Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel
Abstract
:1. Introduction
Adsorbent | Preparation Method | Dye | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|
Biomass lignin-based PVA super-absorbent hydrogel | PVA as template and epichlorohydrin as crosslinking agent. | Methylene blue | 179 | [22] |
Cellulose nanofibrils/alkali lignin/montmorillonite/polyvinyl alcohol Network hydrogel | Adding nano-cellulose, alkali lignin, and montmorillonite into the system of polypropylene-alcohol–water base. | Methylene blue | 67.2 | [23] |
Lignosulfonate ionic hydrogel | Crosslinking with poly(ethylene glycol) diglycidyl ether, | Methylene blue | 211 | [24] |
Cellulose-based hydrogel | the cellulose-based hydrogel was prepared based on the copolymerization of acrylic acid on cellulose materials, with the addition of N,N’-methylene bis-acrylamide as crosslinking agent, and assisted by ammonium persulfate as initiator. | Methylene blue | 41.67 | [25] |
Lignin-based hydroxyethyl cellulose super-absorbent hydrogel | With long-chain hydroxyethyl cellulose as the skeleton, short-chain polypropylene alcohol as the branch chain, lignin as the extension crosslinking agent, and propylene oxide as the crosslinking agent. | Crystal violet | 184 | [26] |
Nano-ZnO-coated cellulose/starch/activated carbon hydrogel | Using beet pulp cellulose/starch/activated carbon as raw material, it was synthesized by crosslinking and ultrasonication. | Methyl orange | 72.63 | [27] |
Carboxymethyl cellulose/chitosan hydrogel | It is prepared by crosslinking carboxymethyl cellulose and chitosan with epichlorohydrin. | Acid orange | 100 | [28] |
Sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel | Add cellulose, sodium alginate, and iron hydroxide in NaOH/H2O as solvent and use epichlorohydrin as crosslinking agent. | Methylene blue | 105.93 | [29] |
carboxymethyl cellulose-g- polyacrylamide/montmorillonite nanocomposite hydrogel | Carboxymethyl cellulose-based graft poly(acrylamide) hydrogel and its nanocomposite with montmorillonite were produced by the free radical method. | Malachite green | 158.1 | [30] |
Cellulose nanocrystal–alginate hydrogel | Mix cellulose nanocrystals with sodium alginate and then squeeze them into cacl2 solution. | Methylene blue | 256.41 | [31] |
Double-network gelatin/chitosan hydrogel | Dissolve chitosan in acetic acid aqueous solution, mix it with 20% gelatin aqueous solution, and then add 0.5% glutaraldehyde. | Congo red | 221.2 | [32] |
2. Materials and Methods
2.1. Source of Materials
2.2. Fabrication of Lignin/Cellulose Hydrogel
2.3. Effect of Adsorption Conditions on Adsorption Performance
- Qt, C—dye adsorption capacity, mg/g; dye removal rate, C%;
- C0, Ct—initial concentration of organic dyes; dye concentration after adsorption, mg/L;
- V, m—volume of dye to be adsorbed, L; mass of adsorbent, g.
3. Results
3.1. Morphology and Pore Structure
3.2. Infrared Spectrogram Analysis
3.3. Thermogravimetric Analysis
3.4. Adsorption–Desorption Analysis
3.5. XRD Analysis
3.6. XPS Analysis
4. Adsorption Studies of LCA and CA on Congo Red and Malachite Green
4.1. The Influence of pH on Adsorption Performance
4.2. Effect of Adsorption Time on Adsorption Performance and Kinetic Analysis of Adsorption
- —equilibrium adsorption capacity, mg/g;
- —quasi-primary model adsorption rate constants, h−1;
- —the amount of adsorption in time t, mg/g.
- —equilibrium adsorption capacity, mg/g;
- —quasi-second-order model adsorption rate constant, g (mg·h)−1;
- —the amount of adsorbent per unit mass at any adsorption time, mg/g.
- —equilibrium adsorption volume, mg/g;
- —Weber–Morris adsorption rate constant, mg (g·h1/2)−1;
- —adsorption volume per unit mass of adsorbent at any adsorption time t, mg/g.
4.3. Adsorption Isotherm
- —adsorption capacity at adsorption equilibrium, mg/g; the concentration of dye remaining at adsorption equilibrium, mg/L;
- —maximum adsorption capacity, mg/g;
- —affinity-related constants of binding sites in the Langmuir isothermal adsorption model, L/mg;
- —Freundlich isothermal adsorption model adsorption equilibrium constants, ; adsorption strength constant.
- —standard molar constant, 8.314 × 10−3 J/(mol·K);
- —Gibbs free energy, kJ/mol;
- , —standard entropy and enthalpy changes, kJ/mol;
- —allocation factor;
- —adsorbent quality, g;
- —volume of dye solution, L.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, P.; Sajjad, S.; Saleem, J.; Alherbawi, M.; Mckay, G. A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations 2022, 9, 139. [Google Scholar] [CrossRef]
- Wang, C.; Feng, X.; Li, W.; Shang, S.; Zhang, H. Fabricating Cationic Lignin Hydrogels for Dye Adsorption. J. Renew. Mater. 2022, 11, 1793–1805. [Google Scholar] [CrossRef]
- Dai, K.; Zhao, G.; Wang, Z.; Peng, X.; Wu, J.; Yang, P.; Li, M.; Tang, C.; Zhuang, W.; Ying, H. Novel Mesoporous Lignin-Calcium for Efficiently Scavenging Cationic Dyes from Dyestuff Effluent. ACS Omega 2020, 6, 816–826. [Google Scholar] [CrossRef]
- Kargi, F.; Ozmıhcı, S. Comparison of adsorption performances of powdered activated sludge and powdered activated carbon for removal of turquoise blue dyestuff. Process Biochem. 2005, 40, 2539–2544. [Google Scholar] [CrossRef]
- Kargi, F.; Ozmıhcı, S. Biosorption performance of powdered activated sludge for removal of different dyestuffs. Enzym. Microb. Technol. 2004, 35, 267–271. [Google Scholar] [CrossRef]
- Meng, Y.; Li, C.; Liu, X.; Lu, J.; Cheng, Y.; Xiao, L.; Wang, H. Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Sci. Total Environ. 2019, 685, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Rawal, T.B.; Zahran, M.; Dhital, B.; Akbilgic, O.; Petridis, L. The relation between lignin sequence and its 3D structure. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2020, 1864, 129547. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Contescu, C.; Liu, P.; Wang, S.; Lee, S.; Guo, J.; Young, T. Understanding the local structure of disordered carbons from cellulose and lignin. Wood Sci. Technol. 2021, 55, 587–606. [Google Scholar] [CrossRef]
- Dawy, M.; Nada, A.M.A. IR and Dielectric Analysis of Cellulose and Its Derivatives. Polym. Technol. Eng. 2003, 42, 643–658. [Google Scholar] [CrossRef]
- Erdocia, X.; Prado, R.; Corcuera, M.; Labidi, J. Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J. Ind. Eng. Chem. 2014, 20, 1103–1108. [Google Scholar] [CrossRef]
- Borsalani, H.; Nikzad, M.; Ghoreyshi, A.A. Extraction of Lignosulfonate from Black Liquor into Construction of a Magnetic Lignosulfonate-Based Adsorbent and Its Adsorption Properties for Dyes from Aqueous Solutions. J. Polym. Environ. 2022, 30, 4068–4085. [Google Scholar] [CrossRef]
- Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Mishra, Y.K.; Thakur, V.K. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum 2017, 146, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Niu, N.; Chen, L. A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal. Sep. Purif. Technol. 2021, 285, 120376. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Yun, J.; Yoo, E.; Jung, D.; Oh, K.K.; Lee, S.H. Cellulose/biopolymer/Fe3O4 hydrogel microbeads for dye and protein adsorption. Cellulose 2020, 27, 2757–2773. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, J.; Wang, B.; Xie, J.; Ying, G.; Li, J.; Cheng, Z.; Li, J.; Chen, K. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J. Colloid Interface Sci. 2022, 625, 158–168. [Google Scholar] [CrossRef]
- Zerpa, A.; Pakzad, L.; Fatehi, P. Hardwood Kraft Lignin-Based Hydrogels: Production and Performance. ACS Omega 2018, 3, 8233–8242. [Google Scholar] [CrossRef] [Green Version]
- Yiamsawas, D.; Kangwansupamonkon, W.; Kiatkamjornwong, S. Lignin-Based Microgels by Inverse Suspension Polymerization: Syntheses and Dye Removal. Macromol. Chem. Phys. 2021, 222, 2100285. [Google Scholar] [CrossRef]
- Mondal, A.K.; Xu, D.; Wu, S.; Zou, Q.; Lin, W.; Huang, F.; Ni, Y. High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties. Int. J. Biol. Macromol. 2022, 207, 48–61. [Google Scholar] [CrossRef]
- Dominguez-Robles, J.; Peresin, M.S.; Tamminen, T.; Rodriguez, A.; Larraneta, E. Lignin-based hydrogels with “super-swelling” capacities for dye removal. Int. J. Biol. Macromol. 2018, 115, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Hu, L.; Yang, D.; Zheng, D.; Qiu, X. Lignin: Excellent hydrogel swelling promoter used in cellulose aerogel for efficient oil/water separation. J. Colloid Interface Sci. 2023, 629, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, S.; Zheng, J.; Qiu, Z.; Lin, X.; Qin, Y. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int. J. Biol. Macromol. 2019, 140, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ma, X.; Zhou, X.; Xu, Y. Construction of physically crosslinked cellulose nanofibrils/alkali lignin/montmorillonoite/polyvinyl alcohol network hydrogel and its application in methylene blue removal. Cellulose 2021, 28, 5531–5543. [Google Scholar] [CrossRef]
- Mondal, A.K.; Wu, S.; Xu, D.; Zou, Q.; Chen, L.; Huang, L.; Huang, F.; Ni, Y. Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. Int. J. Biol. Macromol. 2021, 187, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.C.; Vo, N.T.T.; Nguyen, K.D.; Bui, H.M. Preparation of cellulose-based hydrogel derived from residue for the adsorption of methylene blue. Cell. Chem. Technol. 2019, 53, 573–583. [Google Scholar] [CrossRef]
- Huang, S.; Wu, L.; Li, T.; Xu, D.; Lin, X.; Wu, C. Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. Int. J. Biol. Macromol. 2019, 137, 939–947. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Zhu, S.; Yu, M. Green and facile fabrication of nano-ZnO coated cellulose/starch/activated carbon hydrogel for enhanced dyes adsorption and antibacterial activity. Mater. Today Commun. 2022, 33, 104355. [Google Scholar] [CrossRef]
- Wang, W.; Hu, J.; Zhang, R.; Yan, C.; Cui, L.; Zhu, J. A pH-responsive carboxymethyl cellulose/chitosan hydrogel for adsorption and desorption of anionic and cationic dyes. Cellulose 2020, 28, 897–909. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Q.; Zhu, S. Selective biosorption mechanism of methylene blue by a novel and reusable sugar beet pulp cellulose/sodium alginate/iron hydroxide composite hydrogel. Int. J. Biol. Macromol. 2021, 188, 993–1002. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Aghamohammadi-Bavil, O.; Foroutan, R.; Arsalani, N. Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. Int. J. Biol. Macromol. 2020, 159, 1122–1131. [Google Scholar] [CrossRef]
- Mohammed, N.; Grishkewich, N.; Berry, R.M.; Tam, K.C. Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 2015, 22, 3725–3738. [Google Scholar] [CrossRef]
- Ren, J.; Wang, X.; Zhao, L.; Li, M.; Yang, W. Double Network Gelatin/Chitosan Hydrogel Effective Removal of Dyes from Aqueous Solutions. J. Polym. Environ. 2021, 30, 2007–2021. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, Y.; Fan, B.; Yao, Q.; Wang, H.; Jin, C.; Sun, Q. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Sci. Rep. 2016, 6, 32383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, E.; Deepa, B.; Pothan, L.A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475. [Google Scholar] [CrossRef]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Neto, W.P.F.; Silvério, H.A.; Dantas, N.O.; Pasquini, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind. Crop. Prod. 2012, 42, 480–488. [Google Scholar] [CrossRef]
- Sadak, O.; Prathap, M.A.; Gunasekaran, S. Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon 2018, 144, 756–763. [Google Scholar] [CrossRef]
- Xu, D.; Liu, M.; Zhang, Q.; Huang, Q.; Huang, H.; Tian, J.; Jiang, R.; Wen, Y.; Zhang, X.; Wei, Y. Preparation of water dispersible and biocompatible nanodiamond-poly(amino acid) composites through the ring-opening polymerization. Mater. Sci. Eng. C 2018, 91, 496–501. [Google Scholar] [CrossRef]
- Xia, J.Y.; Liu, Z.L.; Chen, Y.; Cao, Y.F.; Wang, Z.G. Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose 2020, 27, 879–894. [Google Scholar] [CrossRef]
- Beh, J.H.; Lim, T.H.; Lew, J.H.; Lai, J.C. Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. Int. J. Biol. Macromol. 2020, 160, 836–845. [Google Scholar] [CrossRef]
- Yan, M.; Huang, W.; Li, Z. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. Int. J. Biol. Macromol. 2019, 136, 927–935. [Google Scholar] [CrossRef] [PubMed]
- AL-Othman, Z.A.; Ali, R.; Naushad, M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 2012, 184, 238–247. [Google Scholar] [CrossRef]
- Wang, C.; Feng, X.; Shang, S.; Liu, H.; Song, Z.; Zhang, H. Lignin/sodium alginate hydrogel for efficient removal of methylene blue. Int. J. Biol. Macromol. 2023, 237, 124200. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Qin, D.; Da, W.; Hou, B.; Hao, C.; Wu, J. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes. J. Hazard. Mater. 2019, 369, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Pittman, C.U., Jr.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P.H.; Alexandre-Franco, M.F.; Gómez-Serrano, V.; Gong, H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 2007, 310, 57–73. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Removal of lead(II) from aqueous solution using date seed-derived biochar: Batch and column studies. Appl. Water Sci. 2018, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Asefa, M.T.; Feyisa, G.B. Comparative Investigation on Two Synthesizing Methods of Zeolites for Removal of Methylene Blue from Aqueous Solution. Int. J. Chem. Eng. 2022, 2022, 9378712. [Google Scholar] [CrossRef]
Samples | Quasi-Primary Adsorption Kinetic Model | Quasi-Secondary Adsorption Kinetic Model | ||||
---|---|---|---|---|---|---|
(mg·g−1) | (min−1) | R2 | (mg·g−1) | (g·mg−1·min−1) | R2 | |
CR | 172.43 | 0.0195 | 0.8656 | 237.15 | 4.27 × 10−4 | 0.9998 |
MG | 136.30 | 1.0625 | 0.9298 | 136.92 | 1.98 × 10−5 | 0.9998 |
Samples | (mg·g−1·min−0.5) | (mg·g−1·min−0.5) | (mg·g−1·min−0.5) | |||
---|---|---|---|---|---|---|
CR | 15.30 | 0.9738 | 0.61 | 0.9433 | 0.110 | 0.9985 |
MG | 4.45 | 0.9842 | 2.52 | 0.9097 | 0.277 | 0.7518 |
Samples | Langmuir Adsorption Isotherm Model | Freundlich Adsorption Isotherm Model | ||||
---|---|---|---|---|---|---|
(L/mg) | (mg·g−1) | R2 | R2 | |||
CR | 0.087 | 294.0 | 0.9957 | 37.33 | 2.13 | 0.9633 |
MG | 0.39 | 129.8 | 0.9918 | 24.53 | 1.25 | 0.9944 |
Samples | |||||
---|---|---|---|---|---|
30 °C | 45 °C | 60 °C | |||
CR | −15.81 | −16.60 | −17.38 | 1.08 | 16.53 |
MG | −8.49 | −8.91 | −9.33 | 0.896 | 22.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, P.; Chen, W.; Ren, J.; Wu, W. Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel. Materials 2023, 16, 4260. https://doi.org/10.3390/ma16124260
Li X, Li P, Chen W, Ren J, Wu W. Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel. Materials. 2023; 16(12):4260. https://doi.org/10.3390/ma16124260
Chicago/Turabian StyleLi, Xiaoyu, Penghui Li, Wei Chen, Jianpeng Ren, and Wenjuan Wu. 2023. "Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel" Materials 16, no. 12: 4260. https://doi.org/10.3390/ma16124260
APA StyleLi, X., Li, P., Chen, W., Ren, J., & Wu, W. (2023). Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel. Materials, 16(12), 4260. https://doi.org/10.3390/ma16124260