagating modes at a specific frequency, and the modes with
the negative sign depict backward propagating modes. A larger conversion ratio indicates
that more energy is converted to other propagating modes, resulting in a greater impact
on the propagation of the incident mode induced by the crack. Figure 5 illustrates the
conversion ratio for L(1) mode incidence, where the relative crack depth ranges from 5% to
30% in increments of 5%.
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Figure 5. Variation of (a) reflection and (b) transmission conversion ratios with frequency for various
depths of 2 mm-wide through-thickness vertical crack.

In the case of a shallow vertical crack, the incident mode passes through the crack with
weak mode conversion. As the vertical crack deepens, the frequency-dependent conversion
ratio becomes complicated due to the significant mode conversion. Nonetheless, there is
always a noticeable minimum at the same location in both reflection and transmission ratio
diagrams. For instance, a minimum occurs at 115.8 kHz for a 25%-deep crack, which is
consistent with the results presented in Figure 4.

3.2. Validation in Time Domain

To validate the results obtained from frequency domain analysis, ABAQUS/Explicit [45]
is utilized to simulate the scattering of guided waves based on the same model shown in
Figure 1. By placing overlapping duplicate nodes along a seam [46], a vertical crack of
relative depth of 15% and 25% is introduced in the beam, respectively. A 35-cycle 115 kHz
sine wave with a duration of 304 µs and bandwidth 20 kHz is selected as the excitation. The
structure is discretized using eight-node brick elements with reduced integration (C3D8R).
Since the shortest wavelength λmin= 2π/k

B(1)
y
( fmax) = 2π/554× 1000 mm = 11.34 mm,

the element size takes about 0.5 mm, which is smaller than one-twentieth of the shortest
wavelength. The center mode shape technique, i.e., prescribing the displacement profile of
the 115 kHz L(1) mode at the beam end, is employed to excite the pure L(1) mode.

The presence of multiple modes in the reflected and transmitted signals due to mode
conversion at the crack is observed, despite only one mode being excited. To analyze the
mode conversion behavior, the two-dimensional Fourier transform is applied to reveal the
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energy distribution of various modes on the frequency-wavenumber spectrum. Two linear
arrays with apertures of 60 mm, serving to receive reflected and transmitted signals, are
located on both sides of the crack, 10 mm away from the origin. For the case of a shallow
vertical crack, only the y component of the displacement on the beam surface is extracted
since the forward propagating L(1) mode still dominates in scattered signals, as shown in
Figure 3. The frequency-wavenumber spectra of the transmitted and reflected signals are
displayed in Figure 6.
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A significant reduction in modal energy could be observed at a specific frequency in
the reflected and transmitted frequency-wavenumber spectra, e.g., 113 kHz for 15%-deep
crack, and 115.8 kHz for 25%-deep crack. These nearly perfect transmission frequencies are
almost independent of modes, and could be expressed as a function of the crack depth. The
slight deviations of the troughs in the transmitted frequency-wavenumber spectra may arise
from the non-eliminated boundary reflections. Although both methods produce similar
results, the frequency domain analysis is more efficient than the time domain simulation.
Therefore, the frequency domain analysis is employed to calculate the scattering coefficients
in Section 4.

4. Discussion
4.1. Effect of Crack Width

Figure 7 shows the frequency-dependent conversion ratio for a part-through-thickness
vertical crack, with the relative crack width of 75% and 50%, and the relative crack depth
ranging from 5% to 30%.
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Figure 7. Variation of (a,c) reflection and (b,d) transmission conversion ratios with frequency in
various depth-width combinations of part-through-thickness vertical crack.

Despite the variation of conversion ratios at the troughs, the nearly perfect transmis-
sion still occurs in most depth-width combinations. The non-ideal results for a relative
crack depth of 5%, i.e., red lines in Figure 7, are attributed to the amplification of numerical
errors in the case of weak mode conversion. In comparison to the results presented in
Figure 5, a slight increase in the nearly perfect transmission frequency with a decrease of
crack width could be observed. The results for relative crack width of 25% are not provided,
due to the very weak mode conversion over the investigated frequency range.

4.2. Effect of Crack Axial Extent

The axial extent is an important parameter for an inclined crack. Figure 8 depicts the
evolution of reflection and transmission conversion ratios for a 25%-deep through-thickness
inclined crack with various axial extents.

The nearly perfect transmission phenomenon is not observed for inclined cracks, due
to the absence of sharp troughs in the reflection and transmission conversion ratio diagrams.
Besides, it should be noted that the mode conversion behavior for positive and negative
axial extents is not symmetric about the zero axial extent, which differs from the results for
the low-frequency SH0 plate mode, as reported in [6]. This discrepancy may be attributed
to the greater number of modes present in the rectangular beam than in the infinite plate.
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4.3. Effect of Beam Thickness

To extend the applicability of our conclusions to the rectangular beam with various
aspect ratios, two additional cases with beam height of 20 mm, beam thickness of 6 mm
and 10 mm, are investigated. The evolution of conversion ratios resulting from L(1) mode
incidence for a through-thickness vertical crack in various depth-width combinations is
displayed in Figure 9. Similarly, the nearly perfect transmission occurs in most depth-width
combinations. Based on our results, the nearly perfect transmission frequency is barely
related to the beam thickness.

Materials 2023, 16, x FOR PEER REVIEW 10 of 14 
 

 

  
(a) (b) 

Figure 8. Variation of (a) reflection and (b) transmission conversion ratios with frequency for various 
axial extents of 25%-deep through-thickness inclined to crack. 

The nearly perfect transmission phenomenon is not observed for inclined cracks, due 
to the absence of sharp troughs in the reflection and transmission conversion ratio dia-
grams. Besides, it should be noted that the mode conversion behavior for positive and 
negative axial extents is not symmetric about the zero axial extent, which differs from the 
results for the low-frequency SH0 plate mode, as reported in [6]. This discrepancy may be 
attributed to the greater number of modes present in the rectangular beam than in the 
infinite plate. 

4.3. Effect of Beam Thickness 
To extend the applicability of our conclusions to the rectangular beam with various 

aspect ratios, two additional cases with beam height of 20 mm, beam thickness of 6 mm 
and 10 mm, are investigated. The evolution of conversion ratios resulting from L(1) mode 
incidence for a through-thickness vertical crack in various depth-width combinations is 
displayed in Figure 9. Similarly, the nearly perfect transmission occurs in most depth-
width combinations. Based on our results, the nearly perfect transmission frequency is 
barely related to the beam thickness. 

  
(a) (b) 

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

  
(c) (d) 

Figure 9. Variation of (a,c) reflection and (b,d) transmission conversion ratios with frequency in var-
ious depth-width combinations of through-thickness vertical crack. 

In Figure 10, the nearly perfect transmission frequency is presented for both part-
through and through-thickness vertical cracks in a 2 mm-thick and 20 mm-high rectangu-
lar beams. It is obvious that, this frequency originates from the first Lamé frequency, 
which increases with the crack depth, but decreases with the crack width, both for the 
reflection and transmission. A more accurate frequency could be obtained if a smaller fre-
quency step and finer mesh are adopted. 

  
(a) (b) 

Figure 10. Comparison of frequencies with minimum conversion ratios at (a) reflection and (b) 
transmission receiver planes for part-through and through-thickness vertical cracks in a 2 mm-thick 
and 20 mm-high rectangular beams. 

The low-frequency guided waves are crucial for field inspection, as they can propa-
gate over long distances. Furthermore, the computational cost increases with the fre-
quency dramatically due to the need for a finer mesh. Therefore, it is reasonable to focus 
on the nearly perfect transmission in the vicinity of the first Lamé frequency. 

5. Conclusions 
The interaction of the lowest Lamé mode with part-through and through-thickness 

cracks in the beam of the rectangular cross section is explored in this paper. The scattering 
coefficient of each reflected or transmitted mode is efficiently determined using the fre-
quency domain analysis, and then verified through time domain simulation. Based on the 
numerical results, some conclusions are drawn: 

Figure 9. Variation of (a,c) reflection and (b,d) transmission conversion ratios with frequency in
various depth-width combinations of through-thickness vertical crack.



Materials 2023, 16, 4164 11 of 13

In Figure 10, the nearly perfect transmission frequency is presented for both part-
through and through-thickness vertical cracks in a 2 mm-thick and 20 mm-high rectangular
beams. It is obvious that, this frequency originates from the first Lamé frequency, which
increases with the crack depth, but decreases with the crack width, both for the reflection
and transmission. A more accurate frequency could be obtained if a smaller frequency step
and finer mesh are adopted.

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

  
(c) (d) 

Figure 9. Variation of (a,c) reflection and (b,d) transmission conversion ratios with frequency in var-
ious depth-width combinations of through-thickness vertical crack. 

In Figure 10, the nearly perfect transmission frequency is presented for both part-
through and through-thickness vertical cracks in a 2 mm-thick and 20 mm-high rectangu-
lar beams. It is obvious that, this frequency originates from the first Lamé frequency, 
which increases with the crack depth, but decreases with the crack width, both for the 
reflection and transmission. A more accurate frequency could be obtained if a smaller fre-
quency step and finer mesh are adopted. 

  
(a) (b) 

Figure 10. Comparison of frequencies with minimum conversion ratios at (a) reflection and (b) 
transmission receiver planes for part-through and through-thickness vertical cracks in a 2 mm-thick 
and 20 mm-high rectangular beams. 

The low-frequency guided waves are crucial for field inspection, as they can propa-
gate over long distances. Furthermore, the computational cost increases with the fre-
quency dramatically due to the need for a finer mesh. Therefore, it is reasonable to focus 
on the nearly perfect transmission in the vicinity of the first Lamé frequency. 

5. Conclusions 
The interaction of the lowest Lamé mode with part-through and through-thickness 

cracks in the beam of the rectangular cross section is explored in this paper. The scattering 
coefficient of each reflected or transmitted mode is efficiently determined using the fre-
quency domain analysis, and then verified through time domain simulation. Based on the 
numerical results, some conclusions are drawn: 

Figure 10. Comparison of frequencies with minimum conversion ratios at (a) reflection and (b) trans-
mission receiver planes for part-through and through-thickness vertical cracks in a 2 mm-thick and
20 mm-high rectangular beams.

The low-frequency guided waves are crucial for field inspection, as they can propagate
over long distances. Furthermore, the computational cost increases with the frequency
dramatically due to the need for a finer mesh. Therefore, it is reasonable to focus on the
nearly perfect transmission in the vicinity of the first Lamé frequency.

5. Conclusions

The interaction of the lowest Lamé mode with part-through and through-thickness
cracks in the beam of the rectangular cross section is explored in this paper. The scatter-
ing coefficient of each reflected or transmitted mode is efficiently determined using the
frequency domain analysis, and then verified through time domain simulation. Based on
the numerical results, some conclusions are drawn:

1. The incident L(1) mode will pass through the damaged region with negligible mode
conversion if its frequency and the size of the part-through or through-thickness
vertical crack satisfy a specific relation. However, such a nearly perfect transmission
phenomenon is not observed for inclined cracks;

2. The nearly perfect transmission frequency originates from the first Lamé frequency,
increases with the crack depth, whereas decreases with the crack width. Between
them, the crack depth plays a major role in the frequency variation. Besides, the beam
thickness has little influence on the nearly perfect transmission frequency;

3. The nearly perfect transmission frequency may serve as a potential indicator to
evaluate the crack size in a rectangular beam. The results obtained in this study
provide guidance for optimizing mode and frequency in the inspection;

4. The effect of the long-term phenomena of concrete on the dynamic behavior of pre-
stressed rectangular beams has been studied experimentally and numerically through
bending vibrations. In future work, the proposed numerical procedure will be com-
bined with the prestressed analysis module available in commercial finite element
software to investigate the mode conversion of guided waves at the crack along
prestressed concrete beams.
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