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Abstract: Thin-walled structures dynamically loaded with an axial force are the subject of this study.
The structures work as passive energy absorbers by progressive harmonic crushing. The absorbers
were made of AA-6063-T6 aluminum alloy and subjected to both numerical and experimental tests.
Experimental tests were performed on an INSTRON 9350 HES bench, while numerical analyses were
performed using Abaqus software. The energy absorbers tested had crush initiators in the form of
drilled holes. The variable parameters were the number of holes and their diameter. The holes were
located in a line 30 mm away from the base. This study shows a significant effect of the hole diameter
on the values of the stroke efficiency indicator and mean crushing force.
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1. Introduction

Due to increasingly restrictive regulations on passive safety in motor vehicles, since the
1980s, vehicle producers have begun to improve their design. In the history of automobiles,
initially, due to the relatively small number of cars and road incidents such as crashes and
accidents, designers focused on developing a vehicle whose strength would be high and
that would give the impression of a very rigid body. Given the speeds reached by the
first cars, high structural rigidity was not problematic. Over time, designers recognized
the problem of overload occurring during collisions, which in extreme cases, could prove
fatal to passengers. In the early 1990s, scientific publications began to appear addressing
the issue of passive safety [1,2], which intensified the dynamics of the development of
this branch of science. Initially, rigid structural elements began to take a different form.
Elements began to be used, which on impact, were to deform plastically by which they
absorbed mechanical energy to protect passengers. These structures were initially located
in the front section and called crash boxes. Over the years, attention began to turn to
the possibility of energy absorption by other bodily components, such as the floor, side
pillars, and doors. Passive structures are based on loss of stability and buckling at a
precise location [3–8]. As a result of scientific research, it was determined that energy
absorbers of a certain width and wall thickness were able to ripple in an orderly (harmonic)
manner [9,10]. The first crash boxes were based on an aluminum/steel column with a
simple crush initiator designed to start the creasing process at a precise location [11,12].
Such disruption of the column structure, also known as a trigger, is widely used. Its use
avoids global buckling of the structure, which results in the loss of the column’s potential
to absorb a significant amount of mechanical energy. In addition, thanks to the use of a
trigger, the initiation of the first plastic hinge occurs in a way that reduces the efficiency of
the first fold, but however, significantly reduces the maximum force, the value of which
translates into the amount of overload generated. Crush initiators most often take the form
of a geometric disturbance in the form of embossing or discontinuities in the material. A
trigger in the form of ribbing, thanks to the continuity of the column structure, reduces
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the risk of material tearing at high beater speeds. Examples of poles with this type of
trigger [13–15] have shown that it reduces the magnitude of the first force peak while
maintaining the energy absorption potential. Another interesting approach in the way
of modeling overstressing was presented by Ferdynus et al. [16], who presented the side
edge crumpling of an aluminum column with a square cross-section. Their study showed
that the depth of embossing significantly affects the magnitude of the maximum crushing
force generated at the start of crushing, with little effect on the average crushing force.
This is very important when modeling the mechanism of crush initiation, so as not to
reduce the total energy output of the column. Another way of triggering the crush of
thin-walled structures is through cavity processing, i.e., cutting holes of different shapes
on the sidewalls, and cutting material on the edges of the columns [17–20]. The holes on
the columns perform the same role as the embossing, i.e., changing the stiffness of the
column and allowing the initiation of a local plastic joint. The performance of this type of
initiator is also high; however, it depends on its geometric parameters. Based on research
published by Rogala et al. [21], it was found that for a hexagonal initiator, the dominant
parameter is the width of the cutout. The height of the hole improves the performance of
the initiator to a much lesser extent, while it may cause unstable behavior of the energy
absorber during non-axial impact. The next important aspect is the position of the initiator
relative to the base of the column. The amount of energy absorbed is mainly related to
the achieved buckling posture, and this changes with any interference with the geometric
parameters of the trigger. Studies have shown that the size of the plastic hinge depends on
the width of the profile [9,22]. The use of numerical methods, especially the finite element
method, is particularly useful in research [23–25]. It allows for the reduction in the time
of the conducted research as well as the reduction of the research group in experimental
bench tests [26–29].

In analyzing the field of passive energy absorbers while studying the role of the
trigger, which weakens the structure of the column but is an essential element for the
proper crushing of the structure, researchers began to use structural reinforcement. The
first methods of reinforcing crash boxes were multi-cell profiles [30–33], involving filling
the column with additional thin walls inside. The development of technology for the
manufacture of multi-cell structures has brought the honeycomb structure, which by its
orderly structure, has also found applications in passive energy absorbers [34–36]. Due
to the fact that foam absorbs energy by deforming continuously, they have also become
popular in scientific research. Great interest is being shown in the use of metal foams,
especially aluminum. According to the technological parameters used, aluminum foam
can reach a density up to ten times lower than that of solid material while retaining great
potential as an absorber of mechanical energy [37–39].

Nowadays, due to the rapid development of manufacturing technology, e.g., metal
powder sintering, metal casting, and composite structures have found applications as
energy absorbers. Composite metal–ceramic foam based on aluminum and silicon carbide
(SiC) particles is an interesting approach in the study of absorption of mechanical energy.
Dynamic tests of axially crushed thin-walled columns filled with different lengths of the
porous structure have been presented [40]. In addition, in one study, the authors compared
the energy-absorbing properties of a composite foam with traditional aluminum foam of
similar density. The study showed a higher rate of absorbed energy due to the greater
ductility range of pure aluminum while emphasizing that both foams exhibit good energy-
absorbing properties [41–44].

Due to the wide range of applications and the possibility of changing the mechanical
properties of structures made of fiber laminates, studies are increasingly describing the
use of composite structures as passive energy absorbers. The studies presented by various
authors have been characterized by different layouts and fiber materials; however, the
mechanism of destruction was often based on the creation of a dedicated matrix that
enhanced the failure of the composite structure [45,46]. As these materials lack a plastic
range, energy absorption is therefore based on material damage.
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2. Crashworthiness Efficiency Indicator

In order to correctly analyze the crush of passive energy absorbers over the years,
indicators began to appear in scientific publications to determine the performance of
thin-walled structures. Based on the graph of the force-shortening relationship (Figure 1)
and the basic parameters recorded during crushing, such as the total shortening of the
sample or the maximum force, it is possible to determine crush efficiency indicators.
The first basic quantity needed is the energy absorbed during the crush, described by
Equation (1); however, in scientific research to compare the geometric changes introduced,
the comparison of models is performed with the same initial energy.

EA(dx) =
∫ dx

0
F(x)dx (1)
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Another quantity necessary for further analysis of energy absorbers is the mean
crushing force (MCF), which is defined as the quotient of the energy absorbed and the total
crushing distance (2).

MCF =
EA(dx)

dx
(2)

The next indicator, crush load efficiency (CLE), shows the relationship between the
peak crushing force (PCF) and the MCF:

CLE =
MCF
PCF

× 100% (3)

Stroke efficiency (SE) is a ratio comparing the value of the shortening of the column to
its initial length (4). This is the intermediate ratio needed to determine the total capacity of
the column described by Equation (5):

SE =
U
Lo

(4)
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Total efficiency (TE) represents both the value of the course of the crushing force and
compares it with the relative shortening that occurred during the test. On the basis of one
indicator, we were able to approximate its energy absorption capacity (crashworthiness):

TE = CLE × SE (5)

3. Research Methodology

This study used the finite element method (Abaqus) as well as experimental models to
verify the numerical one. The test specimen took the shape of a square column with a crush
initiator in the form of drilled holes located at a height of 30 mm from the bottom edge of
the absorber. The fixed parameters were a height of 200 mm, a cross-section of 40 × 40 mm,
and a side wall thickness of 1.2 mm. The columns were made of AA-6063-T6 aluminum
alloy, the model of which was determined by static tensile testing. The test specimens had
an initiator in the form of one, three, or five holes, aligned as shown in Figure 2. In addition,
the holes had a variable diameter in the range of 1 to 4 mm. All specimens were tested
with the same initial conditions (i.e., a constant mechanical energy of 1700 J, which was the
resultant mass of the 70 kg beater and its velocity of 7 m/s).
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Figure 2. General views of the specimen: (a) physical front view and (b) the model with three
different trigger configurations where (1–3) presents a schematic appearance of the initiator.

3.1. Materials and Methods

The specimens were made of AA-6063-T6 because of their good mechanical properties,
including plastic behavior (Tables 1 and 2). The properties of the structure were also suitable
for subsequent experimental testing on a dynamic crush test stand for thin-walled profiles.
Aluminum-6063-T6 is known for its excellent weldability, which makes it a popular choice
for constructing frames, railings, and other structural components. Its relatively low weight,
good machinability, and high thermal conductivity also make it useful for manufacturing
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heat sinks, electrical components, and automotive parts. Table 1 shows the mechanical
properties provided by the manufacturer. Due to the accuracy of the tests conducted,
the numerical analyses were based on our own tests of the mechanical properties shown
in Table 2.

Table 1. Technical parameters of aluminum thin-walled tubes. (Reprinted with permission from
Ref. [40]. Copyright 2023 Elsevier).

Name AA-6063-T6

Chemical composition (%) Si Fe Cu Mn Mg Zn Ti

0.54 0.23 0.008 0.051 0.481 0.005 0.021

Heat Treatment 8 h at 198 ◦C

Mechanical property * Re (MPa) Rm (MPa) A50 (%) Brinell Hardness

240 265 11.5 80

* According to EN ISO 6892-1.

Table 2. Material properties of the aluminum alloy (our own research). (Reprinted with permission
from Ref. [40]. Copyright 2023 Elsevier).

AA-6063-T6

Density ρ (kg/m3) 2700
Young’s Modulus E (MPa) 70,000

Poisson’s Ratio (–) 0.33

Stress σ (MPa) Strain ε (–)

200 0
249.35 0.00248
279.98 0.0598

The above table shows the chemical composition, temperature treatment as well as
basic mechanical properties of the aluminum alloy. Table 1 presents the yield strength limit
(Re), tensile strength limit (Rm), percent elongation for a 50 mm long strain gauge (A50),
and Brinell hardness.

The material model was based on the elastic domain of the Young’s modulus and Pois-
son’s ratio and on the plastic domain of the multilinear stress–strain characteristics. Accord-
ing to scientific research, aluminum alloys are not susceptible to strain rate, making it unnec-
essary to use the Johnson–Cook constitutive material model to obtain valid results [47–50].

3.2. FEM Analysis

Numerical studies were carried out in two stages using the Abaqus CAE software.
The first step was to obtain a buckling form, which was then implemented for dynamic
analysis. The boundary conditions were simplified to two non-deformable plates serving
as a beater and a base according to Figure 2. In the lower base, there is a reference point
that collects force values in order to obtain the force-shortening characteristic.

The numerical tests carried out made it possible to present the values of force as a
function of displacement, which is the basic graph for the subsequent determination of
crush efficiency indicators more extensively described in Section 2. During the analysis,
1000 measurement points were obtained, which made it possible to determine the indicators
with a high degree of accuracy.

The size of the finite elements is closely related to the accuracy of the tests carried out
using the finite element method. In view of the above, a sensitivity analysis was conducted
for a column without a crush initiator. The results of the analysis are shown in Table 3,
which includes the finite element size, duration, and discrepancy of shortening relative to
the physical test specimen. The results showed a significant increase in analysis duration
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for a finite element smaller than 2.5 mm. In addition, the columns with finite elements of
2 and 2.5 mm showed the highest convergence. Given the results presented, the numerical
analysis used an element size of 2.5 mm for the column and 4 mm for the non-deformable
plates serving as the beater and base.

Table 3. Sensitive analysis of the finite element method.

Size (mm) No. of Elements (–) Time (min.) Discrepancy

1 31,945 180 107%
1.5 14,274 63 103%
2 8224 19 99%

2.5 5010 8 99%
3 3644 5 95%

3.5 2644 4 90%
4 2080 3 88%

3.3. Experimental Analysis

The impact test was conducted on an Instron CEAST 9350HES drop hammer, the gen-
eral view of which is shown in Figure 3. The stand consists of a test table to which
the specimen was attached. The stand has a strain gauge sensor built into the base
that reads measurement data such as force and acceleration values. In addition, the
dynamic testing hammer has a tup, to which the mass was applied, thus translating into
the energy obtained.
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Figure 3. General view of the experiment station.

The attachment of the sample was carried out with dedicated steel cubes. Their
dimensions were matched to the inner sizes of the aluminum profile. The purpose of the
grips was to stabilize the sample during the crush and to properly convert the impact of
the striker into the crush of the absorber.

The thin-walled models were manufactured using an AA-6063-T6 aluminum alloy.
The cross-section size was 40 mm × 40 mm, and the wall thickness was 1.2 mm. The length
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of the profile was 200 mm. The crush initiator, in the form of drilled holes, was made on a
tabletop drilling machine with the configuration shown in Figure 2.

4. Results

The results of the tests are presented for a group of numerical models and experimental
samples. Tests using the finite element method were carried out for three configurations
of holes—that is, one, three, or five, located parallel to the edge of the base. The distance
was constant for all tested models and equal to 30 mm. In addition, this study determined
the effect of the hole diameter on the crushing process of thin-walled profiles in the range
of 1–4 mm in 0.5 mm intervals. The results of the conducted tests are presented in the
form of plots of force as a function of shortening, in order to observe the occurrence of the
force peaks (Figures 4–6). In addition, crush efficiency indicators were determined and are
presented in column plots. The indices analyzed in this section are described in more detail
in Section 2.

The first group of analyzed cases was a passive absorber with one axially located
crush initiation hole. The hole was located 30 mm from the edge of the column base and
was on two opposite walls. Figure 4 shows the force-shortening characteristics for one
initiation hole of different diameters. Because the weakening of the structure due to the
discontinuity of the column wall was too small, the results with one hole did not cause a
significant change in the characteristics. The occurrence of force peaks was similar for all
curves in Figure 4. The case that stands out is the column with a single hole with a diameter
of 4 mm. Despite the small difference between the tested hole diameters, the impact is
evident compared to the smooth column without an initiator.

The initiation of the crushing process in the form of material discontinuity obtained
by drilling holes is evident for the three and five hole models, as seen in Figures 5 and 6,
respectively. The effect of three holes initiating the crush is visible in the initial force peak as
well as in the total shortening of the samples. The largest force peak (PCF) is characterized
by models with the smallest holes—that is, 1 mm and 1.5 mm. These models had a high
PCF, but the duration of the peak was small and, thus, translated into little accompanying
overload. Small hole diameters resulted in mechanical energy being absorbed over a small
distance, resulting in a higher energy-absorbing potential of the passive absorber. For larger
hole diameters, a reduction in the force peak at the beginning of the crush was noticeable,
as well as a difference in the shortening of the specimens. Studies show that the use of
drilled holes in the right configuration makes it possible to initiate the crush and control the
crush depending on the expected effects. Passive absorbers are used in special mechanical
constructions in this regard, and the diversity of their application is a great advantage.

The last group of tested initiators consisted of five holes placed in a row according
to Figure 2b. The plots of the force as a function of shortening presented in Figure 6 show
the greatest differences depending on the diameter of the holes used. The PCF values
ranged from 42 to 47 kN, and the effect of diameter is much more visible than with one
or three holes of the same diameter (Figures 4 and 5). For the models with 1 mm and 1.5
mm diameter initiators, similar behavior to that of the three-hole initiators is noticeable.
The samples generated the largest initial force peak as seen in Figure 6. The consequence
of a large overload was a significant decrease in force and low efficiency of the first fold.
The force peaks occurring later were offset from the others in terms of the force-shortening
characteristic. All samples were loaded with a constant energy of 1700 J; however, the
sample with the smallest hole diameter, absorbing energy along the largest path. This
would indicate a relatively low mean crushing force (MCF) and low crushing force efficiency
(CLE). In order to correctly analyze the discussed trigger cases, it was necessary to compare
the results for different diameters. The selected crush efficiency indicators are presented in
the form of column charts (Figures 7 and 8).

The curves shown in Figures 4–6 map their behavior through crush efficiency fac-
tors more broadly described in Section 2. Based on the numerical data, the PCF ratio
was determined, which is directly related to the behavior of the structure in the initial
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phase of crushing. The initial force peak reflects the formation of the first plastic hinge,
which, according to the theoretical assumptions described by Jones [2], is dependent on
the geometric parameters of the column. Figure 7 shows that by using an appropriate
configuration of the crush-initiating holes, the PCF value could be reduced by up to 20% for
different hole sizes. The value is much higher when referring to a smooth column without
a crush initiator. Such a structure, through much higher stiffness in the direction of impact,
generates larger force values for the initiation of the first fold, propagating the further crush
of thin-walled passive energy absorbers.
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Analyzing the behavior of the PCF index (Figure 7) and TE index (Figure 8), the
most obvious relationships were for the case with five initiating holes. In the case of
maximum force, the values decreased in an inversely proportional manner to the diameter
of the holes. Due to the geometric limitations of the column (i.e., 40 mm in width), the
diameter of the holes could not exceed 4 mm. The cases with one and three initiating holes
were characterized by non-linear changes for the discussed indicators. These cases were
characterized by other properties, which are described in more detail in the paragraphs
below (see also Figures 4 and 5). These holes could fulfill their purpose, depending on
the expected effects. Passive absorbers, depending on the expected effects, can absorb
maximum values along the shortest path or, on the contrary, generate minimum loads, for
example, for passengers inside a motor vehicle.

Experimental verification was carried out on the example of the two selected cases
characterized by variation in the discussed crush efficiency indicators. The first case was a
column with five holes with a diameter of 1 mm, while the second had three holes with a
diameter of 4 mm. In both cases studied, the verification was conducted on the example of
two specimens labeled S1 (specimen 1) and S2 (specimen 2).

The transposed results show the value of the force as a function of shortening, which
presents the location of the formation of the hinges and the values of the occurrence of force
peaks. This is due to the type of research carried out, i.e., dynamic analysis, during which
progressive harmonic crush occurs. Such studies are subject to certain imperfections due
to simplified boundary conditions during numerical simulations or the sampling of the
sensor in the experimental study.

This study shows that samples S1 and S2 reproducibly illustrated the behavior of a
passive energy absorber. For both samples, the force peaks occurred at the same location on
the thin-walled column, which corresponds to the specified shortening of the sample. The
values of absorbed mechanical energy by individual plastic hinges correspond to each other.
The total shortening of the specimen for all curves in Figure 9 corresponds to the other
verified cases. In the experimental study, there was a noticeable tendency for the plastic
hinge to split into a force peak, visible on the graph, and a subsequent force spike, which
relates to a single peak on the graph for numerical analysis. This effect may have been due
to the finite element method. The method simplifies the results used to some extent and the
mesh used, and the size of the finite element defines the accuracy of the obtained results. If
a very fine element was used, the accuracy of the results could be affected, but the analysis
time would be significantly increased and the computational cost would be much higher.

The quality of the verification results for sample D4-3, characterized by three holes
with a diameter of 4 mm, was as high as for sample D1-5. The results are also presented
in the form of force-shortening characteristics and a graphical presentation of crushed
thin-walled samples (Figure 10). The verification of the above sample showed a slightly
off-axis crush for sample S1. Due to the slight skewing of the sample, the characteristic
shows an increase in the force waveform at the beginning of the crush. The magnitude of
the second force peak is larger, indicating that a higher value of mechanical energy was
absorbed in this stage. This is related to the shape of the characteristics at the later stage of
the crush for the curve defined in green. Despite this behavior of the sample, the shortening
value seen in Figure 10 is almost identical for both verified cases, which confirms its good
energy-absorbing capabilities, which resulted in the biomechanical properties. Due to the
magnitude of the force that was generated, it affects overload that is unsafe for human life
during accidents and hence, there is a real correlation between crush-initiating elements
and passenger safety. The comparison of numerical results with experimental data allowed
us to draw similar conclusions. The convergence of characteristics was at a high level, and
the values of absorbed energy at the various stages of crushing refer to each other.
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5. Conclusions

The results of the presented research are related to the process of the crush initiation
of passive energy absorbers. These are mainly used in motor vehicles, and their task is to
absorb mechanical energy at the lowest possible overload accompanying the crush. The
use of discontinuities as one of the methods of crush initiation is well known; however,
the authors have shown in previous studies that horizontal discontinuities located on a
column initiate crush in the best way. Based on the results of previous studies, columns
with one, three, or five holes located in a line 30 mm from the base were analyzed. Nu-
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merical studies verified by the bench experimental tests showed that the use of holes has
a positive effect on selected aspects of crush. Observing the results shown in Figures 4–6,
it can be seen that the number of holes and their diameter affect the shortening of the
specimen, which is related to the value of the generated force peaks. Given constant initial
conditions (i.e., a mechanical energy of 1700 J for all analyses), the difference in shortening
is an indicator of further potential for energy absorption. However, due to the use of
energy absorbers as an internal passive safety system—that is, the protection of vehicle
occupants—an important aspect is the values of the overload generated during the crush.

Overload is directly related to force values, determined by the PCF parameter, and
reduced with the use of an appropriate initiator configuration. In addition, it was observed
in the analyses that the crush initiation holes affecting the initial force peak translated into
the location of the remaining plastic joints. According to the theory of the formation of
plastic hinges, their location depends on the form of buckling; however, with the help
of crush initiators, it is possible to properly control the crush to improve crush efficiency
indicators. The total efficiency (TE) of the structure, observed in Figure 8, improved
significantly, especially for five evenly spaced holes. The extreme values of the diameter
of the tested initiator showed an increase in the index from 0.15 to 0.25, or of 66%. The
significant improvement in the index is mainly due to the decrease in PCF seen in Figure 7,
but the increasing MCF index also contributed to the improvement in overall performance.
Through the higher average values of the force waveform, we note the same absorbed
energy over a shorter path.

In summary, it can be concluded that the use of a crush initiator in the form of drilled
holes is a low-cost, simple-to-implement option for improving indices. Studies have shown
improvements in selected indices by up to several tens of percent. However, this method
also carries some risks. Using too much discontinuity in the material in the form of drilled
holes can result in material cracking. If a wall or edge fracture occurs, the structure is
crushed uncontrollably, and its potential is wasted. Thus, when drilling holes, the edges
must not have any defects that may indicate the risk of wall damage.
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