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Abstract: Powder laying is a necessary procedure during powder bed additive manufacturing
(PBAM), and the quality of powder bed has an important effect on the performance of products.
Because the powder particle motion state during the powder laying process of biomass composites
is difficult to observe, and the influence of the powder laying process parameters on the quality of
the powder bed is still unclear, a simulation study of the biomass composite powder laying process
during powder bed additive manufacturing was conducted using the discrete element method.
A discrete element model of walnut shell/Co-PES composite powder was established using the
multi-sphere unit method, and the powder-spreading process was numerically simulated using
two different powder spreading methods (rollers/scrapers). The results showed that the quality of
powder bed formed by roller laying was better than that formed by scrapers with the same powder
laying speed and powder laying thickness. For both of the two different spreading methods, the
uniformity and density of the powder bed decreased as spreading speed increased, although the
spreading speed had a more important influence on scraper spreading compared to roller spreading.
As powder laying thickness increased, the powder bed formed by the two different powder laying
methods became more uniform and denser. When the powder laying thickness was less than 110µm,
the particles were easily blocked at the powder laying gap and are pushed out of the forming platform,
forming many voids, and decreasing the powder bed’s quality. When the powder thickness was
greater than 140 µm, the uniformity and density of the powder bed increased gradually, the number
of voids decreased, and the quality of the powder bed improved.

Keywords: additive manufacturing; powder laying; discrete element method; biomass composite powder

1. Introduction

Powder Bed Additive Manufacturing (PBAM) uses 3D data to manufacture 3D parts
by stacking materials layer by layer [1,2]. Compared with traditional removal material
processing techniques, PBAM technology has the advantages of forming complex structural
parts, short cycle time, and high material utilization [3], and can be divided into selective
laser sintering (SLS), selective laser melting (SLM), and electron beam selective melting
(EBSM) processes, depending on the laser energy and the material. Biomass composites
are very promising green materials that have started to be used in additive manufacturing
(AM) in the past few years. For example, Guo et al. [4] proposed the idea of using biomass
composites for selective laser sintering and pointed out that biomass composites have the
advantages of low cost, low power consumption, and reusability. Zhao et al. [5] prepared

Materials 2023, 16, 4295. https://doi.org/10.3390/ma16124295 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16124295
https://doi.org/10.3390/ma16124295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9873-8788
https://orcid.org/0000-0001-5873-3627
https://doi.org/10.3390/ma16124295
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16124295?type=check_update&version=1


Materials 2023, 16, 4295 2 of 14

bamboo powder/co-polyamide composite powder and obtained molded parts with high
molding accuracy by adjusting the process parameters. Zeng et al. [6] prepared rice husk
composite powder with a mechanical mixing method, using rice husk powder as raw
material, and performed laser sintering tests to obtain rice husk composite-powder-molded
parts with sufficient strength and high dimensional accuracy. Yu et al. [7–10] systematically
studied the feasibility of walnut shell/co-polyester hot melt (Co-PES) composite powder as
a raw material for selective laser sintering. The density of the sintered walnut shell/Co-PES
composite powder parts after the waxing post-treatment was significantly increased, and
the mechanical properties were also improved.

PBAM consists of two main components: powder paving and laser sintering [11].
First, the powder feedstock is laid on top of the substrate with a layer of powder under
the action of a roller or a scraper, and then a high-energy heat source selectively sears or
melts the target area based on 3D data, repeating these two stages to complete the molding
of the target part. To improve the performance of molded parts, laser sintering has been
extensively studied. [12–14]. In contrast, few studies can be found in the literature on
the link with powder paving; the quality of the powder bed formed during the lay-up
process will have an important impact on the subsequent laser sintering and quality of
the formed product [15,16]. For example, Cao et al. [13] showed the impact of powder
lay-up quality on selective laser melting single-pass forming, and they found that powder
beds with high stacking densities had stable melt pools and low orbital width volatility.
A uniform and dense powder bed is conducive to the formation of a continuous and
stable melt pool trajectory, reduces spattering, spalling and other defects, reduces the
porosity and surface roughness of the parts, and improves the final mechanical properties
of the parts [12,17]. The quality of the powder bed is determined by the powder-spreading
process [18]. Although biomass materials have started to be used in additive manufacturing,
the research on the powder-spreading process of biomass materials is still relatively scarce.
Therefore, to manufacture high-quality biomass composite products, it is necessary to study
the powder lay-up process and the powder layers laid down for material composites.

The powder-spreading process is a typical discrete solid laying process, and the
structure of the powder bed in terms of density, homogeneity, and internal distribution
depends on the state of motion of each particle. Using the most advanced experimental
methods, it is also difficult to study the state of motion of individual particles as well as the
structure of particle buildup. In recent years, more and more attention has been paid to the
discrete element method (DEM) in additive manufacturing. Deng et al. [19] investigated
the influence of particle size, aspect ratio, and cohesion on the powder accumulation state
using the DEM method. To obtain structural information such as bulk density, porosity,
and coordination number, which are difficult to measure directly in experiments, Chen
et al. [11] analyzed the influence of the friction coefficient of powder and particle size on its
flow characteristics and the uniformity and compactness of powder layer. They found that
particle sizes less than a certain critical value would increase cohesion and decrease powder
mobility, while reducing the friction factor could effectively enhance powder mobility and
form a more dense and uniform powder bed. Zhang et al. [20] simulated nylon powder
laying with rollers and scrapers, and found that, in a thicker powder layer, a higher density
powder layer could be obtained using roller-type powder laying due to the action of
compaction. With the increase in powder laying thickness, roller-type powder laying is
more sensitive to the Segregation index than scraper-type powder spreading. Yao et al. [21]
found that, during 316 L stainless steel powder spreading, a slower scraper movement
speed means a better powder bed quality, but a lower efficiency. Chen et al. [22] studied the
process of scraper powder laying by combining experiments and computational models,
and determined three deposition mechanisms that dominated the powder diffusion process:
cohesion effect, wall effect, and penetration effect.

However, previous studies have mostly focused on metal and polymer powders, and
relatively little research has been conducted on biomass composite powders. To improve
the quality of biomass composite parts, further research on their powder paving process is
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needed. In this paper, we innovatively used the DEM to analyze the powder-spreading
process of biomass composites. Compared with biomass materials such as wood, bamboo,
and rice husk, walnut shells are easy to process and crush. The particle size range required
for powder bed additive manufacturing can be easily reached, and the crushed particles are
nearly spherical in shape, which means they can achieve a good powder-spreading effect [8].
In our group’s previous study [7], we successfully realized the molding of walnut shell/co-
polyester hot melt adhesive (Co-PES) parts using SLS technology, but further research on
its powder-spreading mechanism is needed. Therefore, walnut shell/co-polyester hot melt
adhesive (Co-PES) powder was used as the research object and the discrete element model
of walnut shell/Co-PES powder was established using the multi-sphere unit method, and
the powder-spreading process was numerically simulated. The density and uniformity
of the powder bed were quantitatively determined using mathematical statistics, and
the effects of laying speed, powder laying thickness, and different spreading methods
(rollers/scrapers) on the uniformity and density of the powder bed were discussed and
analyzed. This study provides a theoretical basis for the application of biomass composite
powders in PBAM.

2. Computational Models

The DEM was first proposed by Dr. Peter Cundall in 1971, when he was studying
for his PhD at Imperial College, University of London [23]. In the DEM simulation, each
particle is modeled as an independent unit and simulated. By analyzing the state infor-
mation of each cell, the motion law of the whole object can be obtained [24]. Currently,
the common DEMs include the hard-sphere method and the soft-sphere method. In the
hard-sphere model, the interaction between particles is controlled by the law of conserva-
tion of momentum, and the details of contact force and particle surface deformation are
completely ignored. In the soft-sphere model, particles are considered as elastic objects,
allowing some deformation, and the interaction between particles has a certain time, which
can simulate the elastic–plastic contact forces, frictional forces and van der Waals forces
between particles [25,26]. Since the soft-sphere model can realistically reflect the collision
information between particles, the discrete element model of walnut shell/Co-PES powder
will be established using the soft-sphere model.

The motion of particles follows Newton’s law of motion. Particle i has translational
and rotational motion during the random filling process, and particles are affected by
contact force, non-contact force and gravity, in Figure 1. The governing equation is:

mi
d2ri

dt2 = ∑
j
(Fn

ij + Ft
ij + Fv

ij) + mig (1)

Ii
dwi
dt

= ∑
j
(Tt

ij + Tr
ij) (2)

where mi and Ii are the mass and moment of inertia of particle i, respectively, and ri and wi
are the displacement and angular velocity of particle i, respectively.

Fn
ij and Ft

ij are the normal contact force and tangential contact force of particle j to
particle i, respectively [27]. They can be calculated using the following formula:

Fn
ij =

[
2
3

E
√

Rδ
3
2
n − γE

√
Rδn(vij·nij)

]
nij (3)

Ft
ij = µ

∣∣∣Fn
ij

∣∣∣[1− (1− |δt|
|δmax|

)
1.5
]

tij (4)

E = Y/(1− σ2) (5)

R = RiRj/(Ri + Rj) (6)
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δn = Ri + Rj − Rij (7)

δt =
∫ t

t0

vt
ijdt (8)

δmax = µ
2− σ

2− 2σ
δn (9)

vij = vi − vj − (Riωi × nij + Rjωi × nij) (10)
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ij = vij − (vij·nij)nij (11)
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Figure 1. Plot of the effect of contacted particle j and uncontacted particle k on particle i.

The meaning of the parameters represented in the above equation are presented in
Table 1.

Table 1. Formula symbols and meaning.

Symbol Meaning

γ Damping coefficient
σ Poisson’s ratio of the particle material
Y Young’s modulus of the particle material
µ Coefficient of sliding friction between particles
δn Amount of normal deformation between particles i and j
δt Tangential deformation between particles i and j

δmax Maximum allowed tangential deformation
nij Unit vector from the spherical center of particle j to the spherical center of particle i
νij Velocity of particle i relative to particle j at the contact point
νt

ij Tangential velocity of particle i relative to particle j at the contact point
tij Tangential unit vector of particle i relative to particle j

For the tangential contact force Ft
ij between particles i and j, if

∣∣∣Ft
ij

∣∣∣ ≥ µ
∣∣∣Fn

ij

∣∣∣, then∣∣∣Ft
ij

∣∣∣ = −µ
∣∣∣Ft

ij

∣∣∣tij [28].
Fv

ij is the van der Waals force of particle j on particle i, calculated as follows:

Fv
ij = −

Ha
6
×

64R3
i R3

j (l + Ri + Rj)

(l2 + 2Ril + 2Rjl)
2(l2 + 2Ril + 2Rjl + 4RiRj)

2 nij (13)
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where Ha is the Hamaker constant; l is the particle spacing; and the size is Ri + Rj − Rij.
When the distance between particles is too large or too small, Equation (13) has no practical
meaning, so the range of l is limited to 1–100 nm. When beyond this range, it is considered
that there is no van der Waals force between particles.

Tt
ij and Tr

ij are the tangential contact force of particle j on particle i and the torque
generated by rolling friction, respectively [27,29]. They are calculated as follows:

Tt
ij = −µRi

∣∣∣Fn
ij

∣∣∣ωi (14)

Tr
ij = Rinij × Tt

ij (15)

In Equation (14), ωi is the unit vector; the calculation formula is ωi = ωi/|ωi|.
Considering the effect of cohesion, using the Hertz–Mindlin JKR model, the normal

cohesion is added in the contact zone as follows:

FJKR = −4
√

πγE∗a3/2 +
4E∗

3R∗
a3 (16)

δ =
a2

R∗
−
√

4πγα

E∗
(17)

where E* is the equivalent Young’s modulus, R* is the equivalent radius, δ is the overlap,
and γ is the surface energy.

This model provides cohesive forces even without physical contact. Assuming that
nonzero forces are present between particles, the following equation gives the maximum
gap between them:

δc = −
√

4πγac

E∗
+

a2
c

R∗
(18)

ac =

[
9πγR∗2

2E∗
(

3
4
− 1√

2
)

] 1
3

(19)

where δc is the maximum gap between particles and ac is the maximum contact point radius.
The bonding force reaches its maximum when there is no physical contact between

the particles and the particle distance is less than ice. Its value is [30,31]:

Fpullout = −
3
2

πγR∗ (20)

At present, there are various DEM modeling methods for irregularly shaped particles.
In this paper, the least computationally intensive multi-sphere unit method is used to model
Co-PES composite powder. As shown in Figure 2a, the walnut shell particles are nearly
spherical with a rough surface. Using a separate spherical element modeled as shown in
Figure 2c, the diameter of the spherical element is the diameter of the walnut shell particle.
The Co-PES powder particles are irregularly shaped with smooth particle surfaces, as seen
in Figure 2b. In Figure 2c, the Co-PES powder was modeled as overlapping spherical
units by the multi-sphere unit method, and the mass of Co-PES particles was obtained by
Boolean subtraction operation. The breakage and fracture of Co-PES particles were not
considered in this study. Walnut shell powder and Co-PES powder were mixed at a mass
ratio of 1:4 in Figure 2c.

The model parameters of walnut shell and Co-PES powder used in the simulation
are shown in Table 2. In the simulation, the geometry of the rollers and scrapers and the
spreading of the powder are consistent with reality. Because of the smooth surface of
the roller and the scraper, the friction coefficients of the rollers/scraper–particles (walnut
shell/Co-PES) were set to be half of those of walnut shell–walnut shell and Co-PES–Co-
PES. Because the substrate surface is rough, the substrate–particle (walnut shell/Co-PES)
friction coefficient are set to twice the friction coefficients of walnut shell–walnut shell
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and Co-PES–Co-PES, respectively. In addition, in order that the motion of the roller and
the scraper is not interfered, their masses are assumed to be infinite. To save calculation
time, in Figure 3, the computational domain in the Y-direction for both powder layer
processes was 500 µm with periodic boundaries. The Young’s modulus has little effect
on the simulation results [32], and the Young’s modulus used in the simulations is two
orders of magnitude smaller than the real value and, therefore, the surface energy density is
also two orders of magnitude smaller than the real value to assure the same ratio between
Young’s modulus and Hamaker’s constant and thus obtain reliable van der Waals forces [33].
The particles in the simulations were generated using a normal distribution in order to be
practically equivalent.
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composite powder analytical model.

Table 2. Model parameters used in the simulation.

Walnut Shell Co-PES Walnut Shell/Co-PES

Material density ρ (g/cm3) 0.48 0.7 0.686
Young’s modulus [34,35] E (GPa) 13.1 7.56 0.6995

Poisson ratio [34,35] ξ 0.29 0.4 0.35
Restitution coefficient e 0.5 0.65 0.6

Sliding friction coefficient µs 0.7 0.55 0.65
Rolling friction coefficient µr 0.01 0.01 0.01

Surface energy density λ
(

mJ
m2

)
0.2

Diameter of roller D (mm) 5
Rotation speed of roller ω (rad/s) 2π

Paving speed V (m/s) 0.05–0.2
Layer thickness H (µm) 80–230
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(b) scraper spreading powder.

3. Characterization of Powder Bed Density

The effect of different parameters on the quality of the powder bed was investigated
by analyzing the density of the powder bed. A series of grids with dimensions L ×W × H
were set up on the powder bed along the direction of the powder laying, as shown in
Figure 4.
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Define the average scores ρ and the average scores standard deviation S of the grid to
characterize the density of the powder bed and the uniformity of the powder bed density,
respectively. The density calculation of the powder bed in the i-th grid is given as:

ρi =
mi

L×W×H
(21)

where mi is the mass of the particle in the i-th grid.
The average scores of the grids are:

ρ =
∑N

i=1 rhoi

N
(22)

where N is the number of grids.
The average score standard deviation S of the grid is:

S =

√
∑N

i=1 (ρi − ρ)2

N − 1
(23)

4. Results and Discussion
4.1. Influence of Squeegee and Roller Spreading Powder

Scraper [36] and roller [37] spreading are commonly used in industrial equipment, but
the spreading mechanisms of these two spreading methods are different, so their effects on
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the walnut shell/Co-PES hybrid powder bed need to be investigated. The results of the
velocity field simulation of the walnut shell/Co-PES hybrid powder for the two powder
laying methods are shown in Figure 5. The particle velocities are represented in absolute
coordinates XYZ, and the motion coordinate system X′Y′Z′ is set at the bottom of the
powder paver (rollers/scrapers) in order to be used to describe the dynamic behavior.
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Figure 5. (a) Distribution of roller spreading speed; (b) Distribution of scraper spreading speed.

In Figure 5a,b, for the particle velocity field, the mixed powder pile is pushed forward
by the scraper/roller in the powder laying direction, and the powder pile upper layer
particles accelerate and slide down under the effect of gravity, with a maximum velocity.
For this reason, a large amount of kinetic energy is required to overcome the adhesion
force between the powder particles, which can easily fall into the forming platform, and
a powder layer is formed in the space between the scraper/roller and the substrate. An
enlarged view is shown on the left of Figure 5a,b; there is some lateral motion in the YY′

direction due to random collisions, but the lateral movement of the powder pile can be
neglected compared with the direction of powder laying, and we focus on the motion of the
particles in the powder laydown direction. A plurality of rectangular grids with dimensions
L ×W × H are arranged along the X direction on the powder bed and used to measure the
particle mass. The density of each cubic grid was calculated for the two different powder
laying methods, as shown in Figure 6. Compared with the scraper spreading method, the
roller spreading powder density is greater in each cube area and the formed powder layer
is denser. This is because the effective contact area of the roller with the particles during the
powder laying process is larger than that of the scraper with the powder, which facilitates
the rearrangement of the particles. The scraper interacts with the powder layer mainly at
its edge and drags the particles as it moves, resulting in a greater roughness. In addition,
in the process of powder laying by reverse rotation of the roller, the roller will have a
compacting effect on the powder bed, and the small particles will fill the space between the
coarse particles, resulting in a higher mass of mixed powder under the same volume, more
powder will be laid, and a denser powder layer will be formed [38]. Therefore, the powder
layer formed by the roller is denser than that formed by the scraper.
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4.2. Influence of Powder Laying Speed on Powder Bed

Increasing the powder spreading speed is usually considered an important method to
improve the production efficiency [39], but the increase in powder spreading speed will
have an impact on the quality of the powder bed, so the relationship between powder
spreading speed and powder bed quality and the reasonable selection of powder spreading
speed need to be studied. The effect of the powder laying speed on the average scores
and their standard deviation of the powder bed in Figure 7. With an increase in powder
laying speed, the average score of the bed decreases linearly, and the average score of
the bed decreases from 0.036 to 0.022. The average scores of the scraper bed decreased
from 0.024 to 0.011. With the increase in powder laying speed, the average scores standard
deviation of the roll/scraper-formed powder bed showed an increasing trend. The average
score standard deviation of the roll increased from 0.0005 to 0.0016, and that of the scraper
increased from 0.0009 to 0.0021. The results showed that the faster the powder laying speed,
the less powder is mixed into the bed, and the worse the uniformity and compactness of
the bed.
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Figure 8 shows the effect of different spreading speeds on the morphology of the
powder bed. For the two different powder laying methods, when the powder laying speed
increases from 50 mm/s to 110 mm/s, a small vacancy gradually appears in the powder
bed, making the density and uniformity of the powder bed decline. When the powder
laying speed increases from 140 mm/s to 200 mm/s, the accumulation height of the powder
bed declines rapidly and the vacancies in the powder bed become larger and larger, so the
uniformity and compactness of the powder bed are reduced. In addition, increasing the
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powder laying speed has a great impact on the scraper, and the powder bed becomes very
loose when the powder laying speed V > 140 mm/s, which also verifies the conclusion
obtained from Figure 7.
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To further investigate the effect of powder laying speed on the powder layer region,
multiple cubic areas of size H × H × H are fixed along the direction of motion at the
bottom of the roll/scraper to collect the average particle velocity in the X′ direction, as
shown in Figure 9a. For both roller and scraper forms of powder spreading, as the speed
of laying powder increases, the velocity of particles in the X′ direction in the cube area
increases and particles move in the direction of X′, causing the powder bed to become loose
and a decline in the powder bed quality. In addition, in the left area of the bottom of the
roller/scraper, in Figure 9b, the particles will continue to move, and their speed increases
with the increase in laying speed. This indicates that the mixed powder particles will still
move on the substrate in the spreading direction after passing through the roller/scraper,
which will make the powder bed looser. This is consistent with the conclusions in the
literature [33]. This movement becomes more pronounced as the speed of powder laying
increases, especially with the scraper.
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From the above analysis, it is concluded that the uniformity and compactness of the
powder bed decreased due to the high laying speed. However, in industrial production,
the powder laying speed is usually increased to improve production efficiency, with the
accompanying disadvantage of reducing the quality of the powder bed laying, which is
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detrimental to the production. Therefore, the maximum powder laying speed should be
reasonably adjusted for both high-efficiency and high-quality production [40].

4.3. Influence of Powder Laying Thickness on Powder Bed

The effects of powder laying thickness on the average scores and their standard
deviations of the powder bed in Figure 10. The average scores of the powder bed formed
by the two powder laying methods monotonically increase as the thickness of the powder
layer increases, and the standard deviation of the average scores monotonically decline
with increasing thickness of the powder layer. This indicates that the forming quality of
the powder bed improved with increasing powder laying thickness. Furthermore, the
monotonic trend of the average scores and average scores standard deviation became
more and more remarkable with the gradual increase in the powder laying thickness. This
implies that the forming quality of the powder bed improves faster as the powder laying
thickness increases.
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The powder bed morphology obtained from the DEM simulation more directly illus-
trates the effect of the powder laying thickness, as shown in Figure 11. For the two different
powder laying methods, when the powder laying thickness was 80 µm and 110 µm, there
were many vacancies in the powder bed, and the powder bed quality was poor. This
is because when the powder laying thickness is too small, the particle clogging in the
area in front of the roller and scraper becomes more enhanced. During particle clogging,
a strong chain structure is formed between the particles, which makes the particles in
the clogging state accumulate a large amount of strain energy in a short time. When the
roller/scraper continues to move forward, the force chain structure formed during the
blockage phase collapses, causing the strain energy to be rapidly released and transferred
to the surrounding particles, which in turn causes these particles to fly out from the powder
laying gap area [41] and be pushed out of the forming platform, resulting in a powder bed
with many voids. When the powder laying thickness H ≥ 140 mm, most of the particles
stay on the forming platform to form a powder bed, the powder bed voids become smaller
and smaller, and the uniformity and density of the powder bed gradually increase. From
these phenomena, it can be seen that increasing the thickness of powder laying can improve
the uniformity and density of the powder bed.
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5. Conclusions

The powder laying process of biomass composites in PBAM was simulated using
a DEM. Walnut shell/Co-PES powder was used as the research object and the discrete
element model of walnut shell/Co-PES powder was established using the multi-sphere
unit method, and a typical roller and scraper spreading simulation was performed for
the spreading process, and the effects of different spreading methods (rollers/scrapers),
powder paving, and powder layer thickness on the uniformity and density of the powder
bed were researched. The key findings are as follows:

(1) Under the same simulation conditions, the roller and scraper spreading process was
simulated. Due to the compaction effect of rollers and particle rearrangement, the
density of the powder bed formed by rollers was generally greater than that of formed
by scrapers, especially with 30 mm of powder bed. The density of powder bed formed
by rollers was 60% higher than that of powder bed formed by scrapers at the same
position. Thus, a better quality of powder bed is obtained by rollers laying powder.

(2) For the two different powder laying methods, the average scores and the average
score standard deviation of the powder bed density decreased and increased, respec-
tively, with increasing powder laying speed. When the powder spreading speed was
increased from 50 mm/s to 200 mm/s, the average fraction of the density of powder
bed formed by rollers decreased by 38%, and that formed by scraper decreased by
54% This implies that the uniformity and density of the powder bed decreases with
increasing powder laying speed and the density of the powder bed decreases more
rapidly with scraper forming compared to roller forming.

(3) For the two different powder laying methods, the average scores, and the average
score standard deviation of the powder bed density increased and decreased, respec-
tively, with increasing powder layer thickness. Among them, the average fraction of
the density of powder bed formed by rollers increased by 418% when the powder lay-
ing thickness increased from 80 µm to 230 µm, and that of scraper forming increased
by 390%. This shows that the homogeneity and density of the powder bed increases
with the increase in powder laying thickness. The density of the bed increases faster
with the roller than that with the scraper.

The influence of different process parameters on the density of biomass composite
powder bed was investigated with walnut shell/Co-PES powder. In this paper, the walnut
shell particles are modeled as spherical. However, the walnut shell particles are approxi-
mately spherical but not truly spherical, and the spreading parameters are not optimized.
Theoretically, the powder bed laying process of biomass composite powder is influenced
by many other parameters, such as the moisture content of biomass powder, the compo-
sition ratio between biomass powder and matrix powder, and different rotation speeds
of the rollers, etc., which were not studied in this paper due to the length limitation. In
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the future, a new model will be developed based on the real shape of walnut shells for
process optimization and experimental validation of biomass composite powder parame-
ters to provide reference for the application of biomass composite powder in powder bed
additive manufacturing.
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