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Abstract: With the rapid advancements in aerospace technology and infrared detection technology,
there are increasing needs for materials with simultaneous infrared camouflage and radiative cooling
capabilities. In this study, a three-layered Ge/Ag/Si thin film structure on a titanium alloy TC4
substrate (a widely used skin material for spacecraft) is designed and optimized to achieve such
spectral compatibility by combining the transfer matrix method and the genetic algorithm. The
structure exhibits a low average emissivity of 0.11 in the atmospheric windows of 3–5 µm and
8–14 µm for infrared camouflage and a high average emissivity of 0.69 in 5–8 µm for radiative cooling.
Furthermore, the designed metasurface shows a high degree of robustness regarding the polarization
and incidence angle of the incoming electromagnetic wave. The underlying mechanisms allowing for
the spectral compatibility of the metasurface can be elucidated as follows: the top Ge layer selectively
transmits electromagnetic waves ranging from 5–8 µm while it reflects those in the ranges of 3–5 µm
and 8–14 µm. The transmitted electromagnetic waves from the Ge layer are first absorbed by the
Ag layer and then localized in the Fabry-Perot resonance cavity formed by Ag layer, Si layer and
TC4 substrate. Ag and TC4 make further intrinsic absorptions during the multiple reflections of the
localized electromagnetic waves.

Keywords: multilayered thin films; infrared camouflage; radiative cooling; Fabry-Perot resonance cavity

1. Introduction

With the rapid development of the aerospace industry, the infrared (IR) camouflage
of spacecraft is attracting more and more research attention [1]. Full IR band (from near
infrared to far infrared) low emissivity coatings have been commonly used in IR cam-
ouflage for years, although the IR radiation signals of spacecraft mainly depend on its
temperature-dependent emissivity being within the mid-far IR atmospheric windows
(3–5 µm and 8–14 µm) [2]. In this regard, the low emissivity of 5–8 µm significantly hinders
the radiative cooling efficiency of a spacecraft, which may raise the temperature level and
largely limit its camouflage performance. Hence, high performance IR camouflage coating
demands favorable spectral selectivity, i.e., high emissivity in non-atmospheric window
bands for radiative cooling [3] and low emissivity in the atmospheric window bands for IR
camouflage [4].

Recently, multilayered thin films have emerged that efficiently tune the radiative
properties of materials [5–11]. As a type of metamaterial, multilayered thin films are
composed of two or more stack-arranged dielectric materials, which have great potential
for applications in perfect absorbers (PAs) [5,11–14], radiative cooling [15–19] and IR
camouflage [20–28]. While the investigation of individual functionalities is progressively
advancing, the exploration of multilayered thin films that can be compatible with diverse
functionalities is thriving. For example, Qi et al. [29] designed a one-dimensional photonic
crystal structure based on ZnS/Ge to achieve visible and infrared compatible stealth.
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Deng et al. [30] proposed a low visibility and low thermal emission thin film structure for
multispectral camouflage. Kang et al. [31] designed a plasma structure based on Ge2Sb2Te5
(GST) for tunable multi-band camouflage and radiative cooling. Zhao et al. [21] realized
broad-spectrum infrared spectral selectivity through a 20-layered and a 23-layered thin
film structure. Wang et al. [32] designed an IR camouflage-radiative cooling compatible
structure consisting of 12 layers of thin film. Considering the structural simplicity for
large-scale fabrication, Liang et al. [33] and Yang et al. [34] proposed a four-layered film
structure to achieve the compatibility of IR camouflage and thermal management. Zhu
et al. [35] and Pan et al. [36] achieved laser camouflage and visual camouflage alongside the
compatibility of IR camouflage and radiative cooling by combining multilayered structures
and surface microstructures, respectively. However, in most of the previous works, the
structural parameters of the multilayered thin films were not rigorously optimized, while
the polarization and incidence angle robustness of the structure were rarely included.
Moreover, multilayered thin film structures with compatibility of IR camouflage and
radiative cooling using fewer layers are highly desirable to further decrease the difficulties
of large-scale fabrication. In addition, for a more comprehensive overview of the previously
reported designs’ functionality and structure in various scenarios, we present a summary
in Table 1.

Table 1. Comparison of representative theoretical and experimental works on thermal camouflage
compatibility in recent years.

Work by Multilayered
Films Only Number of Layers

3–5 µm
Infrared

Camouflage

5–8 µm
Radiative
Cooling

8–14 µm
Infrared

Camouflage

Qi et al. [29]
√

8
√

× ×
Deng et al. [30]

√
6

√
×

√

Kang et al. [31] × ×
√ √ √

Zhao et al. [21]
√

20/23 ×
√ √

Wang et al. [32]
√

12
√ √ √

Liang [33] and Yang [34] et al.
√

4
√ √ √

Zhu [35] and Pan [36] et al. × ×
√ √ √

“
√

” and “×” denote “yes” and “no”, respectively.

This work proposes a three-layered Ge/Ag/Si thin film structure on a TC4 substrate for
spectrally selective modulation to achieve compatibility with IR camouflage and radiative
cooling. The material and thickness of each layer are optimized via a genetic algorithm
(GA) [37–40], a powerful optimization method used for structural parameters that simulates
the processes of inheritance and variation in biological populations. The final structure
exhibits broad-spectrum low emissivity for IR camouflage in the atmospheric windows
of 3–5 µm and 8–14 µm, and broad-spectrum high emissivity for radiative cooling in
the non-atmospheric windows of 5–8 µm. Furthermore, the directional performance for
different polarizations and the underlying mechanisms are discussed in detail. The results
demonstrate that the compatibility can be maintained over a wide directional range of 0◦

to 80◦ and is insensitive to the polarization state.

2. Methodology
2.1. Design Process

The schematic and design strategy of the multilayered thin films are illustrated in
Figure 1. The structure is composed of n unit layers. The material and thickness of each
layer are denoted as mi and di, respectively. In principle, they are expected to achieve the
spectral selectivity by combining the unique electromagnetic response of each stacked layer:
(1) the top layers allow transmission in the non-atmospheric window band but reflect in
the atmospheric window band; (2) the inner layers absorb the transmitted electromagnetic
waves in the non-atmospheric window band. In the design process, the transfer matrix
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method (TMM) and the GA are combined to determine the optimized layer number
n, the material mi and the thickness di of each layer. Specifically, the GA is used for
the structural parameters optimizing iterations, while the TMM is used to calculate the
apparent emissivity in each iteration. The essentials of TMM and GA are presented below.
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Figure 1. Schematic of the model and method for the design of multilayered thin films.

2.2. Emissivity Calculation for Multilayered Thin Films

The TMM is an accurate and efficient method used to calculate the reflectance and
transmittance of multilayered thin films [41]. The TMM describes the forward and back-
ward amplitude change in each film layer and at its boundaries via transfer matrix. For the
structure shown in Figure 1, light with a normalized electric field amplitude of 1 passes
through the n isotropic film layers from a vacuum (layer 0) to the substrate (layer n + 1). If
we denote the forward and backward amplitude on the ith side by vi and wi, respectively,
there are relationships between them [42]:

vi+1 =
(

vieiδi
)

ti,i+1 + wi+1ri+1,i (1)

wie−iδi = wi+1ti+1,i +
(

vieiδi
)

ri,i+1 (2)

where ra,b and ta,b denote the reflection and transmission coefficient from layer a to its
adjacent layer b, respectively. a and b represent the layer number, like i or i + 1. δi is the
phase change passing through the ith layer, and is expressed as [42]:

δi = di · kz,i (3)

kz,i denotes the normal components of the complex wave vector in the ith layer [42]:

kz,i =
2π

λ
ñi(λ) cos(θi) (4)

where ñi and θi represent the complex refractive index and the incident angle of the ith
layer, respectively, while λ represents the wavelength.

Next, the amplitude change in each layer (i = 1, . . . , n − 1) can be expressed by the
layer transfer matrix Mi in the form [42]:(

vi
wi

)
= Mi

(
vi+1
wi+1

)
=

[(
e−iδi 0

0 eiδi

)(
1 ri,i+1

ri,i+1 1

)
1

ti,i+1

](
vi+1
wi+1

)
(5)

The consequent amplitude change can be expressed by the total transfer matrix M̃
connecting each layer [42]: (

1
r

)
= M̃

(
t
0

)
(6)
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M̃ =
1

t0,1

(
1 r0,1

r0,1 1

)
M1M1 · · ·Mn−1 (7)

The reflectivity and transmissivity can be obtained by [42]:

R = |r|2 =
∣∣∣1/M̃11

∣∣∣2, T = |t|2 =
∣∣∣M̃21/M̃11

∣∣∣2 (8)

When the reflectance R and the transmittance T are calculated, their corresponding
absorbance α = 1 − T − R can also be calculated. In this study, the titanium alloy TC4
spacecraft skin is taken as the substrate, such that the transmittance of the structure is t = 0.
Then the absorbance can be approximated as α = 1 − R. From Kirchhoff’s law, it is known
that the absorbance is equal to the emissivity at thermal equilibrium, i.e., ε = α. In this
study, we use the open-source program TMM to calculate the absorptivity and reflectivity
of the multilayer film structure [43].

2.3. Genetic Algorithm

The GA is a biomimetic optimization method that simulates the phenomena of selec-
tion, crossover and mutation in biological genetics. The GA starts with a random initial
population and iteratively generates individuals better suited to the environment through
the manipulation of genetic operators. Eventually, the population evolves into an optimal
solution within the defined parameter range [33,34]. Semi-conductor materials Ge and
Si exhibit a stable high refractive index and near-zero extinction coefficients, while noble
metal materials Ag and Pt exhibit a monotonically increasing high refractive index (n)
and extinction coefficients (k) with wavelength in the 3–14 µm band. The infrared optical
constants (n, k) for Ge [44], Si [45], Ag [46], and Pt [47] materials within the 3–14 µm
band are depicted in Figure 2. The strategic combination of these materials, with specific
thicknesses, has been demonstrated in the literature to possess superior selectively emissive
characteristics [33,34]. Here, in order to realize the original design intention, i. e. achieving
the spectral selectivity by combining different electromagnetic responses of the top layers,
inner layers and the bottom layers, we take Ge, Si, Ag, and Pt as the candidate materials for
the stacked structure, and encode the material of each layer as mi.

For practical engineering applications, the simplicity of large-scale fabrication is a
critical factor, to which intensive attention should be paid. In order to achieve the original
design intention with as few layers as possible, the number of top layers, inner layers,
and bottom layers are all set to n = 1. Namely, the total layer number is n = 3. The
candidate material of each layer is configured as: the first layer uses Ge or Si for the
spectrally selective transmission of the incident light; the second layer uses the ultrathin
metal layer Ag or Pt for absorption of the light transmitted from the first layer; the third
layer uses Ge or Si for the resonance with the second thin metal layer to further enhance
the absorption of the light transmitted from the second layer. The material of each layer
will be determined throughout the GA optimization process. Alongside the candidate
material mi, the thickness di is the other key parameter affecting the apparent emissivity
of the multilayered thin film structure. To avoid possible local optimum values, eight
structures composed of different materials are evolved and screened with three genes per
layer thickness di as an individual.
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The optimization process begins by generating a population with different parameter
combinations within the defined range, then the spectral emissivity levels in 3–14 µm of
each individual combination are calculated by the TMM. Since IR detection and radiative
cooling concerns integrated radiation power in certain spectral range, the adaptability of
each individual with gene D = [d1,d2,d3] is evaluated through the objective function based
on spectrally integrated average emissivity:

f (D) =

√√√√√ 3
∑

j=1
gj[εtar(j)− εcal(j)]2

3
(9)

where εtar and εcal represent the expected and calculated average emissivity, respectively.
j = 1, 2, 3 denotes the three concerning bands, i.e., the mid-IR atmosphere window 3–5 µm,
the radiative cooling band 5–8 µm, and the far-IR atmosphere window 8–14 µm, respec-
tively. gj is the weight factor corresponding to the concerning bands, and the band with
a relatively large weight factor will be especially focused on in the evaluation. Towards
the IR camouflage and radiative cooling compatibility, the expected average emissivity
in 3–5 µm, 5–8 µm and 8–14 µm are set to [0 1 0] and the weighting factor is set to [1 1 1],
respectively. In each generation, good genes will be selected referring to low objective
function values of the population, while the bad genes will be mutated. The selected good
genes crossover and become the next generation of the initial population. The objective
value continuously decreases with the iterative evolution process of the population. Con-
vergence will be achieved when the relative difference of the objective value between two
adjacent generations is smaller than 10−4 in this study:

F =
∣∣ fβ+1(D)− fβ(D)

∣∣/ fβ(D) < 10−4 (10)
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where β and β + 1 represent two adjacent generations. Eventually, the optimized results
are obtained. In this study, the number of individuals in the random population is set to 40,
and the maximum number of genetic generations is set to 25. The thickness range of each
layer is set to 0.01–1 µm. Figure 3 illustrates the evolution of the objective function in the
GA for one set of layered films. For all eight sets of structures, the GA achieves convergence
within 25 generations.
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3. Results and Discussion

The final optimized structural parameters are shown in Table 2. The structure includes
a Ge film layer, an ultra-thin Ag film layer, and a Si film layer with a thickness of 333 nm,
10 nm, and 760 nm, respectively. The three layers are stacked on the TC4 titanium alloy
substrate. In order to evaluate the radiative properties of the structure optimized by the
GA, we calculated the normal spectral emissivity and reflectivity, as shown in Figure 4. The
shaded area in the figure is the transmittance of the atmospheric window. It is shown that
the optimized structure has broad-spectrum low emissivity in the 3–5 µm and 8–14 µm
atmospheric window bands as well as broad-spectrum high emissivity in the 5–8 µm non-
atmospheric window band. We further calculated the average emissivity of these target
bands as εavg,3–5 µm = 0.11, εavg,8–14 µm = 0.11, εavg,5–8 µm = 0.69, respectively. The results
demonstrate that the optimized structure has desirable infrared camouflage and radiative
cooling compatibility.

Table 2. The optimized parameters of the compatible multilayered thin films structure.

Layer 1 Layer 2 Layer 3 Substrate

Material Ge Ag Si TC4
Thickness/[nm] 333 10 760 /

Emission direction and polarization characteristics are two more important factors in
IR camouflage performance. Hence, we further examined the polarization and directional
robustness of the optimized structure via the TMM. The spectral absorptivity of both p-
and s- polarizations at different incidence angles are shown in Figure 5. It is shown that, for
both p- and s- polarizations, the structure exhibits high absorptivity for non-atmospheric
windows and low absorptivity for atmospheric windows over a wide angular range (0–80◦).
Since all of the thin films and the substrate are isotropic materials, according to Kirchhoff’s
law, the emissivity of the optimized structure can be obtained by averaging the s- and
p-polarized absorptivity, as shown in Figure 6. The results indicate that the infrared
camouflage and radiative cooling compatibility of the coating is insensitive to direction
and polarization.
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In order to access the radiative cooling performance and camouflage performance
of the three-layered film structure, we calculated the emissive power density in 5–8 µm
for radiative cooling and the IR radiation signal power density in 3–5 µm and 8–14 µm
for being detected by Equation (11) [31], respectively, where λ1 and λ2 are the minimum
and maximum wavelengths of the integral spectra range, as shown in Figure 7. It can
be observed that the radiative cooling power density increases significantly while the IR
radiation signal power densities increase slightly with increasing temperature from 300 K to
900 K. Moreover, the remarkable increase of the radiative cooling power will contribute to
the reduction of the spacecraft surface temperature, thus further suppressing the increase of
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the IR radiation signal intensity in the 3–5 µm and 8–14 µm detection bands. Consequently,
the structure exhibits excellent compatible camouflage and radiative cooling performance,
especially for high temperature spacecraft. In addition, the structure designed in this
study achieves this compatibility with only three layers, which is simpler and more easily
fabricated than those listed in Table 1.

Eλ1−λ2(T) =
∫ λ2

λ1

ε(λ)Eb(λ, T)dλ (11)
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In order to clarify the mechanism of the spectrally selective emissivity, we examined
the normalized electric field of the optimized structure at wavelengths of 4 µm and 11 µm
in the atmospheric window and at wavelengths of 6 µm and 7 µm in the non-atmospheric
window as examples, respectively, as shown in Figure 8. It can be seen that the electric
field intensity of the structure at wavelengths of 4 µm and 11 µm are much lower than
that at wavelengths of 6 µm and 7 µm, which indicates that the outer surface of the top
Ge layer makes the first spectral selection. That is, the top Ge layer reflects off most of the
electromagnetic waves in the atmospheric window bands (see 4 µm and 11 µm) but allows
the electromagnetic waves in the non-atmospheric window band (see 6 µm and 7 µm) to
penetrate into the interior of the stacked structure. Once the electromagnetic waves within
the non-atmospheric window enter the interior of the structure, they are first attenuated
during their passage through the top Ge layer, and subsequently the remaining waves
propagate onto the ultra-thin Ag layer. The Ag layer plays a key role in two aspects. One
aspect is that the thin Ag layer forms the Fabry-Perot (F-P) resonance [48] together with the
Si layer and the titanium alloy substrate. The F-P resonance localizes the electromagnetic
waves in the cavity. The other aspect is that the thin Ag layer can efficiently absorb both
the localized electromagnetic waves and the transmitted electromagnetic waves from the
Ge layer. Figure 9 illustrates the absorption distribution of the optimized structure at 6 µm
and 7 µm under normal incidence, where the power absorption density (W/m3) is defined
as [49,50]:

w(x, y, z) =
1
2

ε0ωε′′ (x, y, z)|E(x, y, z)|2 (12)

where ε0 and ε
′′

denote the permittivity of vacuum and the imaginary part of the dielectric
function of the stacked layers, respectively. ω represents the angular frequency, and E is the
electric field vector. It is shown that, alongside the Ag layer, the titanium alloy substrate
can further absorb the localized waves in the F-P resonance cavity.
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Figure 10 illustrates the spectral absorption distribution in the entire 3–14 µm band. It
can be seen that the greatly enhanced absorption mainly focuses on the thin Ag layer in
6–8 µm, and a weaker absorption occurs in the TC4 substrate in 5–6 µm. The combination of
the absorption by the Ag layer and the TC4 substrate leads to the apparent high emissivity
of the optimized structure in the 5–8 µm non-atmosphere window for radiative cooling.
Although the top Ge layer also absorbs within this band, the power absorption density is
much lower than the Ag layer and the substrate. In addition, the absorption density in
the 3–5 µm and 8–14 µm ranges is much lower than that in the 5–8 µm range, which is the
reason for the low emissivity in the atmospheric window bands. Consequently, it is verified
that the optimized structure realizes the IR camouflage and radiative cooling compatibility
with the electromagnetic response combination of each layer. In this study, we used the
open-source software S4 (version 1.1.1) [51] to calculate the internal normalized electric
field distribution and normalized absorption distribution in the optimized structure.

Considering the uncertainties in the fabrication process, the film thickness of each
layer of the samples or products will deviate from the optimized value, so that the apparent
spectral emissivity of the structure will be influenced. In order to quantitatively evaluate the
thickness sensitivity, we calculate the apparent spectral emissivity of the three-layered film
structure for varying thickness of each layer with the single variable principle, respectively.
The results are illustrated in Figure 11, where the white dashed lines represent the desired
thicknesses optimized by the GA. It can be seen from Figure 11 that the apparent spectral
emissivity remains nearly unchanged within a Ge/Si layer thickness variation range of
approximately±20 nm while it changes remarkably within the Ag layer thickness variation
range of only approximately ±10 nm. The sensitivity difference between Ge/Si layer
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thickness and Ag layer thickness can be attributed to the different roles of each layer.
Since the Ag layer simultaneously plays the roles of both forming the F-P resonance cavity
and absorbing the transmitted electromagnetic waves from the Ge layer and localized
electromagnetic waves in the F-P resonance cavity, its thickness becomes the key factor
affecting the apparent spectral emissivity of the structure. Hence, the thickness of Ag layer
should be specially and accurately controlled in the manufacturing process.
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4. Conclusions

In order to achieve compatible infrared camouflage and radiative cooling for spacecraft,
a three-layered Ge/Ag/Si thin film structure on a TC4 substrate is designed via a GA and a
TMM. The optimized structure can realize broad-spectrum low emissivity of 0.11 in the
3–5 µm and 8–14 µm atmospheric window bands for IR camouflage, and high average
emissivity of over 0.69 in the 5–8 µm non-atmospheric window bands for radiative cooling.
By calculating the radiative cooling power density and the IR radiation signal power density,
we demonstrate the excellent camouflage and cooling compatibilities of the optimized
structure, especially for high temperature spacecraft. Moreover, this compatibility can
be maintained over a wide directional range of 0–80◦ for different polarizations. The
mechanism analysis demonstrates that the compatibility can be attributed to the spectral
selectivity of the top Ge layer, the intrinsic absorption of the inner Ag layer, and the
excitation of the Fabry-Perot resonance formed by Ag, Si and TC4 substrate. The optimized
structure achieves the compatibility of radiative cooling and IR camouflage with only three
layer films, which is expected to be more applicable for large-scale fabrication and practical
engineering applications.
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