In Situ Inclusion Detection and Material Characterization in an Electron Beam Powder Bed Fusion Process Using Electron Optical Imaging
Abstract
:1. Introduction
2. BSE Detection Theory
2.1. Beam Characteristics
2.2. Electron–Material Interaction
2.3. Backscattered Electron Detection
2.4. Effective Atomic Number of Alloys
2.5. STSA-Contrast
2.6. Topographical Contrast
2.7. Other Sources of Electrons
3. Experimental
3.1. PBF-EB Machine and Material
3.2. Inclusion Detection Experiment
3.3. Digital Image Analysis of ELO Images
- Identifying the contours of the printed surfaces using the Watershed algorithm
- Enhancing feature contrast within the contours using Sobel’s Edge Detection algorithm
- Removing non-enclosed features by flood filling
- Identifying small circular features using Hough’s Circle Transformation
3.4. Material Contrast Calibration Plate
4. Results
4.1. Inclusion Detection Experiment
4.2. Material Contrast Calibration Plate
4.3. In Situ Material Characterization
5. Discussion
Conclusions
- The HELIOS demonstrates that it is possible to achieve a detection limit of in a PBF-EB process with a single-detector ELO system.
- The Inclusion Detection Experiment demonstrates a viable process for preserving and analyzing inclusions, when powder contamination is suspected.
- The Material Contrast Calibration Plate, together with the mathematical framework, presents a novel approach of calibrating the ELO intensity signal to corresponding effective atomic numbers .
- The characterization of the tantalum inclusions show that there is potential for in situ material characterization with the presented framework, although a lot of work remains to realize it for any arbitrary material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Z.; Körner, C. Actual state-of-the-art of electron beam powder bed fusion. Eur. J. Mater. 2022, 2, 54–116. [Google Scholar] [CrossRef]
- Arnold, C.; Pobel, C.; Osmanlic, F.; Körner, C. Layerwise monitoring of electron beam melting via backscatter electron detection. Rapid Prototyp. J. 2018, 24, 1401–1406. [Google Scholar] [CrossRef]
- Renner, J.; Breuning, C.; Markl, M.; Körner, C. Surface topographies from electron optical images in electron beam powder bed fusion for process monitoring and control. Addit. Manuf. 2022, 60, 103172. [Google Scholar] [CrossRef]
- Gillespie, C. Electrooptical scanner for monitoring electron beam welds. NASA STI/Recon Tech. Rep. 1974, 75, 15958. [Google Scholar]
- Arnold, C.; Breuning, C.; Körner, C. Electron-Optical In Situ Imaging for the Assessment of Accuracy in Electron Beam Powder Bed Fusion. Materials 2021, 14, 7240. [Google Scholar] [CrossRef]
- Arnold, C.; Körner, C. In-situ electron optical measurement of thermal expansion in electron beam powder bed fusion. Addit. Manuf. 2021, 46, 102213. [Google Scholar] [CrossRef]
- Pobel, C.R.; Arnold, C.; Osmanlic, F.; Fu, Z.; Körner, C. Immediate development of processing windows for selective electron beam melting using layerwise monitoring via backscattered electron detection. Mater. Lett. 2019, 249, 70–72. [Google Scholar] [CrossRef]
- Breuning, C.; Arnold, C.; Markl, M.; Körner, C. A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion. Addit. Manuf. 2021, 45, 102051. [Google Scholar] [CrossRef]
- Ledford, C.; Rock, C.; Tung, M.; Wang, H.; Schroth, J.; Horn, T. Evaluation of electron beam powder bed fusion additive manufacturing of high purity copper for overhang structures using in-situ real time backscatter electron monitoring. Procedia Manuf. 2020, 48, 828–838. [Google Scholar] [CrossRef]
- Bäreis, J.; Semjatov, N.; Renner, J.; Ye, J.; Zongwen, F.; Körner, C. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4. Prog. Addit. Manuf. 2022, 1–6. [Google Scholar] [CrossRef]
- Franke, M.; Arnold, C.; Körner, C. In-situ quality assurance for electron-based additive manufacturing by electron optical observation. Prog. Addit. Manuf. 2023, 8, 55–60. [Google Scholar] [CrossRef]
- Gardfjell, M. Simulating the Electron Optics of an Electron Beam Manufacturing 3D Printer. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2020. Available online: https://hdl.handle.net/20.500.12380/301623 (accessed on 1 June 2023).
- ISO 11146; Laser and Laser-Related Equipment. International Organization for Standardization: Geneva, Switzerland, 2021.
- Mott, N.F.; Massey, H.S.W. The Theory of Atomic Collisions; Clarendon Press: Oxford, UK, 1949. [Google Scholar]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V.; Gauvin, R. CASINO V2. 42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. J. Scanning Microsc. 2007, 29, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Arnal, F.; Verdier, P.; Vincensini, P.D. Coefficient de retrodiffusion dans de cas d’electrons monocinetiques arrivant sur la cible sous une incidence oblique. Compt. Rend Acad. Sci. 1969, 268, 1526–1529. [Google Scholar]
- Reimer, L. Scanning electron microscopy: Physics of image formation and microanalysis. Meas. Sci. Technol. 2000, 12, 1826. [Google Scholar] [CrossRef]
- Drescher, H. Ruckstreukoeffizient und Sekundarelektronen-Ausbeute von 10-100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z. Angew. Phys. 1970, 29, 331–336. [Google Scholar]
- Herrmann, R.; Reimer, L. Backscattering coefficient of multicomponent specimens. Scanning 1984, 6, 20–29. [Google Scholar] [CrossRef]
- Wong, H. Pilot investigation of surface-tilt and gas amplification induced contrast during electronic imaging for potential in-situ electron beam melting monitoring. Addit. Manuf. 2020, 35, 101325. [Google Scholar] [CrossRef]
- Schloffer, M.; Schmoelzer, T.; Mayer, S.; Schwaighofer, E.; Hawranek, G.; Schimansky, F.P.; Pyczak, F.; Clemens, H. The characterisation of a powder metallurgically manufactured TNM™ titanium aluminide alloy using complimentary quantitative methods. Pract. Metallogr. 2011, 48, 594–604. [Google Scholar] [CrossRef]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Knörlein, J.; Franke, M.M.; Schloffer, M.; Körner, C. In-situ aluminum control for titanium aluminide via electron beam powder bed fusion to realize a dual microstructure. Addit. Manuf. 2022, 59, 103132. [Google Scholar]
- Kainuma, R.; Fujita, Y.; Mitsui, H.; Ohnuma, I.; Ishida, K. Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in TiAl base ternary alloys. Intermetallics 2000, 8, 855–867. [Google Scholar] [CrossRef]
# | Name | Composition | Z | |
---|---|---|---|---|
1 | Aluminum | 99.5 Al | 13 | 0.0660 |
2 | Titanium | 99.5 Ti | 22 | 0.1414 |
3 | Iron | 99.9 Fe | 26 | 0.1818 |
4 | Nickel | 99.6 Ni | 28 | 0.1926 |
5 | Copper | 99.99 Cu | 29 | 0.2002 |
6 | Niobium | 99.95 Nb | 41 | 0.2814 |
7 | Molybdenum | 99.95 Mo | 42 | 0.2906 |
8 | Tin | 99.9 Sn | 50 | 0.3160 |
9 | Tungsten | 99.95 W | 74 | 0.4336 |
A | Bronze | Cu-8Sn | 30.5 * | 0.2258 |
B | Stainless Steel | Fe-18Cr-10Ni-2Mn | 25.4 * | 0.1772 |
C | Ti64 | Ti-6Al-4V | 21.3 * | 0.1440 |
I [mA] | k | l | m | ||
---|---|---|---|---|---|
1.0 | 4.804 | 10.25 | −0.051 | 0.0107 | 0.560 |
2.0 | 4.896 | 10.20 | −0.048 | 0.0105 | 0.543 |
3.0 | 4.872 | 10.17 | −0.047 | 0.0104 | 0.547 |
4.0 | 4.900 | 10.20 | −0.046 | 0.0106 | 0.569 |
5.0 | 4.891 | 10.21 | −0.045 | 0.0107 | 0.571 |
Average | 4.873 | 10.21 | −0.048 | 0.0106 | 0.558 |
Alloy | |||||
---|---|---|---|---|---|
Bronze | 1.14 | 1.13 | 31.13 | 30.57 | 0.56 |
Stainless Steel | 0.98 | 0.97 | 25.69 | 25.43 | 0.26 |
Ti64 | 0.83 | 0.82 | 21.58 | 21.29 | 0.29 |
TNM | ∼0.875 | 0.795 | ∼22.70 | 20.56 | ∼2.13 |
TNM-13Ta | ∼0.950 | 0.947 | ∼24.83 | 24.75 | ∼0.08 |
TNM-27Ta | - | 1.01 | - | 29.63 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardfjell, M.; Reith, M.; Franke, M.; Körner, C. In Situ Inclusion Detection and Material Characterization in an Electron Beam Powder Bed Fusion Process Using Electron Optical Imaging. Materials 2023, 16, 4220. https://doi.org/10.3390/ma16124220
Gardfjell M, Reith M, Franke M, Körner C. In Situ Inclusion Detection and Material Characterization in an Electron Beam Powder Bed Fusion Process Using Electron Optical Imaging. Materials. 2023; 16(12):4220. https://doi.org/10.3390/ma16124220
Chicago/Turabian StyleGardfjell, Martin, Marcel Reith, Martin Franke, and Carolin Körner. 2023. "In Situ Inclusion Detection and Material Characterization in an Electron Beam Powder Bed Fusion Process Using Electron Optical Imaging" Materials 16, no. 12: 4220. https://doi.org/10.3390/ma16124220
APA StyleGardfjell, M., Reith, M., Franke, M., & Körner, C. (2023). In Situ Inclusion Detection and Material Characterization in an Electron Beam Powder Bed Fusion Process Using Electron Optical Imaging. Materials, 16(12), 4220. https://doi.org/10.3390/ma16124220