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Abstract: Concrete structures under wind and earthquake loads will experience tensile and com-
pressive stress reversals. It is very important to accurately reproduce the hysteretic behavior and
energy dissipation of concrete materials under cyclic tension–compression for the safety evaluation
of concrete structures. A hysteretic model for concrete under cyclic tension–compression is proposed
in the framework of smeared crack theory. Based on the crack surface opening–closing mechanism,
the relationship between crack surface stress and cracking strain is constructed in a local coordinate
system. Linear loading–unloading paths are used and the partial unloading–reloading condition is
considered. The hysteretic curves in the model are controlled by two parameters: the initial closing
stress and the complete closing stress, which can be determined by the test results. Comparison
with several experimental results shows that the model is capable of simulating the cracking process
and hysteretic behavior of concrete. In addition, the model is proven to be able to reproduce the
damage evolution, energy dissipation, and stiffness recovery caused by crack closure during the
cyclic tension–compression. The proposed model can be applied to the nonlinear analysis of real
concrete structures under complex cyclic loads.

Keywords: concrete; hysteretic behavior; energy dissipation; cyclic loading; smeared crack model;
numerical simulation; dynamic behavior

1. Introduction

The safety assessment of concrete structures subjected to cyclic loading such as seismic
excitation requires realistic constitutive models to reproduce the real behavior of the materi-
als. Due to the low tensile strength, the concrete subjected to seismic load usually presents
softening behavior in tension and hysteretic behavior in tension–compression reversals.
As a result, the hysteretic model for concrete plays a significant role in determining the
seismic responses of concrete structures including the deformation and energy evolution.
However, due to the lack of experimental data, studies on modeling the hysteresis behavior
of concrete under cyclic tension and tension–compression reversal are scarce compared to
those on cyclic compression [1–5].

At present, most concrete constitutive models considering the cyclic tension assumed
that the unloading path coincides with the reloading path, neglecting the hysteretic be-
havior and energy dissipation caused by the crack opening and closing [6–10]. Several
researchers [11–14] have suggested various modeling strategies to replicate the hysteretic
stress–strain curves of concrete under cyclic loading, including the complete unloading–
reloading path and the partial unloading–reloading path.

Yankelevsky and Reinhardt [11] proposed a focal model to reproduce the hysteretic
curves through a series of focal points. These predefined focal points govern the unloading
and reloading paths either by the rays from themselves or by their stress level. When all
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the focal points are determined, the complete unloading–reloading curves can be plotted
through a simple graphical process. Although the focal model performed well in replicating
the test results, it is thought that the concept of a focal point, which is solely derived from the
graphic feature, lacks physical significance and that the process for determining unloading
and reloading paths is excessively complex.

Chang and Mander [12] proposed a rule-based model to simulate the hysteretic
behavior of confined and unconfined concrete in both cyclic compression and tension.
Fifteen unloading and reloading paths governed by fifteen different rules are prescribed
in the model. The unloading and reloading curves in the model are characterized by the
polynomial equation. The rule-based model is capable to simulate the hysteretic curve of
concrete under various loading conditions. However, due to the overabundance of rules
and paths in the model, the parameters of the unloading and reloading paths are difficult
to calibrate, and the calculation is very time-consuming.

Aslani and Jowkarmeimandi [13] proposed a constitutive model for concrete under
cyclic loading based on the findings of previous experimental and analytical studies. The
model for concrete subjected to monotonic and cyclic loading comprises four components:
an envelope curve, an unloading curve, a reloading curve, and a transition curve. A
crack-closing model is suggested, in which the crack-closure mechanism is governed by the
crack-closure stress. The unloading curve in compression is described by a power equation,
whereas the reloading curve is described by a linear equation. However, the model fails to
account for hysteretic behavior and energy dissipation during cyclic tension due to the use
of the same path for both unloading and reloading processes in tension.

The most popular model for modeling the mechanical behavior of concrete is the
plastic damage model, which can replicate concrete’s irreversible deformation and stiffness
degradation under monotonic and cyclic loads with confinement [8–10]. The unloading–
reloading law in the plastic damage model is usually controlled by the damage modulus
and the residual plastic strain. Chen et al. [14] proposed analytical expressions introducing
damage index to describe the response of concrete to cyclic loadings. A power type function
is selected to model the unloading and reloading curve and the power is expressed as a
function of the damage index and the strain rate. McCall and Guyer [15] suggested that
cracks inside nonlinear mesoscopic elastic material such as sandstone were denoted as
hysteretic mesoscopic elastic units. Based on the assumption, Preisach–Mayergoyz (P-M)
model was used to simulate the phenomenon of the hysteretic loop in concrete under cyclic
tension and alternating tensile–compressive loading [16,17]. However, the P-M model can
only reproduce the hysteretic curves and cannot simulate the process of concrete crack
propagation under cyclic tension.

Based on the continuum damage theory, Long et al. [18,19] developed an improved
anisotropic damage model to simulate the nonlinear behavior of concrete by proposing the
independent tensile and compressive damage evolution laws. The hysteretic behavior is
described by a nonlinear unloading path and a linear reloading path. A stiffness recovery
coefficient is defined to model the stiffness recovery phenomenon caused by crack-closing.
However, the simulated results of concrete hysteretic behavior under tension–compression
reversals are not satisfactory.

Liu et al. [20] combined the loading and unloading characteristic points and the
loading and unloading paths in the hysteretic rules to construct a four-parameter plastic
damage model considering the hysteretic effect under cyclic loading. The reloading curve
is simplified to linear and the unloading curve is represented by an exponential equation
reported in the literature [5]. Nonlinear characteristics of concrete such as stiffness degra-
dation, strength softening, irreversible plastic deformation, and hysteresis effects under
cyclic loading were simulated by the model. However, the model assumes that damage
accumulates during the unloading process and remains unaltered during the reloading
process, which is inconsistent with the concrete damage mechanism.

In this paper, an efficient model capable of predicting the hysteretic behavior of
concrete under cyclic tension and tension–compression reversals is proposed within the
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framework of smeared crack theory. By decomposing the total strain into the elastic strain
and crack strain, it is possible to directly model the crack surface behavior that causes the
hysteretic phenomenon. Straight lines are adopted to describe the unloading and reloading
paths, and several necessary hysteretic rules are proposed based on the closing–opening
mechanism of the crack surface. Furthermore, the crack surface-closure effect during
the tension–compression reversals is considered by the definition of crack-closure stress
parameters. Compared to the existing hysteretic models, only two model parameters are
needed in the proposed model to simulate the complete and partial unloading–reloading
curves. The model has been validated by comparison with available test results under
different loading conditions.

2. Theoretical Framework of Smeared Crack Model
2.1. Overview of the Smeared Crack Model

The nonlinear behavior of concrete is mainly caused by the initiation and propagation
of cracks. In the finite element simulation, the description of concrete cracks generally
has two ways: one is the discrete crack method [21–24] and the second is the smeared
crack method [25–29]. The discrete crack model assumes that cracks appear on the element
boundaries. Once the crack generates, new nodes are added and the mesh is re-divided
to produce new element boundaries. In this way, the geometric discontinuity caused by
the crack is directly characterized, and the position, shape, and width of the crack can be
clearly described.

The smeared crack method assumes that local discontinuities caused by cracks are
uniformly distributed in the fracture zone of the finite element (Figure 1). Based on this
assumption, the relative displacement between the crack surfaces can be characterized
by the crack strain, and the constitutive behavior of the cracked concrete can be directly
modeled in terms of the stress–strain relations. Contrary to the discrete crack concept,
the smeared crack concept fits the nature of the finite element displacement method, as
the continuity of the displacement field remains intact [30]. The main ingredients of the
smeared crack model are introduced here, and a full description can be found in the
literature [29].
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Figure 1. A schematic diagram of the discrete crack and smeared crack.

The smeared crack model decomposes the total strain in the fracture zone into two
parts: elastic strain and crack strain. The elastic strain corresponds to the deformation
yielded by the uncracked portion, and the crack strain corresponds to the equivalent
deformation generated by the crack opening. In the one-dimensional case, the schematic
diagram of strain decomposition is illustrated in Figure 1, and the corresponding formula
can be written as:

ε = εe + εcr (1)

where εe represents the elastic strain and εcr represents the crack strain. The major advantage
of this decomposition is that it allows the crack surface behavior to be treated separately
from the constitutive behavior of the uncracked concrete [30]. As a result, the stress–strain
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relationship of the fracture zone in concrete can be treated as the superposition of the elastic
part and the cracked part, as illustrated in Figure 2.
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Figure 2. Decomposition of the stress–strain relationship for cracked concrete.

2.2. Constitutive Relations in Local Coordinate System

In the multiaxial stress state, the strain decomposition can be written in a tensor
form as:

ε = εe + εcr (2)

The corresponding incremental form is:

∆ε = ∆εe + ∆εcr (3)

When the first principal stress exceeds the tensile strength, the crack generates and
the crack surface is perpendicular to the direction of the first principal stress. In the
two-dimensional case, the behavior of the crack surface can be clearly described in the
local coordinate system as illustrated in Figure 3, where the subscript n represents the
direction normal to the crack surface, and the subscript t represents the direction tangential
to the crack surface. Projecting the stress on the crack surface σcr

n onto the local coordinate
system, the corresponding normal stress component σcr

nn and tangential stress component
σcr

nt can be obtained. Correspondingly, the cracking strain on the crack surface εcr
n can be

decomposed into the normal cracking strain εcr
nn and the tangential cracking strain γcr

nn in
the local coordinate system. In the smeared crack model, the normal cracking strain εcr

nn
corresponds to the open displacement of the crack surface, and the tangential cracking
strain γcr

nn corresponds to relative slip displacement on the crack surface.
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Assuming that the stress–strain relationships between the normal and tangential
directions of the crack surface are decoupled from each other, the relationship between the
stress and cracked strain in the local coordinate system can be written as follows:{

∆σcr
nn

∆σcr
nt

}
=

[
Dc 0
0 Gc

]{
∆εcr

nn
∆γcr

nt

}
(4)
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where Dc is the modulus governing the crack surface opening and closing behavior, and
Gc is the modulus governing the relative slip between the crack surfaces. Considering the
different loading cases, the modulus Dc can be further divided into the strain-softening
modulus Ds

c , which determines the tensile strain-softening behavior, and the hysteretic
modulus Dh

c , which determines the unloading–reloading behavior. The physical meaning
of each modulus is illustrated in Figure 4.

Materials 2023, 16, x FOR PEER REVIEW 5 of 26 
 

 

where cD  is the modulus governing the crack surface opening and closing behavior, and 

cG  is the modulus governing the relative slip between the crack surfaces. Considering 

the different loading cases, the modulus cD  can be further divided into the strain-soften-

ing modulus 
s
cD , which determines the tensile strain-softening behavior, and the hyster-

etic modulus 
h
cD  , which determines the unloading–reloading behavior. The physical 

meaning of each modulus is illustrated in Figure 4. 
Equation (4) can be written in a tensor form as: 

cr cr crΔs = D Δe  (5)

where 
crΔs  and 

crΔe  are the increment of crack surface stress and strain in the local 
coordinate system, respectively. 

crD   is the cracking modulus matrix controlling the 
complex behavior of the crack surface. 

 
Figure 3. Local coordinates system normal to the crack surface. 

  
(a) (b) 

Figure 4. A schematic diagram of the cracking modulus: (a) the strain-softening modulus and hys-
teretic modulus and (b) the shear modulus on the crack interface. 

2.3. Constitutive Relations of Cracked Concrete in Global Coordinate System 
The crack surface stress and crack strain increments in the local coordinate system 

can be converted into the stress and crack strain increments in global coordinates through 
coordinate transformation: 

Figure 4. A schematic diagram of the cracking modulus: (a) the strain-softening modulus and
hysteretic modulus and (b) the shear modulus on the crack interface.

Equation (4) can be written in a tensor form as:

∆scr=Dcr∆ecr (5)

where ∆scr and ∆ecr are the increment of crack surface stress and strain in the local coor-
dinate system, respectively. Dcr is the cracking modulus matrix controlling the complex
behavior of the crack surface.

2.3. Constitutive Relations of Cracked Concrete in Global Coordinate System

The crack surface stress and crack strain increments in the local coordinate system
can be converted into the stress and crack strain increments in global coordinates through
coordinate transformation:

∆εcr
xx

∆εcr
yy

∆γcr
xy

 =

 cos2 θ − sin θ cos θ

sin2 θ sin θ cos θ
2 sin θ cos θ cos2 θ − cos2 θ

{∆εcr
nn

∆γcr
nt

}
(6)


∆σxx
∆σyy
∆σxy

 =

 cos2 θ − sin θ cos θ

sin2 θ sin θ cos θ
2 sin θ cos θ cos2 θ − cos2 θ

{∆σcr
nn

∆σcr
nt

}
(7)

The formulas (6) and (7) in a tensor form are as follows:

∆εcr = N∆ecr (8)

∆σ = N∆scr (9)

where ∆σ and ∆εcr are the stress increment and crack strain increment in the global co-
ordinate system, respectively. N is the coordinate transformation matrix, and θ is the
angle between the normal direction of the crack surface and the x-axis in the global
coordinate system.
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The relationship between the stress increment and the total strain increment in the
global coordinate system is derived as follows. In the initial undamaged state, the relation-
ship between the stress tensor increment ∆σ and the elastic strain tensor increment ∆εe can
be written as follows:

∆σ = De∆εe (10)

where De is the elastic modulus tensor.
Substituting Equations (3) and (8) into (10):

∆σ = De[∆ε−N∆ecr] (11)

Combining Equations (5) and (9):

∆σ = NDcr∆ecr (12)

Substituting Equation (12) into (11):

∆ecr = [Dcr + NTDeN]
−1

NTDe∆ε (13)

Substituting Equation (13) back into Equation (11):

∆σ = [De −DeN[Dcr + NTDeN]
−1

NTDe]∆ε (14)

Equation (14) represents the constitutive equation of the cracked concrete. It can be
seen that the constitutive relationship of the cracked concrete is mainly determined by the
cracking modulus matrix Dcr.

2.4. Determination of Cracking Modulus

The crack surface strain-softening modulus Ds
c is determined based on the crack

band theory [31–33]. The crack band theory assumes that the microcracks are uniformly
distributed in a crack band with a width of h. According to the principle of conservation of
energy, the relationship between the area g f enclosed by the constitutive curve σcr

nn − εcr
nn

and the material fracture energy G f satisfies the following equation:

G f = hg f = h
∫

σnndεcr
nn (15)

It can be seen that the strain-softening modulus Ds
c of the crack surface is determined

by the parameters G f and h. The parameter h is known as the character length, which is
mesh-dependent and affected by the shape, size, type, and integration scheme of the finite
element. In the case of a bilinear softening model as shown in Figure 5, the corresponding
strain-softening modulus can be calculated as:

Ds
c =

 −
5
6

f 2
t h

G f
(0 < εcr

nn < 2
9 εu)

− 5
42

f 2
t h

G f
( 2

9 εu < εcr
nn < εu)

(16)

where εu is the ultimate strain. It can be seen that the strain-softening modulus Ds
c and the

ultimate strain εu of the softening curve have to be adjusted to the crack band width h.
The hysteretic modulus Dh

c of the crack surface is determined by the unloading and
reloading paths as well as the loading history. In the smeared crack approach, the unloading
and reloading paths of concrete under cyclic load can be governed by proposing different
hysteretic rules without modifying the constitutive equation. The crack shear modulus Gc
is usually assumed to be constant, and its value can be determined according to the method
in the literature [30].
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3. Hysteretic Rules Based on Crack Opening–Closing Mechanism
3.1. Hysteretic Characteristics of Concrete under Tension–Compression Reversals

The unloading and reloading behavior of concrete under tension–compression rever-
sals usually presents obvious hysteretic characteristics, accompanied by a large amount of
energy dissipation [34,35]. Figure 6 shows the characteristic hysteretic curve of concrete
under uniaxial tension–compression reversals, where the horizontal axis represents the
tensile strain and the vertical axis represents the tensile stress. In this paper, the loading pro-
cedure is defined as the process of the tensile strain increase, and the unloading procedure
is defined as that of the tensile strain decrease.
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The complete and partial unloading–reloading process under tension–compression
reversals is shown as the dotted line in Figure 6. It can be seen that in the process of
complete unloading, the stiffness gradually decreases with the reduction in tensile stress,
and the inelastic strain is observed when the tensile stress is unloaded to zero. When
the stress is reversed, the inelastic strain decreases gradually, while the stiffness increases
with the increase in compressive stress. The phenomenon of stiffness recovery under
compressive stress is called the “unilateral effect” [36], which is believed to be caused by
the complete closure of an open crack under compressive stress [37]. Nouailletas et al. [38]
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believed that the disappearance of inelastic strain and the recovery of stiffness during crack
closure can be partially explained by the friction phenomenon generated by the mismatched
discontinuous lips. In addition, the energy dissipated by friction becomes significant for
high values of damage and can reach the order of magnitude of the fracture energy.

In the process of complete reloading, the strain increases rapidly and the stiffness
decreases gradually. Zhang et al. [39] considered that the hysteretic behavior of concrete
under tension–compression reversals is due to the opening and closing process of the
crack surfaces.

3.2. Proposed Rules for Complete Unloading–Reloading Paths

Based on the crack opening–closing mechanism, the hysteretic behavior of concrete
under tension–compression reversals can be simulated by constructing the relationship
between crack surface stress and crack strain within the framework of smeared crack theory.
The hysteretic model is proposed in the local coordinate system to capture the behavior
of the crack surface. The complete unloading–reloading paths in the normal direction of
the crack surface are depicted in Figure 7, where the horizontal axis represents the crack
strain εcr

nn, and the vertical axis represents the normal stress component σcr
nn on the crack

surface. For simplicity, the subscript “nn” of the symbol εcr
nn and σcr

nn indicating the normal
direction on the crack surface is omitted. Straight lines are adopted for the unloading and
reloading paths. As shown in Figure 7, the complete unloading path is represented by the
polyline segments LMN, and the complete reloading path is represented by the polyline
segments NOL.
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The complete unloading–reloading paths are determined by three controlling points:
point L(εcr

un, σcr
un) corresponding to the unloading point on the softening envelope curve,

point M(εcr
un, f cl

0 ) corresponding to the initial closure of the crack surface, and point N(0, f cl
1 )

at which the crack surface is completely closed. The coordinate values f cl
0 and f cl

1 are called
initial closing stress and complete closing stress, respectively, and need to be calibrated
through tests. f cl

0 represents the stress when the crack surface starts to close during the
unloading process in tension, and f cl

1 represents the stress when the crack surface is
completely closing under compression.



Materials 2023, 16, 4442 9 of 23

When all the controlling points have been identified, the modulus Dh
c of the unloading

and reloading paths can be calculated according to the geometric relationship in Figure 7.
For the complete unloading path LMN:

Dh
c =


∞ ( f cl

0 < σcr ≤ σcr
un)

f cl
0 − f cl

1
εcr

un
( f cl

1 < σcr ≤ f cl
0 )

∞ (σcr ≤ f cl
1 )

(17)

For the complete reloading path NOL:

Dh
c =

{
∞ (σcr ≤ 0)

σcr
un

εcr
un

(0 < σcr ≤ σcr
un)

(18)

3.3. Proposed Rules for Partial Unloading–Reloading Paths

The rules governing the partial unloading–reloading path will be activated when the
loading direction reverses during the complete unloading–reloading process. The possible
partial unloading–reloading paths under the cyclic tension condition are plotted as shown
in Figure 8. Under this condition, the normal stress on the crack surface is always in
tension, and the partial unloading–reloading paths always occur in the area enclosed by
the polyline segments LMRL. The point R(εcr

re, 0) is called the residual strain point, whose
abscissa values εcr

re represent the residual crack strain when the normal tensile stress on the
crack surface is unloaded to zero.
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The strain εcr
re indicates the deformation due to the incomplete closing of the opening

crack surfaces. According to the geometric relationship in Figure 8, the value of εcr
re is

determined by the parameters f cl
0 and f cl

1 :

εcr
re = −

εcr
un f cl

1

f cl
0 − f cl

1
(19)

Under the condition of the cyclic tension, the rule for the partial reloading path is
different from that of the partial unloading path. In the case of unloading, the modulus
is specified as equal to 0 as the line segment P2P3 shown in Figure 8. The points P1, P2,
and P3 are called reverse-loading points, which represent the starting points of the partial
unloading–reloading paths. The coordinates for the reverse-loading points are uniformly
denoted as P(εcr

p , σcr
p ). In the case of reloading, the path starts from the reverse-loading

point and is directed to the unloading point, as the lines P1L and P3L shown in Figure 8,
and the corresponding modulus is related to the coordinates of the reverse-loading point.
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According to the above provisions, the partial reloading and unloading modulus
under the cyclic tension can be calculated as follows:

Dhp
c =

{
∞ (∆εcr ≤ 0)

σcr
un − σcr

p
εcr

un − εcr
p

(∆εcr > 0)
(20)

where the condition ∆εcr ≤ 0 indicates the unloading process, and the condition ∆εcr > 0
indicates the reloading process.

Under the condition of tension–compression reversals, all of the possible partial
unloading–reloading paths are presented as the dotted line 1©, 2©, 3©, and 4© with an
arrow shown in Figure 7. The partial unloading and reloading paths in this condition
are specified only dependent on the stress state (tension or compression). According to
the geometric relationship, the partial loading and unloading modulus under tension–
compression reversals can be calculated as follows:

Dhp
c =

{
∞ (σcr ≤ 0)
σcr

un
εcr

un − εcr
re

(σcr > 0)
(21)

3.4. Determination of the Model Parameters

Two model parameters of the proposed unloading–reloading paths are determined
in this section. Six stress-deformation curves from the uniaxial cyclic loading tests in the
literature [40] were selected to determine the value of the initial closing stress f cl

0 . The
value of f cl

0 corresponding to different unloading points was identified according to the
procedure demonstrated in Figure 9. Figure 10 shows the relationship between the value of
f cl
0 and the corresponding unloading deformations. It can be seen that the result appears

very scattered and f cl
0 decreases nonlinearly with the increase in unloading deformation.

Figure 11 shows the relationship between the value of f cl
0 and the corresponding unloading

stress σcr
un. A clear linear feature can be observed in the figure.
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Based on the comparison between Figures 10 and 11, it is more reasonable to relate the
value of f cl

0 to the corresponding unloading stress. A fitted linear equation was obtained as
shown in Figure 11 and the R-squared of the fitting is equal to 0.9941. The fitted line passes
through the origin and the slope is defined as the initial closing coefficient α = f cl

0 /σcr
un,

which represents the ratio of the initial closing stress to the unloading stress. In the proposed
model, the dimensionless parameter α is assumed to be a constant and consequently the
value of f cl

0 is determined by the corresponding unloading stress σcr
un.
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For the determination of the complete closing stress f cl
1 , there is no unified conclusion

at present. In the literature [39], the value of f cl
1 was set as one-third of tensile strength

based on the experimental results. In the literature [40], the value of f cl
1 was considered

related to the degree of compressive damage in concrete.

3.5. Numerical Implementation of the Proposed Model

According to the hysteretic rules proposed in this paper, the unloading and reloading
paths of the model can be implemented by modifying the cracking modulus within the
framework of smeared crack theory. The numerical algorithm of the proposed model is
implemented in a special finite element program using Matlab. The flow chart for updating
the crack surface modulus is shown in Figure 12.
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4. Simulation Results and Discussion
4.1. Cyclic Tests of Concrete

The concrete cyclic tests conducted by Reinhardt [40] were chosen in this study to
validate the proposed model. The average tensile strength of concrete was 3.2 MPa, the
average elastic modulus was 39.3 GPa and the fracture energy was 132 N/m. The specimens
for cyclic tension and tension–compression tests were concrete prisms with dimensions of
240 mm × 220 mm × 50 mm. Two grooves with a depth of 20 mm were precut on both
sides of the specimen along the thickness direction to control the initial position of cracking.
The schematic diagram of the specimen is shown in Figure 13.

The cyclic loading procedure was displacement-controlled, and three cyclic loading
programs T1, T2, and T3 with different stress ranges were adopted. The lowest stress in
cyclic loading program T1 was the tensile stress with an amount equal to 5% of the tensile
strength. The lowest stress in loading program T2 was the compressive stress with an
amount equal to 15% of the tensile strength. The lowest stress in loading program T3 was the
compressive stress with the amount equal to the tensile strength. Four extensometers with
a gauge length of 35 mm were installed on the front and back of the specimen to measure
the deformation during the cracking process. The arrangement of the measuring device
is shown in Figure 13. Based on the measured test data, the complete stress-deformation
curves during cyclic loading were obtained.

Figure 14 shows the history of deformation measured by the extensometers in the
cyclic loading programs T1, T2, and T3. The decrease in deformation is defined as unloading
and the increase in deformation is defined as loading. The extreme value points of the
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stress history are also plotted in the figure. It can be seen that under the three loading
programs, the maximum value of stress decreases with cyclic loading, while the minimum
value of stress is stable at the design value.
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4.2. Numerical Model and Parameters

According to the constraints and loading conditions, the specimen is always in a
plane stress state during the cyclic loads, so the two-dimensional finite element model
is adopted, as shown in Figure 15. The finite element mesh of the notched specimen is
shown in the figure. The meshes consist of 528 nodes and 479 four-node linear elements,
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numerically integrated by means of the four-point Gaussian scheme. There is no constraint
on both sides of the specimen. The bottom surface of the specimen is fixed, and the top
surface is fixed in the x direction and moves in the y direction according to the prescribed
displacement history.
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The following material properties are adopted for concrete: Young’s modulus
E0 = 39.3 GPa, Poisson’s ratio v = 0.2, tensile strength ft =3.2 MPa, and fracture energy
Gf = 132 N/m. The hysteretic model is introduced into the concrete constitutive relation-
ship. Based on the experimental data of Reinhardt’s test, the model parameters α and f cl

1
are set to be 0.53 and ft/3, respectively.

The crack band theory is used to guarantee the proper energy dissipation during the
fracturing process. A bilinear softening relationship is adopted in this paper. In order to
reduce the dependency of results on finite element mesh sizes, the width of crack band h
is calculated for each finite element as the element length projected into the normal crack
direction [41], as depicted in Figure 16.
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4.3. Simulation Results of Direct Tension Test
4.3.1. The Stress-Deformation Curve

The test and simulation results of the tensile stress-deformation softening curve of
concrete are shown in Figure 17. The test results include data from monotonic tensile tests
and the tensile-softening envelopes obtained from cyclic loading tests. The deformation in
the test results was obtained by averaging the elongation measured by all the extensometers
mounted on the surface of the specimens. Accordingly, the deformation of the simulation
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results was obtained by calculating the average longitudinal relative displacement of the
area where the extensometers were distributed. The simulated stress-deformation curve
reproduces the nonlinear characteristics during the stress rise phase and the softening
characteristics after the peak stress. A good agreement is observed between the simulated
curve and the test curves.
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4.3.2. Evolution of Deformation Distribution

Figure 18 shows the test and simulation results of the evolution of the deformation
distribution in the monotonic tensile test. The deformation distribution curves along the
cross section at the groove in Figure 18b correspond to the characteristic points marked on
the tensile stress-deformation curves in Figure 18a. Eight test curves and eleven simulation
curves were plotted to compare the evolution characteristics of the deformation distribution
during the tensile test.
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In the simulation results, it can be seen that the deformation distribution curves are
always symmetrical. In the elastic stage of initial loading (point 1), the deformation is
evenly distributed along the section of the groove. As the tensile stress increases, the
deformation near the groove increases rapidly, and the deformation distribution curve
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evolves into a “U” shape before the stress reaches the peak (point 2). The large deformation
near the groove indicates the initiation of the crack. When the stress-deformation curve
enters the softening stage, the deformation increases rapidly and gradually evolves to an
approximatively uniform distribution (points 3–11). The evolution characteristics of the
simulated deformation distribution curves show that the crack originated from the groove
at both ends and extended to the middle simultaneously.

In the test results, an asymmetric distribution of deformation is observed, which differs
significantly from the simulated results. From initial loading to the first stage of softening,
the deformation near the groove on one side increases rapidly, but the deformation near the
groove on the other side is almost zero (points 1′ to 5′). It is not until the stress deformation
curve enters the second stage of softening that the deformation gradually evolves to an
approximatively uniform distribution (points 6′ to 8′). The evolution of the test deformation
distribution curves shows that the crack initiated from one side of the groove and gradually
expanded to the other side. This result may be due to the unevenness of the tensile force
applied to the specimen during the test.

4.3.3. Simulation Results of Stress and Strain Distribution

The simulation results of the contour plots of stress and strain in the y-direction
corresponding to state points 1, 3, and 5 in Figure 18a are shown in Figures 19–21.
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Figure 19 shows the stress and strain contours corresponding to the linear elastic stage
of the stress-deformation curve (point 1). A significant concentration of stress and strain is
observed near the groove. At the top and bottom ends of the specimen, the stress in the
middle is obviously higher than that on both sides due to the uneven resistance caused by
the groove.

Figure 20 shows the stress and strain contours when the stress crosses the peak and
begins to decrease (point 3). The strain at the grooves increases rapidly and the high strain
zone is extending from the groove to the middle of the specimen. The stress near the groove
decreases due to the occurrence of a crack and the position of the maximum stress shifts to
the middle of the specimen. High stress is spread throughout the specimen, and the load
carried by the specimen reaches the maximum value.

Figure 21 shows the stress and strain contours corresponding to the softening stage
(point 5). The strain at the groove section increases rapidly and a distinct “crack band”
is observed almost across the groove section. As the crack extends toward the middle of
the specimen, the stress near the groove decreases, and an “X”-shaped high-stress zone is
observed in the middle of the specimen.

4.4. Simulation Results of Cyclic Tension–Compression Test
4.4.1. The Stress-Deformation Curves

Figure 22 shows comparisons between the test and simulation results of cyclic tests.
Figure 22a shows the test and simulation results of the stress-deformation curves under
cyclic loading condition T1. It can be seen that the unloading and reloading curves do not
coincide, and they enclose a spindle-shaped closed loop, which is commonly known as
the “hysteresis loop”. The presence of the hysteresis loop indicates that there is additional
energy dissipated during the unloading–reloading process. According to the mechanism
of the hysteretic behavior of concrete, the dissipated energy is considered to be related
to crack propagation and friction behavior of crack surfaces. The simulation results of
the hysteresis loop during the first softening stage agree very well with the test results.
During the second softening stage, deviations between simulated hysteresis loops and test
results are observed, which are caused by the offset of the simulated softening envelope.
Although the unloading and reloading paths in the model are specified as linear segments,
the simulated stress-deformation curve exhibits nonlinear characteristics similar to the
test results.

Figure 22b shows the test and simulation results of the stress-deformation curves
under cyclic loading condition T2. In this cyclic test, the loading direction changes during
the unloading and reloading process, and the stress state alternates between tension and
compression. The hysteresis loops under the loading condition T2 are more significant
compared to the loading condition T1, indicating that more energy is dissipated during the
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unloading and reloading process. As can be seen, the four hysteresis loops predicted by
the model are in good agreement with the test results.

Figure 22c shows the test and simulation results of the stress-deformation curves
under cyclic loading condition T3. In this condition, the compression stiffness recovers to
the initial value when the compressive stress reaches the crack-closing stress. The stress-
deformation curve presents complete unloading and reloading paths with a large amount
of energy dissipated. It can be seen that the simulation results of the hysteresis loop are
greatly influenced by the simulation accuracy of the stress-deformation envelope. Because
the unrecoverable tensile deformation is not considered in the model, the simulated curve
in the compression zone deviates from the test results.
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4.4.2. Stress and Strain Contours of Crack-Closure Process

In cyclic test T3, with the increase in compressive stress, the open crack surfaces
gradually closed. The stress and strain contours corresponding to the state points 12 and
13 during the process of crack closure in Figure 22c are shown in Figures 23 and 24.
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During the initial stage of reversed compression (point 12), the specimen is in com-
pression and the concentration of compressive stress is observed near the groove. Since the
crack is not completely closed, the cross-section at the groove still retains a large tensile
strain, while the tensile strain of other parts has been released. When the compressive
stress increases to 2 MPa (point 13), the compressive strain is observed in the cross-section
at the groove, indicating the complete closure of the crack surface. The distribution of
compressive strain in the specimen is the same as that of compressive stress, which means
that the sample entered the state of elastic compression.

4.4.3. Evolution of Stiffness and Dissipated Energy

The test and simulated results of the reloading stiffness ratio are compared in
Figure 25a. The reloading stiffness ratio is defined as the ratio of the reloading stiffness
E to the initial loading stiffness E0 in the cyclic load test, as illustrated in Figure 25a. The
reloading stiffness ratios in the cyclic load tests T1, T2, and T3 were calculated and summa-
rized in Figure 25a. It can be seen that the reloading stiffness ratio decreases rapidly with
the increase in deformation. When the deformation reaches 20 µm, the reloading stiffness
declines to 15% of the initial loading stiffness. When the deformation reaches 50 µm, the
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reloading stiffness declines to less than 5% of the initial loading stiffness. The simulated
reloading stiffness ratio presents good agreement with the test results.
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According to the continuum damage mechanics theory, the damage of material can
be characterized by reloading stiffness ratio. Figure 25b shows the test and simulation
results of the damage corresponding to different unloading strains in the cyclic tests. The
unloading tensile strain in the figure was obtained by dividing the unloading deformation
by the extensometer length of 35 mm. In addition, the damage at peak strain is assumed to
be zero. As can be seen from the figure, the damage increases rapidly after entering the
softening stage, reaching 0.8 at 500 µε. After that, the growth rate gradually decreases and
gradually tends to 1. As a comparison, the damage evolution curve based on the analytic
envelope expression in the literature [42] was also drawn in the figure. It can be seen that
the damage simulation results at different unloading strains are very consistent with the
test data and the damage evolution curve. This indicates that the hysteretic model has a
good ability to predict the damage evolution feature under cyclic tension.

Further comparison is performed to validate the proposed model. The predicted
dissipated energy during each cycle of the tests T1, T2, and T3 is compared with the test
results in Table 1. The magnitude of the dissipated energy of each cycle was obtained by
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calculating the area of the corresponding hysteresis loop. For the cyclic tests T2 and T3,
the hysteretic dissipated energy increases with the increase in the cyclic ordinal number
(i.e., unloading deformation). Good agreement is observed between the dissipated energy
results of the test and simulation. In the case of cyclic tests T1 and T3, the relative errors of
the total cumulative dissipated energy are only 2.37% and 7.05%, respectively.

Table 1. Comparisons of test and simulated dissipated energy results.

Cycle
Number

Cyclic Test T1 Cyclic Test T2 Cyclic Test T3

Test
(10−3 N/mm)

Simulation
(10−3 N/mm)

Error
(%)

Test
(10−3 N/mm)

Simulation
(10−3 N/mm)

Error
(%)

Test
(10−3 N/mm)

Simulation
(10−3 N/mm)

Error
(%)

1 2.45 2.44 −0.16 7.37 9.37 −21.4 15.68 15.23 −2.94

2 3.31 2.96 −11.6 7.74 11.32 −31.6 25.11 22.54 −11.4

3 2.12 2.45 13.3 8.75 13.43 −34.8 27.1 26.27 −3.18

4 2.28 2.24 −1.66 12.39 17.33 −28.5 32.77 40.5 19.1

5 2.87 2.62 −9.27 - - - 51.05 58.69 13.0

Total 13.03 12.72 −2.37 36.24 51.44 −29.5 151.71 163.22 7.05

5. Conclusions

Based on the smeared crack theory, this paper presents a hysteretic model to de-
scribe the nonlinear constitutive relationship of concrete under cyclic tension and tension–
compression reversals. The numerical predictions of the proposed model are compared
with several test results, and the following conclusions are obtained.

(1) By modifying the cracking modulus, the opening–closing behavior of the crack
surface that produces the hysteretic phenomenon of concrete under cyclic tension–
compression is directly modeled in the framework of the smeared crack theory.

(2) The proposed model is able to reproduce the hysteretic curves of concrete under
complex tensile cyclic load conditions, as well as the degradation of reloading stiffness,
energy dissipation, and stiffness recovery due to the crack closure.

(3) The model can simulate the initiation and propagation of concrete cracks under
uniaxial cyclic tensile load, as well as the opening and closing behavior of the crack
surface during the unloading–reloading process.

(4) The model adopts linear unloading–reloading paths and has only two parame-
ters, which make the model easy to use and suitable for introduction into finite
element programs.

(5) The model was verified by comparing the results with several cyclic tests. In addition,
the proposed model can be applied to the nonlinear analysis of real concrete structures.
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41. Červenka, J.; Červenka, V.; Laserna, S. On crack band model in finite element analysis of concrete fracture in engineering practice.

Eng. Fract. Mech. 2018, 197, 27–47. [CrossRef]
42. Deng, F.Q.; Chi, Y.; Xu, L.H.; Huang, L.; Hu, X. Constitutive behavior of hybrid fiber reinforced concrete subject to uniaxial cyclic

tension: Experimental study and analytical modeling. Constr. Build. Mater. 2021, 295, 123650. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compstruc.2012.06.006
https://doi.org/10.1016/j.engfracmech.2015.06.034
https://doi.org/10.1016/0008-8846(84)90113-3
https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
https://doi.org/10.1016/0013-7944(90)90145-7
https://doi.org/10.1007/s11431-012-4983-6
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000928
https://doi.org/10.1016/j.engstruct.2018.02.051
https://doi.org/10.1016/j.engfracmech.2018.04.010
https://doi.org/10.1016/j.conbuildmat.2021.123650

	Introduction 
	Theoretical Framework of Smeared Crack Model 
	Overview of the Smeared Crack Model 
	Constitutive Relations in Local Coordinate System 
	Constitutive Relations of Cracked Concrete in Global Coordinate System 
	Determination of Cracking Modulus 

	Hysteretic Rules Based on Crack Opening–Closing Mechanism 
	Hysteretic Characteristics of Concrete under Tension–Compression Reversals 
	Proposed Rules for Complete Unloading–Reloading Paths 
	Proposed Rules for Partial Unloading–Reloading Paths 
	Determination of the Model Parameters 
	Numerical Implementation of the Proposed Model 

	Simulation Results and Discussion 
	Cyclic Tests of Concrete 
	Numerical Model and Parameters 
	Simulation Results of Direct Tension Test 
	The Stress-Deformation Curve 
	Evolution of Deformation Distribution 
	Simulation Results of Stress and Strain Distribution 

	Simulation Results of Cyclic Tension–Compression Test 
	The Stress-Deformation Curves 
	Stress and Strain Contours of Crack-Closure Process 
	Evolution of Stiffness and Dissipated Energy 


	Conclusions 
	References

