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Abstract: Concrete compressive strength (CCS) is among the most important mechanical charac-
teristics of this widely used material. This study develops a novel integrative method for efficient
prediction of CCS. The suggested method is an artificial neural network (ANN) favorably tuned by
electromagnetic field optimization (EFO). The EFO simulates a physics-based strategy, which in this
work is employed to find the best contribution of the concrete parameters (i.e., cement (C), blast fur-
nace slag (SBF), fly ash (FA1), water (W), superplasticizer (SP), coarse aggregate (AC), fine aggregate
(FA2), and the age of testing (AT)) to the CCS. The same effort is carried out by three benchmark
optimizers, namely the water cycle algorithm (WCA), sine cosine algorithm (SCA), and cuttlefish
optimization algorithm (CFOA) to be compared with the EFO. The results show that hybridizing the
ANN using the mentioned algorithms led to reliable approaches for predicting the CCS. However,
comparative analysis indicates that there are appreciable distinctions between the prediction capacity
of the ANNs created by the EFO and WCA vs. the SCA and CFOA. For example, the mean absolute
error calculated for the testing phase of the ANN-WCA, ANN-SCA, ANN-CFOA, and ANN-EFO was
5.8363, 7.8248, 7.6538, and 5.6236, respectively. Moreover, the EFO was considerably faster than the
other strategies. In short, the ANN-EFO is a highly efficient hybrid model, and can be recommended
for the early prediction of the CCS. A user-friendly explainable and explicit predictive formula is also
derived for the convenient estimation of the CCS.

Keywords: civil engineering; concrete compressive strength; metaheuristic strategies; electromagnetic
field optimization

1. Introduction

Analyzing buildings from different perspectives is of great importance for safe
design [1–3]. Concrete is among the most widely used materials for construction
purposes [4–6]. It is used for building various structural elements, from foundations
to columns and beams [7,8]. Hereupon, engineers have conducted studies to analyze the
behavior of concrete in terms of various parameters, such as ion penetration resistance [9],
seismic behavior [10], load-bearing capacity [11], slump and workability [12], etc.

High-performance concrete (HPC) is a strong and durable type of concrete that has
gained significant popularity for many construction projects all over the world [13–15]. In
concrete, compressive strength is the main design parameter [16,17]. Therefore, evaluating
this parameter is of great importance to structural and geotechnical engineers. It is an
essential yet difficult task [18,19]. With that said, the non-linear abilities of machine learning

Materials 2023, 16, 4200. https://doi.org/10.3390/ma16114200 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16114200
https://doi.org/10.3390/ma16114200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0009-0000-2271-1530
https://orcid.org/0000-0003-3391-7985
https://orcid.org/0000-0002-2561-993X
https://doi.org/10.3390/ma16114200
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16114200?type=check_update&version=1


Materials 2023, 16, 4200 2 of 14

methods make them a suitable solution to such issues [20–22]. They can effectively explore
the influence of various key factors on concrete compressive strength (CCS).

Data-mining techniques, such as gene expression programming [23], support vector
machine (SVM) [24], and artificial neural network (ANN) [25], have broadly served as the
approximators of CCS. Dao et al. [26] examined the efficiency of ANN and a Gaussian
process regression (GPR) developed using various kernels for predicting the strength of
HPC. In this way, they also used Monte Carlo simulation to investigate the sensitivity
of the models. Evaluation of the accuracy of the implemented models showed that the
GPR with Matern32 function yields the best prediction. Shahmansouri et al. [27] modeled
the CCS of pozzolanic geopolymer concrete based on ground granulated blast-furnace
slag. High agreement between the products of the ANN and expected CCSs confirmed
the reliability of the proposed technique. Jalal et al. [28] proved the applicability of an
adaptive neuro-fuzzy inference system (ANFIS), which is a powerful approximator for
estimating the strength of rubberized concrete measured at four different ages (3, 7, 28, and
42 days). Dao et al. [29] studied the suitability of the ANN for CCS prediction in foamed
concrete. Based on 97.2% testing correlation obtained for the optimized structure, they
introduced the ANN as an efficient predictor of this parameter. Additionally, the executed
sensitivity analysis revealed the largest impact for the dry density factor. Simsek et al. [30]
incorporated a decision support method with extreme gradient boosting (XGB) to create an
efficient predictor for the strength of HPC. Regarding the root mean square errors (RMSEs)
of 4.36, 7.15, 10.47, and 6.71 calculated for the XGB, MLR, R-MLR, and ANN, the XGB was
the superior model. Further studies with a focus on utilizing machine learning models in
this field can be found in [31–34].

In more recent studies, scholars have realized that metaheuristic algorithms can be
used for design aims [35–37]. Ulusoy et al. [38], for example, employed metaheuristic
algorithms such as bat algorithm and harmony search for the optimal design of reinforced
concrete beams. Moreover, metaheuristic strategies have excellent search capacities for
attaining optimal solutions to a problem. Converting the prediction tasks (using data-
mining techniques) to an optimization problem, these algorithms are capable of finding
the optimal situation for the processor [39,40]. Hoang et al. [41] optimized a least squares
support vector regression (LSSVR) using a differential flower pollination algorithm for
simulating concrete bond strength. The RMSE = 2.39 and R2 = 0.84 indicated a high
accuracy for the proposed model and its superiority over conventional tools such as
ANN. Mai et al. [42] were able to enhance the accuracy of the radial basis function ANN
using a firefly algorithm (FFA) for predicting the axial compression capacity of concrete-
filled steel columns. Two other metaheuristic techniques, namely genetic algorithm (GA)
and differential evolution (DE), which were relatively weaker than FFA, were also used.
Ma et al. [43] evaluated the efficiency of four metaheuristic optimizers, namely a salp
swarm algorithm (SSA), grasshopper optimization algorithm (GOA), artificial bee colony
(ABC), and shuffled frog leaping algorithm (SFLA), to tune the ANN for predicting the
CCS. Considering the time and accuracy measures, the SSA and GOA were introduced
as the strongest algorithms. In this regard, a notable distinction was observed for the
correlation between these two algorithms (around 0.97%) and ABC (70.60%) and SFLA
(88.90%). The predictive formula of the SSA and GOA was lastly derived. Notably, ABC
emerged as a time-consuming technique. The use of the whale optimization algorithm
(WOA) for the same purpose (i.e., neural network tuning for the CCS modeling) was
recommended by Bui et al. [44]. The dragonfly algorithm and ant colony optimization
were two other optimizers that presented a weaker performance relative to the WOA. A
hybrid of the random forest and beetle antennae search (BAS) algorithm was proposed
by Zhang et al. [45] for simulating the uniaxial compressive strength of oil palm shell
concrete. Due to the high correlation (>95%) obtained for the testing process, the suggested
model is a reliable and effective approach to the aforementioned simulation.
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As we have argued, diverse efforts concerning the accuracy improvement of conven-
tional approaches illustrate the importance of this task in civil engineering. On the other
hand, benefiting from optimization strategies (e.g., grey wolf optimizer [46], symbiotic
organism searches [47], teaching learning-based optimization [48], etc.) has been regarded
an effective idea for this purpose. Hence, this study is concerned with the evaluation of
an innovative hybrid method for predicting the CCS of HPC. To this end, electromagnetic
field optimization (EFO) is combined with an ANN model to offer an optimal predictor.
Moreover, the EFO is validated through comparing the results with three other optimizers,
namely the water cycle algorithm (WCA), sine cosine algorithm (SCA), and cuttlefish
optimization algorithm (CFOA).

2. Materials and Methods
2.1. Data Provision

The used dataset consists of compressive strength records of 1133 HPC samples [49].
It was originally created by Yeh [50], and has also been used in earlier studies [51,52].
Observing these data, the CCS is affected by the present amounts of seven ingredients:
cement (C), blast furnace slag (SBF), fly ash (FA1), water (W), superplasticizer (SP), coarse
aggregate (AC), fine aggregate (FA2), and the age of testing (AT). Figure A1 shows a
histogram of the data.

Table A1 illustrates the dataset statistically. Regarding AT values, the specimens are
1, 3, 7, 14, 28, 56, 90, 91, 100, 120, 180, 270, 360, and 365 day(s) old. The weakest and strongest
specimens are distinguished by the minimum and maximum CCSs, 2.33 and 82.60 MPa,
respectively. The average CCS of the whole dataset is 35.84 MPa. Likewise, the mean
value for C, SBF, FA1, W, SP, AC, FA2, and AT is 276.50 kg/m3, 74.27 kg/m3, 62.81 kg/m3,
182.98 kg/m3, 6.42 kg/m3, 964.83 kg/m3, 770.49 kg/m3, and 44.06 days, respectively.

Of these 1133 samples, first, 906 samples are randomly selected to feed the networks.
They use these data for learning the relationship between the target parameter (i.e., the CCS)
and the inputs (i.e., C, SBF, FA1, W, SP, AC, FA2, and AT). More clearly for the metaheuristic
hybrids used in this study, the WCA, SCA, CFOA, and EFO assign a multiplying weight
to each input factor, and a bias term to each neuron of the ANN. The same process is
carried out for the subsequent neurons to create a non-linear model. The acquired pattern
is then exposed to the rest of the data, which comprises 227 samples, to predict the CCS for
unfamiliar specimens. In this way, the versatility of the models is assessed.

2.2. EFO Algorithm

The EFO is considered a physics-based technique because the developers, Abedin-
pourshotorban et al. [53], used electromagnetics rules for designing it. The population
of this algorithm is cooperative, and aims to improve the position for the betterment of
the solution. Attraction–repulsion forces affect individuals called electromagnet particles
(EMPs). Famously, opposite, and similar polarities cause attraction and repulsion forces,
respectively. For EMPs, there is more power in the attraction forces (5–10% higher than the
repulsion forces). In the EFO, a golden value is sought for the ration between these forces.
During the implementation, the EMPs in the neutral field maintain distance from those
of the negative field (i.e., the poorly fitted ones) because of the repulsion interaction, and
conversely, they approach those of the positive field (i.e., nicely fitted ones) because of the
attraction interaction.

First, a population is initialized, evaluated, and sorted according to the individuals’
fitness. They are classified into three groups, namely the positive field (best individuals),
negative field (weak individuals), and neutral field (the rest). In the neutral field, there are
small negative polarities close to zero, where

N+ve = P_ f ield.N_emp, (1)

N−ve = N_ f ield.N_emp, (2)
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Nneutral = N_emp− (N+ve + N−ve), (3)

where N+ve, N−ve, and Nneutral symbolize the population of the negative, positive, and
neutral groups. Likewise, N_emp stands for the whole population. Additionally, P_ f ield
and N_ f ield are the EFO parameters.

In the subsequent step, a new individual is created, and after comparing its fitness
with existing ones, it finds the appropriate place, and the polarity is accordingly determined.
Remarkably, the weakest individual is removed from the population. The generation of the
new individual can be modeled as follows:

DNmKm
m = EMP

rnegative
m − EMPrneutral

m , (4)

DPmKm
m = EMP

rpositive
m − EMPrneutral

m , (5)

EMPnew
m = EMPrneutral

m + λ.rand.DPmKm
m − Force.DNmKm

m , (6)

where λ is the golden ration, rand is a random value in
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, m = 1, 2, 3, . . . , and N_var,
rpositive ∈ {1, 2, . . . , j}, rneutral ∈ {1 + j, 2 + j, . . . , z}, and rnegative ∈ {1 + z, 2 + z, . . . ,
N} give random integers where z = N+ve + Nneutral and j = N+ve [54]. Further sources

for learning about the EFO mechanism are [55–57].

2.3. Benchmarks Optimizers

As previously mentioned, the EFO is validated by comparing its performance with
three other algorithms, namely WCA, SCA, and CFOA. These techniques were designed by
Eskandar et al. [58], Mirjalili [59], and Eesa et al. [60], respectively. As a generic measure in
population-based optimizers, the algorithms go through certain steps (e.g., initializing the
population, fitness evaluation, updating the situation, and monitoring stopping criteria) to
perform the optimization task.

For example, the water cycle (and the movements of rivers and streams toward a
sea) is the inspiration for the WCA algorithm. After it has rained, the raindrops are
evaluated and based on their goodness, and they form streams, rivers, and one sea so that
the most accurate solution is held in the sea. Other components update their positions to
improve themselves and replace the sea. This is while the SCA is based on mathematical
rules including sine and cosine functions. Utilizing some random values, the position
of the population is improved to obtain a more promising solution. Unlike the WCA
and SCA, the CFOA is a bio-inspired method that simulates the camouflage action of the
cuttlefish. Over two stages, namely reflection and visibility, which mimic the light reflection
and pattern matching procedures, respectively, this animal is able to enact an optimal
change in its color. Detailed descriptions of the WCA, SCA, and CFOA can be found
in references [61–66], respectively.

2.4. Quality Measures

In comparable earlier studies, accuracy is the most important determinant factor in
the efficiency evaluation of the models. Therefore, proper measures should be deployed for
reporting accuracy. In this paper, the errors of both learning and prediction are measured
using two well-known criteria, namely the root mean square error (RMSE) and mean
absolute error (MAE), where the error indicates the differences between the laboratory and
estimated CCSs (i.e., Error = CCSiLaboratory

− CCSiEstimate ). As the names connote, they give a
rooted value of the squared average of the errors, and the average of the absolute errors,
respectively. Calculations of the RMSE and MAE are shown in Equations (7) and (8).

RMSE =

√√√√ 1
Z

Z

∑
i=1

[(CCSiLaboratory − CCSiEstimate)]

2

(7)
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MAE =
1
Z

Z

∑
I=1

∣∣∣CCSiLaboratory − CCSiEstimate

∣∣∣ (8)

where Z stands for the size (i.e., the number) of the assessed data.
The Pearson correlation coefficient (PCC) is a correlation evaluative index that is used

herein to report the agreement between the CCSiLaboratory
. and CCSiEstimate for all Z samples.

The PCC is formulated as follows:

PCC =

Z
−

i=1
(CCSiEstimate − CCSEstimate)(CCSiLaboratory − CCSLaboratory)√

Z
−

i=1
(CCSiEstimate − CCSEstimate)

2
√

Z
−

i=1
(CCSiLaboratory − CCSLaboratory)

2
(9)

3. Results and Discussion
3.1. Optimization and Training Assessment

As was mentioned earlier, this study offers various metaheuristic trained ANNs for
predicting CCS. The training process is detailed in this section. First, a general structure of
the ANN with adjustable parameters was coded and given to the WCA, SCA, CFOA, and
EFO as the problem function. In each iteration of implementing the ANN-WCA, ANN-SCA,
ANN-CFOA, and ANN-EFO, the algorithm aims to minimize the RMSE of training. In
other words, this criterion is deemed the objective function. This is how the optimal ANN
is achieved by each optimizer [67,68].

The number of the iterations (NIter) and population size (SPop) are two important pa-
rameters of all metaheuristic algorithms that need to be selected carefully. Both parameters
can be completely different for two algorithms, due to the specific behaviors and strategies
executed by them. For the EFO, five SPops (25, 30, 35, 40, and 45) were tested, where the
NIter equals 30,000, while the WCA, SCA, and CFOA were tested using SPops of 100, 200,
300, 400, and 500, with NIter = 1000 [69,70]. In this way, the sensitivity of the algorithms to
SPop can be monitored, and the best network configuration can be selected. Figure 1 shows
the convergence curves obtained after this process. According to this figure and based on
the error reduction steps, the optimization proceedings of the algorithms are different from
each other. The CFOA, for example, reduced the objective function in the initial iterations
more effectively, while the SCA reduced it more gently, in several steps, and the EFO and
WCA reduced it by following a smooth trajectory.

This figure also shows that the best ANN training (i.e., the smallest RMSEs) was
attained by the SPop of 500, 400, 500, and 40 for the WCA, SCA, CFOA, and EFO, respec-
tively. The obtained RMSEs of ANN-WCA, ANN-SCA, ANN-CFOA, and ANN-EFO were
6.8558, 10.0972, 9.9135, and 6.7992. The magnitude of the error was calculated for all
906 training specimens, and their frequencies are depicted in Figure 2. It is shown that all
four models have suitable error histograms, meaning that compared to large errors, much
larger frequencies can be observed for small errors. This reliability can be also proven by
tolerable MAEs 5.2712, 7.9139, 7.6845, and 5.2653, as well as the PCCs of 0.90493, 0.79004,
0.79200, and 0.90659.
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Figure 1. Optimizing the ANN using different metaheuristic configurations.

Figure 2. The frequency of errors in the training process (Error = CCSiLaboratory
− CCSiEstimate ).
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According to the above results, although all algorithms could tune the ANN properly,
the search strategies of the WCA and EFO were more successful than those of the SCA and
CFOA. This can be deduced from the lower errors and the higher PCC values obtained for
the ANN-WCA and ANN-EFO. For the same reason, the accuracy of the EFO was slightly
more promising than that of the WCA. The ANN network optimized by this algorithm is
presented in the form of the below equations:

H1 = 2
1 + e−2( − 0.3264 × C − 0.2740 × SBF − 1.0596 × FA1 + 0.7545 × W + 0.1109 × SP + 0.6187 × AC − 0.5830 × FA2 + 0.7613 × AT + 1.7855) − 1, (10)

H2 = 2
1+e−2( − 0.2127 × C + 0.5563 × SBF + 1.0559 × FA1 + 0.1903 × W − 0.9102 × SP − 0.4461 × AC − 0.8011 × FA2 + 0.1147 × AT + 1.1903 ) − 1, (11)

H3 = 2
1 + e−2( − 0.5947 × C − 0.0047 × SBF + 0.5382 × FA1 + 0.6811 × W + 0.4513 × SP − 0.7234 × AC + 1.1625 × FA2 + 0.0497 × AT + 0.5952) − 1, (12)

H4 = 2
1+e−2( − 0.4336 × C − 0.6956 × SBF + 0.2728 × FA1 + 0.5164 × W + 1.2446 × SP + 0.1186 × AC − 0.7477 × FA2 + 0.2306 × AT + 0.0000) − 1, (13)

H5 = 2
1 + e−2(0.3521 × C + 1.1393 × SBF − 0.3272 × FA1 + 0.3139 × W + 1.0856 × SP + 0.4469 × AC + 0.2388 × FA2 − 0.3543 × AT + 0.5952) − 1, (14)

H6 = 2
1 + e−2( − 0.0202 × C − 0.8401 × SBF − 0.8566 × FA1 + 0.7432 × W + 0.1664 × SP + 0.3674 × AC + 0.9189 × FA2 + 0.4347 × AT − 1.1903) − 1, (15)

H7 = 2
1+e−2(0.1780 × C + 0.4728 × SBF + 0.5580 × FA1 − 1.0040 × W − 0.6533 × SP − 0.9710 × AC − 0.2827 × FA2 + 0.4049 × AT + 1.7855) − 1 (16)

CCS= 0.0547× H1 + 0.9061 × H2 − 0.9388 × H3 − 0.3034 × H4 − 0.9343 × H5 − 0.9365 × H6 − 0.4941 × H7 − 0.5837, (17)

Given that Tansig (x) = 2
1+e−2x − 1 is the skeleton of Equations (10)–(16), they yield

the outputs of the middle layer of the ANN. These parameters are obtained by processing
the input factors (i.e., C, SBF, FA1, W, SP, AC, FA2, and AT), and themselves play the role
of inputs for the next layer. The final calculation is carried out using Equation (17) for
releasing the predicted CCS.

3.2. Testing Performance

As explained earlier, once the hybrids acquire a satisfying understanding from the
training data, they are asked to predict the CCS for 227 stranger specimens. This work,
which is referred to as the testing phase, reflects the competency of the models in dealing
with new concrete mixtures. Similar to the training phase, the accuracy of prediction is
examined by means of the RMSE, MAE, and PCC. Figure 3 shows the error values in this
dataset. The RMSEs were 7.8044, 10.0340, 9.8392, and 7.4895, which along with the MAEs
of 5.8363, 7.8248, 7.6538, and 5.6236 indicate the promising prediction potential of the used
models. However, in accordance with training results, the ANNs designed by the WCA
and EFO can predict the CCS with a considerably smaller error compared to those tuned
with the SCA and CFOA.

Moreover, the consistency of the testing results is graphically shown in Figure 4.
Accordingly, the predicted CCSs are in a very good agreement with the values recorded
in the laboratory. By comparison, the results of the ANN-SCA and ANN-CFOA are more
scattered than the ANN-WCA and ANN-EFO. This excellence can also be demonstrated
numerically in the PCCs of 0.87666, 0.80249, 0.79832, and 0.88633.

3.3. Discussion and More Evaluation

Civil engineering comprises a wide range of subjects from geotechnical to structural
engineering, each exploring concrete from a different perspective [71,72]. Structural engi-
neers have long considered concrete as a potential versatile material for different projects.
Hence, significant attention has been paid to analyzing the behavior of concrete-based ele-
ments [73,74]. The main motivation of this research was to develop a predictive framework
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for analyzing the CCS of concrete. Different intelligent models were used and assessed
using three accuracy indicators. Table 1 summarizes the calculated accucracy criteria.

Figure 3. The trend of errors over the testing dataset (Error =CCSiLaboratory
− CCSiEstimate ).

Figure 4. The correlation of the testing results (R = PCC ).
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Table 1. Statistics of the data.

Training Testing

ANN-WCA ANN-SCA ANN-CFOA ANN-EFO ANN-WCA ANN-SCA ANN-CFOA ANN-EFO

RMSE 6.8558 10.0972 9.9135 6.7992 7.8044 10.0340 9.8392 7.4595
MAE 5.2712 7.9139 7.6845 5.2653 5.8363 7.8248 7.6538 5.6236
PCC 0.90493 0.79004 0.79200 0.90659 0.87666 0.80249 0.79832 0.88633

Evaluating the accuracy pointed out the superiority of the WCA and the proposed EFO
in solving the given CCS problem. Since the ANNs tuned by these two algorithms were of
higher potential than the SCA and CFOA, it can be inferred that the computational biases
and weights offered by the WCA and EFO are more suitable. Therefore, these techniques
enjoy excellent search abilities.

Moreover, assessing the computation times revealed that optimizing the ANN using
WCA, SCA, CFOA, and EFO takes around 7520, 17443, 6430, and 314 s. In spite of the
huge number of iterations considered for the EFO, it is much faster than other tested algo-
rithms. Therefore, it may be an effective optimizer for engineering tasks in which time is a
critical parameter.

Similar metaheuristic algorithms have been used in some previous studies with com-
patible datasets similar to the present work. These studies have proven that the tested
hybrid ANNs were more accurate than conventional ANN. For instance, Hu et al. [75]
were able to optimize the ANN using a multi-verse optimizer (MVO), shuffled complex
evolution (SCE), and beetle antennae search (BAS). The calculated testing RMSEs were
8.3540, 7.8965, and 7.5401 for the SCE, MVO, and BAS, which are higher than the RMSEs
achieved in this study by the WCA and EFO. Likewise, Moayedi et al. [76] were able to
improve the accuracy of the ANN using metaheuristic models, and when comparing the
accuracy, the outstanding models of the present study are more reliable than the equi-
librium optimizer (RMSE = 7.8720 and MAE = 5.9869) used in the cited work. Further
comparisons can be considered by referring to similar studies such as that of Li and Wu [77]
(the improved sparrow algorithm), and Bui et al. [44] (the ant colony optimization and
dragonfly algorithm).

From a practical point of view, there are various benefits of using the proposed models
in the concrete and construction industries. These predictive models can estimate the
performance of different concrete mixtures, and engineers can quickly explore a wide range
of design options and select the most promising ones. Optimizing the composition of
concrete materials through identifying the relationships between proportions, material
components, and desired properties is another viable use; this may also be helpful in
minimizing costs and environmental impacts. The EFO algorithm proposed in this work
is among the quickest optimizers, and is recommended for practical estimations in cases
wherein time is a critical resource. In the context of concrete and structural design, quality
control, structural performance prediction, and developing decision support systems are
other feasible applications of these inexpensive and time-effective metaheuristic models.

4. Conclusions

As the primary aim of many civil engineers, accurate simulation of CCS is of great im-
portance for optimizing the construction process. In this work, an efficient novel predictive
model was developed for this problem. Electromagnetic field optimization was synthesized
with an ANN model for predicting CCS using a comprehensive and robust dataset. The
sufficient learning of the CCS pattern was reflected by the MAE of 5.2653. Among the
tested benchmarks, the WCA could train the ANN with superior accuracy (MAE = 5.2712).
Applying the proposed model to new data revealed that the ANN-EFO can produce a
reliable prediction of the CCS. The MAE in this phase was 5.6236, which is lower than those
obtained for the WCA (5.8363), SCA (7.8248), and CFOA (7.6538). Apart from the accuracy,
assessing the complexity of the models showed that the EFO needed a very smaller number
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of individuals (i.e., SPop of 40 vs. 500, 400, and 500) for optimizing the ANN. Moreover, de-
spite the EFO being implemented with a NIters 30 times that of other algorithms, it was the
fastest algorithm. Therefore, the ANN-EFO may be a potent indirect method for evaluating
CCS. Comparisons with some previous studies demonstrated the superiority of the models
offered in this work. Additionally, recommendations were presented for practical usages of
the models in the concrete and construction industries. However, the authors believe that
this work can be built upon by extending the methodologies, optimizing the dataset, and
performing cross-validation with real-world concrete data.
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Figure A1. Cont.



Materials 2023, 16, 4200 11 of 14

Figure A1. Histogram of the dataset.

Table A1. Statistics of the data.

Parameter Unit Mean Standard
Error

Standard
Deviation

Sample
Variance Skewness Minimum Maximum

C

kg/m3

276.50 3.07 103.47 10,706.03 0.53 102.00 540.00
SBF 74.27 2.50 84.25 7097.52 0.77 0.00 359.40
FA1 62.81 2.13 71.58 5124.15 0.61 0.00 260.00
W 182.98 0.65 21.71 471.49 0.09 121.75 247.00
SP 6.42 0.17 5.80 33.60 0.84 0.00 32.20
AC 964.83 2.46 82.79 6853.89 −0.17 708.00 1145.00
FA2 770.49 2.36 79.37 6300.21 −0.19 594.00 992.60
AT Day 44.06 1.80 60.44 3653.15 3.47 1.00 365.00

CCS MPa 35.84 0.48 16.10 259.23 0.42 2.33 82.60
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